
Computational Complexity Theory

—

The World of P and NP

Jin-Yi Cai

Computer Sciences Dept

University of Wisconsin, Madison

Sept 11, 2012

Supported by NSF CCF-0914969.

1



2



Entscheidungsproblem

The rigorous foundation of Computability Theory was

established in the 1930s, . . .

Answering a question of Hilbert
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Computable yet Not Efficiently Computable

Given N , how fast can one factor it?

N = 577207212969718332037857911728272431?
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N ′ = 13756295877065550723286378713930120642244218835580062

5186902271294765416798340629392379444118675259?
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N = 9361973132609 × 61654440233248340616559
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N
′

= 1471865453993855302660887614137521979 ×

93461639715357977769163558199606896584051237541638188580280321
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RSA Crypto System

Based on the presumed computational complexity of

factoring, Rivest, Shamir and Adleman proposed a

public-key crypto system.
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Is factoring intrinsically hard?

The best factoring algorithm runs in time ecn1/3(log n)2/3

(Number Field Sieve).
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Shor’s factoring algorithm

But by using “quantum” superposition, Shor has found a

factoring algorithm which runs in polynomial time.
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P and NP

P is deterministic polynomial time.

e.g. Determinant, Graph Matching (monomer-dimer

problem), Max-Flow Min-Cut.

NP is non-deterministic polynomial time.

For any given instance x, it is a Yes instance iff there is a

short proof which can be checked in P.

e.g. SATisfiability, Graph 3-Coloring, Hamiltonian

Circuit, Clique, Vertex Cover, Traveling Salesman, etc.

Also, Factoring, Graph Isomorphism, etc.
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The P vs. NP Question

It is generally conjectured that many combinatorial

problems in the class NP are not computable in

polynomial time.

Conjecture: P 6= NP.

P =? NP is: Is there a universal and efficient method to

discover a mathematical proof when one exists?

Can “clever guesses” be systematically eliminated?
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What a topologist has to say

For the pure mathematician the boundary that Gödel

delineated between decidable and undecidable, recursive

and nonrecursive, has an attractive sharpness that

declares itself as a phenomenon of absolutes. In contrast,

the complexity classes of computer science for example P

and NP require an asymptotic formulation and . . . demand

a bit of patience before their fundamental character is

appreciated.
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What a topologist has to say

Setting aside the constraints of any particular

computational model, the creation of a physical device

capable of brutally solving NP problems would have the

broadest consequences. Among its minor applications it

would supersede intelligent, even artificially intelligent,

proof finding with an omniscience not possessing or

needing understanding. Whether such a device is possible

or even in principle consistent with physical law, is a great

problem for the next century.

— Michael Freedman
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#P

Counting problems:

#SAT: How many satisfying assignments are there in a

Boolean formula?

#PerfMatch: How many perfect matchings (Dimer

Problem) are there in a graph?

#P is at least as powerful as NP, and in fact subsumes the

entire polynomial time hierarchy ∪iΣ
p
i [Toda].

#P-completeness: #SAT, #PerfMatch, Permanent, etc.
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Valiant’s Holographic Algorithms

Similar to “quantum” superposition, but without using

“quantum computers” , Valiant introduced holographic

algorithms.

These holographic algorithms also seem to achieve

exponential speed-ups for some problems.
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Perfect Matchings
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Some Surprises

Most #P-complete problems are counting versions of

NP-complete decision problems.

But the following problems are solvable in P:

• Whether there exists a Perfect Matching in a general

graph. [Edmonds]

• Count the number of Perfect Matchings in a planar

graph. [Kasteleyn]

Note that the problem of counting the number of (not

necessarily perfect) matchings in a planar graph is still

#P-complete [Jerrum].
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Holographic Algorithms

Holographic algorithms have two main ingredients:

(1) Use perfect matchings to encode fragments of

computations.

(2) Use linear algebra to achieve exponential cancellations.

Some seemingly exponential time computations can be

done in polynomial time.
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Sample Problems Solved by Holographic Algorithms

#PL-3-NAE-ICE

Input: A planar graph G = (V, E) of maximum degree 3.

Output: The number of orientations such that no node

has all edges directed towards it or all edges directed away

from it.

Ising problems are motivated by statistical physics.

Remarkable contributions by Ising, Onsager, Fisher,

Temperley, Kasteleyn, C.N.Yang, T.D.Lee, Baxter, Lieb,

Wilson etc.
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A Satisfiability Problem

#PL-3-NAE-SAT

Input: A planar formula Φ consisting of a conjunction of

NOT-ALL-EQUAL clauses each of size 3.

Output: The number of satisfying assignments of Φ.

Constraint satisfiability problem.

e.g. PL-3-EXACTLY-ONE-SAT is NP-complete.

and

#PL-3-EXACTLY-ONE-SAT is #P-complete.
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Pl-Node -Bipartition

PL-NODE-BIPARTITION

Input: A planar graph G = (V, E) of maximum degree 3.

Output: The cardinality of a smallest subset V ′ ⊂ V such

that the deletion of V ′ and its incident edges results in a

bipartite graph.

NP-complete for maximum degree 6.

If instead of NODE deletion we consider EDGE deletion,

this is the well known MAX-CUT problem.

MAX-CUT is NP-hard (even NP-hard to approximate by

the PCP Theory.)
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A Particular Counting Problem

#7Pl-Rtw-Mon-3CNF

Input: A planar graph GΦ representing a Read-twice

Monotone 3CNF Boolean formula Φ.

Output: The number of satisfying assignments of Φ,

modulo 7.

Here the vertices of GΦ represent variables xi and clauses

cj. An edge exists between xi and cj iff xi appears in cj.

Nodes xi have degree 2 and nodes cj have degree 3.
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An Instance For Pl-Rtw-Mon-3CNF
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#P-Hardness

Fact: #Pl-Rtw-Mon-3CNF is #P-Complete.

Fact: #2Pl-Rtw-Mon-3CNF is NP-hard.
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An Unexpected Algorithm

There is a polynomial time holographic algorithm for

#7Pl-Rtw-Mon-3CNF (Valiant).

Using Matchgate Computations . . . and Holographic

Algorithms.
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A Matchgate Γ

G

Figure 1: A matchgate Γ
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Matchgate

A planar matchgate Γ = (G, X) is a weighted graph

G = (V, E, W ) with a planar embedding, having external

nodes, placed on the outer face.

Matchgates with only output nodes are called generators.

Matchgates with only input nodes are called recognizers.
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A Matchgate
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Standard Signatures

Define PerfMatch(G) =
∑

M

∏

(i,j)∈M wij, where the sum is

over all perfect matchings M .

A matchgate Γ is assigned a Standard Signature

G = (GS) and R = (RS),

for generators and recognizers respectively.

GS = PerfMatch(G − S).

RS = PerfMatch(G′ − S).

Each entry is indexed by a subset S of external nodes.
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A Wild Attempt at P = P#P

Consider Pl-Rtw-Mon-3CNF again:

#Pl-Rtw-Mon-3CNF

Input: A planar graph GΦ representing a Read-twice

Monotone 3CNF Boolean formula Φ.

Output: The number of satisfying assignments of Φ.
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An Instance For #Pl-Rtw-Mon-3CNF
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Recognizer Signature

Given Φ as a planar graph GΦ.

Variables and clauses are nodes.

Edge (x, C): x appears in C.

For each clause C in Φ with 3 variables, we define

RC = (0, 1, 1, 1, 1, 1, 1, 1),

where the 8 entries are indexed by b1b2b3 ∈ {0, 1}3.

Here b1b2b3 corresponds to a truth assignment to the 3

variables.

RC corresponds to an OR gate.
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Generator Signature

For each variable x we want a generator G with signature

G00 = 1, G01 = 0, G10 = 0, G11 = 1, or (1, 0, 0, 1)T for short.

. . . to indicate that the fan-out value from x to C and C′

must be consistent.
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Exponential Sum

Now we can form the tensor product R =
⊗

C RC and

G =
⊗

x Gx.

The sum

〈R,G〉 =
∑

i1,i2,...,ie∈{0,1}

Ri1i2...ieG
i1i2...ie

counts exactly the number of satisfying assignments to Φ.

The indices of R = (Ri1i2...ie) and G = (Gi1i2...ie) match up

one-to-one according to which x appears in which C.
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Realizability Issue

If these signatures are indeed realizable as signatures of

planar matchgates, then by

the Fisher-Kasteleyn-Temperley (FKT) method on planar

perfect matchings, we would have shown

#P = NP = P !!!

The above G is indeed realizable.

But R is not (realizable as standard signature).

Need more ideas . . .
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Basis Transformations

The 1st ingredient of the theory of holographic algorithms:

Matchgates

The 2nd ingredient of the theory:

A choice of linear basis

by which the computation is manipulated/interpreted.
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Transformation Matrix

So let b denote the standard basis,

b = [e0, e1] =









1

0



 ,





0

1







 .

Consider another basis

β = [n, p] =









n0

n1



 ,





p0

p1







 .

Let β = bT . Denote T = (tij) and T−1 = (t̃ij).

(Upper index is for row and lower index is for column.)
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Contravariant and Covariant Tensors

We assign to each generator Γ a contravariant tensor

G = (Gα).

Under a basis transformation,

(G′)i′
1
i′
2
...i′n =

∑

Gi1i2...in t̃
i′
1

i1
t̃
i′
2

i2
· · · t̃

i′n
in

(1)

Correspondingly, each recognizer Γ gets a covariant tensor

R = (Rα).

(R′)i′
1
i′
2
...i′n

=
∑

Ri1i2...inti1i′
1

ti2i′
2

· · · tin

i′n
(2)

After this transformation, the signature

(0, 1, 1, 1, 1, 1, 1, 1)

IS realizable.
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Realization for the OR gate

So we want the following

(0, 1, 1, 1, 1, 1, 1, 1)

as a non-standard signature under some basis.

Let








1 + ω

1 − ω



 ,





1

1







 ,

where ω = e2πi/3 is a primitive third root of unity.
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The Transformation Matrix from R′ to R










1 + ω 1

1 − ω 1





−1






⊗3

is 1
8 times

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 −1 −1 1 −1 1 1 −1

−1 + ω 1 + ω 1 − ω −1 − ω 1 − ω −1 − ω −1 + ω 1 + ω

−1 + ω 1 − ω 1 + ω −1 − ω 1 − ω −1 + ω −1 − ω 1 + ω

−3ω −2 − ω −2 − ω ω 3ω 2 + ω 2 + ω −ω

−1 + ω 1 − ω 1 − ω −1 + ω 1 + ω −1 − ω −1 − ω 1 + ω

−3ω −2 − ω 3ω 2 + ω −2 − ω ω 2 + ω −ω

−3ω 3ω −2 − ω 2 + ω −2 − ω 2 + ω ω −ω

3 + 6ω 3 3 −1 − 2ω 3 −1 − 2ω −1 − 2ω −1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A
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Back to Standard Signature

By covariant transformation, (adding the last 7 rows),

(Ri1i2i3) =
1

4
(0, 1, 1, 0, 1, 0, 0, 1).

There indeed exists a matchgate with three external nodes

with the standard signature = 1
4 (0, 1, 1, 0, 1, 0, 0, 1).

Thus,

R′
C = (0, 1, 1, 1, 1, 1, 1, 1) =

1

4
(0, 1, 1, 0, 1, 0, 0, 1)









1 + ω 1

1 − ω 1









⊗3

.
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Over Finite Fields

Over the field Z7 (but not Q) both the generators and

recognizers are simultaneously realizable. They are

realizable as non-standard signatures.

This gives #7Pl-Rtw-Mon-3CNF ∈ P.
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Characteristic 7 is Unique

Theorem

Characteristic 7 is the unique characteristic of a field for

which there is a common basis of size 1 for generating

(1, 0, 0, 1)T and recognizing (0, 1, 1, 1, 1, 1, 1, 1)T.

Deeper connections with Mersenne numbers 2p − 1.
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Complexity Dichotomy Theorems

Theorem

Let F be any finite set of real-valued symmetric constraint

functions on Boolean variables. Then there are precisely

three classes of #CSP(F) problems, depending on F .

(1) #CSP(F) is in P.

(2) #CSP(F) is #P-hard, but solvable in P for planar

inputs.

(3) #CSP(F) is #P-hard even for planar inputs.

Furthermore F is in class (2) iff there is a holographic

algorithm based on matchgates and the planar problems

are solved by the FKT algorithm.
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Outlook

The kinds of algorithms that are obtained by this theory

are quite unlike anything before and almost exotic.

The uncertainty of its ultimate prospect makes it exciting.

Is it possible to find an exotic but polynomial time

algorithm for an NP-hard problem?
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Back to P. vs. NP

We don’t have any strong lower bounds.

The belief NP 6= P is based on the experience that the

usual algorithmic methods are insufficient for NP-hard

problems.

So would it be possible that this new theory leads to a

polynomial time algorithm for one of the NP-hard

problems?

Valiant: “any proof of P 6= NP may need to explain, and

not only to imply, the unsolvability” of NP-hard problems

using this approach.
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What would Hilbert say?

Is the Computability Theory of Gödel, Church and Turing

et. al. a more profound characterization of the

mathematical universe of theorem, proof, verification, . . .

Or does P vs. NP capture more the essence of

mathematics?

What would Hilbert say?
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Some References

Some papers can be found on my web site

http://www.cs.wisc.edu/∼jyc

THANK YOU!
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