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Overview of the emerging field of “network science,”
or “complex networks”

Complex networks meets nonlinear science:
Modeling the dynamics of gene networks

Outlook for the field



Examples of Complex Networks

http://www.zmescience.com

http://barabasilab.com/gallery

The Internet A Neural Network

http://www.relenet.com/ http://www4.toulouse.inra.fr/toxalim_eng

A Social Network A Metabolic Network




Traditional vs. Complex Systems
Approaches to Networks

Traditional Questions:

Social Networks: e Graph Theory: - C

Who is the most IBYR Does there exist a cycle ‘ ~

“important” personin & = =« through the network that A D

the network? > » i uses each edge exactly ‘
once!

Complex Systems Questions:

What fraction of edges have to be removed to
disconnect the graph?

What kinds of structures emerge from simple growth
rules?

How does the network structure influence the system’s
dynamics!?




Areas of Network Research

Structural Complexity

e The wiring diagram could be an intricate tangle, far from perfectly regular or
perfectly random.

e The network could include different classes of nodes

e The edges could be heterogeneous with different weights, directions and
signs.

Dynamical Complexity

e Dynamics on the network: processes could be taking place on the fixed
network. Examples: disease spread, synchronization

e Dynamics of the network: the network itself could be evolving in time.



Clustering

C = Probability that two of a node’s neighbors are
themselves connected

In arandom graph: C_ .~ 1/N (if the average

rand

degree is held constant)

Network N f C Cland

movie actors 225226 | 3.65 | 0.79 | 0.00027
ncural network 282 2.65 | 0.28 0.05
power grid 4941 | 18.7 | 0.08 [ 0.0005

Table from Watts & Strogatz, Nature (1998)



Watts-Strogatz ‘Small World” Model

Watts and Strogatz introduced this simple model to show how
networks can have both short path lengths and high
clustering.

Regular Small-world Random

Increasing randomness

D. J. Watts and S. H. Strogatz, Collective dynamics of “small-world”
networks, Nature, 393 (1998), pp. 440-442.



Degree Distributions

Poisson distribution Power-law distribution
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Images from the Barabasi Lab



How do power law degree distributions arise?

One possible answer: Barabasi-Albert
model of preferential attachment

e Growth - At each time step, we
add a node with m new edges
(connecting to nodes already 10° |
existent in the system)

e Preferential attachment - The
probability that a new node
connects to an existing node j
depends on the connectivity, k;

of that node.
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A.-L.Barabasi, R. Albert, Science 286,509 (1999)



Implications of the Preferential
Attachment Model

e Older nodes tend to have higher degrees. (This
expected correlation does not appear to hold for
WWW data)

e |f the network is directed, cycles do not exist.

e Networks generated from the Barabasi-Albert
model are assortatively neutral.



Assortative Mixing

In assortatively mixed networks, like vertices
tend to connect preferentially to one another.

O White

. o ok Friendship network of students in a
* U.S. school. Friendships are
determined by asking the
participants, and hence are
directed, since A may say that B is
their friend but not vice versa.
Vertices are color coded according
to race, as marked, and the split
from left to right in the figure is
clearly primarily along lines of race.
The split from top to bottom
reflects a division between middle
school and high school students.




Assortative Mixing by Degree

e A network is said to be assortatively mixed by degree if high
degree vertices tend to connect to other high degree
vertices

e A network is disassortatively mixed by degree if high degree

vertices tend to connect to low degree vertices.
(a) 7 (®)

>+ Disassortative
Scale-free network

Assortative
Scale-free network _*



Measured assortativity for various networks

M.E.J Newman and M. Girvan, Mixing Patterns and

network type size n | assortativity r
physics coauthorship undirected 52909 0.363
biology coauthorship undirected | 1520251 0.127
Té mathematics coauthorship | undirected 253 339 0.120
S | film actor collaborations undirected | 449913 0.208
company directors undirected 7673 0.276
email address books directed 16 881 0.092
= | Internet undirected 10697 —0.189
£ | World-Wide Web directed 269 504 —0.067
E‘ software dependencies directed 3162 —0.016
protein interactions undirected 2115 —0.156
E metabolic network undirected 765 —0.240
;5’:' neural network directed 307 —0.226
-2 | marine food web directed 134 —0.263
freshwater food web directed 92 —0.326

Community Structure in Networks (2002).



Network Motifs

Motifs

Subgraphs that have a significantly
higher density in the observed network
than in the randomizations of the same.

Randomized networks:

Ensemble of maximally random
networks preserving the degree
distribution (or some other feature(s)) of

the original network.

R. Milo et al., Science 298, 824 (2002)



Network Nodes Edges Nical Nrand2SD Zscore | Nreal Nrand = SP Zscore | Nrcal Nrand £SP Z score
Gene regulation — X Feed- X Y Bi-fan
(transcription) \ forward
Y loop
Vv Z w
> 7
E. coli 424 519 |40 FE£3 10 203 4712 13
S. cerevisiae® 685 1,052 70 11 + 14 1812 30040 41
Neurons — X Feed- X Y Bi-fan X Bi-
\Z forward ¥ N parallel
$ loop b . YN MZ
> 7 W
C. eleganst 252 509 125 90 + 10 3.7 127 55+13 5.3 227 35+ 10 20
Food webs X Three X Bi-
\ chain ¥ N parallel
Y Y, Z
\ N ¥
Z w
Little Rock 92 984 3219 3120 =50 2.1 7295 2220210 25
Ythan 83 391 1182 1020 + 20 72 1357 230 £ 50 23
St. Martin 42 205 469 450 + 10 NS 382 130+ 20 12
Chesapeake 31 67 80 82+4 NS 26 52 8
Coachella 29 243 279 235+£12 3.6 181 80+20 5
Skipwith 25 189 184 150 +7 5.5 397 8025 13
B. Brook 25 104 181 130 + 7 7.4 267 307 32
Electronic circuits X Feed- X Y Bi-fan © X N Bi-
(forward logic chips) \‘{I forward > § v 7z parallel
loop
\ - N \ p
Z
s15850 10,383 14,240 | 424 232 285 1040 1+1 1200 480 2+1 335
s38584 20,717 34,204 | 413 10+3 120 1739 6+2 800 711 9£2 320
s38417 23,843 33,661 | 612 32 400 2404 1+1 2550 531 2+ 340
s9234 5,844 8,197 | 211 2+1 140 754 1+£1 1050 209 1+ 200
$13207 8,651 11,831 | 403 2+1 225 4445 1+ 4950 264 2+ 200
Electronic circuits X Three- X Y Bi-fan X—>Y Four-
(digital fractional multipliers) ﬂ \ node /‘\ node
feedback \D {\\L feedback
Y<— Z loop Z w 7 <—W loop
s208 122 189 10 1+1 9 4 1+1 38 5 1+1 S
s420 252 399 20 1%1 18 10 11 10 11 1 11
s838% 512 819 40 1.5, 38 22 1+1 20 23 1+1 25
World Wide Web X Feedback X Fully X Uplinked
® with two f N connected ﬂ N mutual
$ mutual y€<—> 7 triad Y<—> 7 dyad
dyads
Z
nd.edu§ 325,729 1.46e6 | 1.1e5 2e3*1e2 800 6.8e6 Sed+4e2 15,000 1.2e6 led + 2¢2 5000

R Milo et al., Science 298, 824-827 (2002).



Community Structure in Social Networks

Friendship network of adolescents in a U.S. high school. Courtesy of James Moody



Detecting Communities

We are interested in network clustering, which differs from
ordinary data clustering.

In network clustering, relationships between vertices are
determined by flows through other vertices.

In data clustering, relationships between vertices can be
determined independently of other vertices

Traditional methods for network clustering have involved
transformation of the network into a data clustering problem.

Data Clustering Network Clustering



Community Structure

Consider a community detection scheme based on
centrality indices:

e Node betweenness: The betweenness
centrality of a vertex i is the number of
shortest paths between pairs of other vertices
which run through i.

e Edge betweenness: Similarly, the betweenness
of an edge j is the number of shortest paths
between pairs of nodes which run along .



Algorithm for Detecting Communities

1. Calculate the betweenness for all edges in the network.
2. Remove the edge with the highest betweenness.

3. Recalculate betweennesses for all edges affected by the
removal.

4. Repeat from step 2 until no edges remain.

Ref: Girvan & Newman, PNAS (2002)



lllustration: Finding Community
Structure in College Football Data
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Network Robustness and Resilience:
Percolation as a Starting Point

bond percolation site percolution

Ordinary Percolation on Lattices: Fill in each link (bond
percolation) or site (site percolation) with probability p and
ask questions about the sizes of connected components.



Q: What happens as we increase the
probability, p, of filling in each site?

For low values of p, we see small islands of connected
components.

At a critical value of p, a giant component forms. A
giant component is a connected component that
occupies a finite fraction of the system, in the limit of
infinite system size. At the critical point, there is a
power law distribution of the size of connected
components.

Above the critical value, the giant component occupies
an increasingly large fraction of the system. If we look
at the mean component size excluding the giant
component, we observe a characteristic component
size.

Order Parameter - Size of the giant component

Tuning Parameter, p




Percolation on Complex Networks

QO

§ Ne—*

Site Percolation Bond Percolation

e Percolation can be extended to networks of
arbitrary topology.

e \We say the network percolates when a giant
component forms.



How does percolation relate to
network resilience?

We consider the resilience of the network to the removal
of its vertices (site percolation) or edges (bond
percolation).

As vertices (or edges) are removed from the network, the
average path length will increase.

Ultimately, the giant component will disintegrate.

Networks vary according to their level of resilience to
vertex (or edge) removal.



Robustness and fragility of scale free networks

Mean vertex—vertex distance on a graph
representation of the Internet at the ——
autonomous system level, as vertices are '

removed one by one. If vertices are E 15 a;-,; .

removed in random order (squares), s o

distance increases only very slightly, but if £ 10 | o |

they are removed in order of their 1 _zﬂgﬁ-ﬂ‘”’

degrees, starting with the highest degree g 5 Lo & |

vertices(circles), then distance increases S S aseasssesasasaaanasnannssnans
£

sharply. We say the network is resilient
to random removal of vertices, but %.00 0.01 0.02
sensitive to targeted removal.

fraction of vertices removed

R. Albert, H. Jeong, and A.-L. Barabasi, Attack and error

tolerance of complex networks, Nature, 406 (2000), pp.
378-382.



Complex networks meets
nonlinear science:

Modeling the Dynamics
of Gene Networks

with:
Andrew Pomerance
Shane Squires
Ed Ott

Wolfgang Losert
Lou Staudt (NCI/NIH)



Overview

The goal: To gain insights into the
complex process of gene regulation.

The approach: Considering a simple
model of genetic control, we explore the
effects of network topology.

The application: We hypothesize that a
dynamical instability in the gene network
may be a causal mechanism contributing to
the occurrence of some cancers.



A complex web of interactions
in transcriptional regulation

Figure taken from http://rsif.royalsocietypublishing.org/content/5/Suppl_1/585 full



Modeling Gene Networks:
The Boolean Approach

Kauffman’s N-K

model:

N Genes on or off

Each gene has exactly K
inputs, which are
randomly chosen

Discrete updates

Evolves by a random
update function at each
node

Our work:

® Focuses on stability of
these systems in
response to small
perturbations

® Explores the effect of
network topology on
stability

® Explores more realistic
update functions



Local update rules: An example

current state | g o of @
time t gene 3 \
at t+|
Gene | | Gene 2 @
0 0 0
0 I 0
| 0 I Node with 2 inputs
I I 0

Output column filled in randomly with bias (probability of 0), pi



Local Rules Lead to
Global Patterns

Time

Node




Is the network stable or chaotic?

Flip the states of a few
genes. Do we see the
same pattern as before!?

pattern in stable network

original pattern

pattern in chaotic network



Hamming Distance

Chaotic and stable dynamics for
different networks

200 —
Y
150 — \
Chaotic dynamics
100 —
Stable dynamics
50 j /
N 2

stable critical unstable
T|me step Tuning parameter

o



Significance of the patterns

The patterns of activity may
define a cell’s character ES Cells

In single celled organisms this
could correspond to different cell
states: growing, dividing, starving,
etc.

In multicellular organisms these 5 , ot
could correspond to different cell Pancreatic cells Bone —

types.




Motivation for our work

Real networks are far from the idealized models
studied previously

We would like to be able to analyze any fixed
network, and we are interested in the effects of:

<
4
<

Assortativity
Community structure
Network motifs

Heterogeneous gene sensitivities



What we can calculate with our model

Given an arbitrary 025 |
network of connectivity,
and a distribution for the 0.20 4 ® Assortative
e el f th Neutral )
sensitivities of the genes 015 o Disassortative /
(and otherwise random
update rules), we can 0.10 —
predict whether we will
see chaotic or stable i lA/O/L(
dynamics. 0.00 ‘o /

0.1 0.2 0.3 0.4 05
We have also extended q

our approach to handle .
Here we vary the average sensitivity for three

more realistic update different networks. We plot the average distance
rules. between initially close states.



Semi-annealed analysis

Consider two state vectors, o(t) and G (t), that have evolved
from slightly different initial conditions

Let y.(t) = the probability that ;(t) and G;(t) differ

Let g, = the probability that o;(t) and &;(t) differ, given a
difference in the states of the inputs to i at time t — |

g =1—1[p’+ (1 —p)* =2p(1 — p;)



Update equation for yi(t)

Probability that the inputs at t-/ to i are not all the same

y;(#)=¢q,71—- H [l—y](t—l)] .
A=l J

Probability that the input from node j is the same

Perturb around ¢ = g (y; < |), linearization gives:

y(0=q,) Ay, t=1)= 2 0yt 1)

where the Q; = q/A; are the elements of a modified adjacency matrix



Stability Criterion

y(t) = Qy(t—1)

Aq is the largest eigenvalue of Q, which, according to the
Perron-Frobenius theorem is real and positive (Q; > 0).

Stability Conditions:

f A\g < I: stable
f Ag > |: unstable
f A\g = |: "edge of chaos”




Numerical tests

We numerically test the predictions of
* )\q stability criterion

 Saturated normalized Hamming distance between ¢ and &:



Stability and Cancer

® Gene expression profiles from tumor
dissections show that nearby cells have
vastly different gene expression profiles.

® Could these fluctuations imply a breakdown
of genetic control due to dynamical
instability?

® What kind of data do we need to answer
these questions!?



Elucidating the network and the
sensitivities from data

* Network: Undirected
links can be inferred from
data by looking at co-
expression patterns across
a range of perturbation
experiments

experiments

genes

e Sensitivities can be
determined from clinical
expression data



Summary and future directions

® Simple Boolean models of genetic control, starting with random Boolean
models and progressing to the more realistic Boolean update rules, can be
used to gain insights into the effects of network structure in the process of
gene regulation.

® A major challenge in this kind of research is to test the model predictions
with real data.

® Future directions: This kind of modeling approach may also be useful for
studying the evolution of gene regulatory networks. For example, we might
study what kinds of networks and truth tables optimize an organism’s fitness
(which we might think of as some kind of tradeoff between diversity of
behaviors and stability) and how might these structures arise through
evolutionary processes.
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Concluding Remarks

The emerging field of network science demonstrates how characterizing
complex connectivity patterns can be key to understanding many systems.

Foundational work in this area gives us insight into the role of network
topology in numerous applications.

Many open questions remain. Areas of active research include:
» Temporal networks
» Multiplex networks
» Uncertainty in networks

Words of caution when taking a physics approach to understanding
complex networks:

» Stay up-to-date on network science advances coming from other
disciplines

» Simple models are appealing and can help us gain insights into
complex systems, but we need to be careful that our assumptions
are reasonable and our conclusions are not overstated.



