Preliminary Design of the ITER Diagnostic Residual Gas Analyzer System

Presented at the ITPA 2013: Diagnostics Topical Group Meeting

T.M. Biewer¹, P. Andrew², B. DeVan¹, C.C. Klepper¹, S. Lass³, C. Marcus¹, M. Morris⁴, E. Nassar⁵, J. Owens⁶, D. Prieto⁶, S. Vartanian⁷, T. Younkin¹

¹Oak Ridge National Laboratory

²ITER International Organization

³Brooks Automation, Inc.

⁴DeNuke, Inc. ⁵PPPL

⁶PECOS, Inc. ⁷CEA IRFM

General Atomics, San Diego, CA, USA

June 4th - 7th, 2013

cadarache

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Thanks to ITER DRGA team

- ITER International Organization
 - Philip Andrew (Technical Responsible Officer)
- US ITER (Domestic Agency of the US)
 - Dave Johnson (WBS manager), Bill DeVan, Emil Nassar
- ORNL FMNS Division (subcontract to US ITER)
 - Ted Biewer, Chris Klepper (project managers); Van Graves, Chris Marcus, Tim Younkin
- PECOS Inc. (subcontract to ORNL, engineering)
 - David Prieto, James Owens
- DeNuke Inc. (subcontract to ORNL, scheduling)

Mike Morris

2 Managed by UT-Battelle for the U.S. Department of Energy

Outline

- Introduction: PDR and Diagnostic Goals
- DRGA System Overview
 - Equitorial Port 11 Concept
 - Divertor Port 12 Design
- Harsh environment: Magnetic Field and Radiation
 - Shielding and separation of sensitive electronics
- 3 Sensor DRGA Design: QMS, OPG, ITMS
- Project evolution towards FDR and Installation

Introduction

- The ITER Diagnostic Residual Gas Analyzer system (PA 5.5.P1.US.01) was defended at a Preliminary Design Review on April 9-10, 2013 at the "new" ITER building in France.
- This was the "<u>first</u> US-credited diagnostic to reach PDR."
- Provisionally passed; Cat. 1 Chits currently being resolved.
- The DRGA is expected to be installed for "first plasma".

4 Managed by UT-Battelle for the U.S. Department of Energ

Diagnostic Objectives

- Physics understanding
 - Divertor impurity compression
 - Particle balance (fuel, helium)
 - Wall retention
- Assistance to T inventory measurement
 - Back-up

- This system is NOT responsible for T inventory measurement
- Not responsible for measurement at Massive Gas Injection
- ITER vacuum pumping section (PBS 31) also provide RGA to monitor vacuum condition (operational aspects)
 - Detection of air leak
 - Wall condition monitor
 - Readiness for operation

Measurement Requirements for DRGA

G.04	Measurement role:	1a1: Machine Protection	Diagnostic role:	Primary	
Residual Gas Analyser		1a2: Basic Control		Backup	
		1b: Advanced Control		Supplementa	y
		2: Physics			
				Resolut	on

Measurement	Parameter	Condition	Range	Meas. role	time or freq	spatial or wave number	accuracy
		A = 1 - 100, DA = 0.5Fuel vs.					_
16. Divertor operational	Gas composition. Fuel,	He & H20 vs. CxHy				several	
parameters	He, impurities	discrimination	(10-4 - 1) ·Pdiv	1a.2	1 s	points	20% during pulse
18. Gas pressure and		A = 1-100, ∆A=0.5 Fuel vs.					
composition in main	Gas composition. Fuel,	He & H20 vs. CxHy				several	
chamber	He, impurities	discrimination	(1E-4 - 1) ·Pmain	1a.2	10 s	points	50% during pulse
19. Gas pressure and		A = 1-100, ∆A=0.5. Fuel vs.					
composition in vacuum	Gas composition. Fuel,	He & H20 vs. CxHy				several	
ducts	He, impurities	discrimination	(10-4 - 1) ·Pduct	1a.2	1 s	points	20% during pulse
39. Divertor Helium density 40. Fuel ratio in divertor	nHe nH/nD nT/nD		1E17 - 1E21 m-3 0.01 - 100 0.01 - 10	1a.2 2 2	1ms 100ms 100ms	- integral integral	20% 20% 20%
18. Gas pressure and						_	
composition in main						several	
chamber	Gas pressure		1E-4 - 1 Pa	1a.2	1 s	points	20% during pulse
19. Gas pressure and							
composition in vacuum						several	
ducts	Gas pressure		1·10-4 - 20 Pa	1a.2	100 ms	points	20% during pulse
16. Divertor operational						several	
parameters	Gas pressure		1E-4 - 20 Pa	1a.2	50 ms	points	20% during pulse

6 Managed by UT-Battelle for the U.S. Department of Energy

Measurement Requirement Summary

- DRGA measurement requirements
 - Group 1a2 measurements needed for basic machine control.
 - Goal: measure fuel ratios, He, and impurity concentrations
 - 1-100 amu range, with 0.5 amu or better
 - Time response: <1 s in divertor, <10 s at midplane</p>
 - Accuracy (better than): 20% in divertor, 50% in main chamber
- Mass difference D₂ (4.0271 amu) He (4.0026 amu) = 0.0245 amu
 - Not resolvable by conventional QMS (1-100 amu scan)
 - Utilize OPG (as on JET DT) to optically separated He, D
- Conjecture: "new" ITMS technology can scan 1-150 amu
 and resolve He/D₂

T.M. Biewer, ITPA 2013 Diagnostics Topical Group Mtg., San Diego, CA, USA, Jun. 4-7th, 2013

PDR baseline DRGA configuration

for the U.S. Department of Energy

Equatorial Port 11 integration is ongoing

- The EP11 DRGA system is not as developed as the Divertor-12 system
 - EP11 environment evolved substantially during the PD phase, as a result of EP11 Integration Process & PCSS CD activity.

• Preliminary Design includes a <u>concept</u> for DRGA in EP11.

Gas sample tube inside crystat

- Sample Pipe extends 1.7 meters inside bioshield.
- Thick Wall pipe is sufficient to support its own weight.
- Centering feature provides support from outer pipe.
 - Last 86 cm would still be self-supported.

13 Managed by UT-Battelle for the U.S. Department of Ener

Cryostat Pass-through

- One of the PD challenges, for the Divertor DRGA, was the cryostat pass-through
 - Essential to access the divertor region
- Preliminary Design includes a CONCEPT for
 - Aperture Replacement
 - External heating of the pass-through section of the sampling pipe.

Gas sample pipework in port cell LP12

15 Managed by UT-Battelle for the U.S. Department of Energy

Harsh Environment: Fringing B-fields

- During operation, instruments in the port-cell are also exposed to fringing magnetic
 - Estimated ~100mT; designing for 150mT
- Most RGA sensors will only tolerate up to 5mT
 - →Magnetic Shielding is essential
 - Good news: Substantial experience already (Tore Supra, JET)
 - See Magnetic Effects R&D Report for validation of present concept

16 Managed by UT-Battelle for the U.S. Department of Energy

Loughlin model estimates for the portcell radiation dose

- Assuming then ~5,000 hours of operation for ITER, one can estimate a total, accumulated dose in the range of 0.5MGy or 5x10⁵ Gy for the lifetime of the machine
- Main impact for DRGA is lifetime of electronics:
- Commercial electronics can only take up to 30 Gy (cumulative dose) before showing measurable deterioration.
 - This still means that in the port-cell environment, we need $\sim 10^5$ attenuation or 28cm of lead (assuming N-16 γ ' s).
- But RGA sensors need to be in the port-cell to meet measurement requirements!

17 Managed by UT-Battelle for the U.S. Department of Energy

Current cubicle allocation unacceptable

18 Managed by UT-Battelle for the U.S. Department of Energy

Sensor selection will be further validated by prototype testing

Mass Spec Analyzers

Precedent on Continuous Mass-Spec DRGA on a Tokamak

- Tore Supra used a QMS DRGA (magnetically + EMI) shielded for operation during plasma operation**
 - Continuous data acquisition and data transfer (15 channels/ 32ms)
 - Successfully used with shots up to 6 min
- Similar system currently on JET

21 Managed by UT-Battelle for the U.S. Department of Ene

OGA Concept and Current Use

- A Optical Gas Analyzer based on the Penning gauge discharge (« Penning Optical Gas Analyser » or Penning-OGA) is already in use on DIII-D, JET and Tore Supra.
 - Originally developped to distinguish He from D_2 (both M = 4)
 - On DIII-D it also measures Ne/D₂ and Ar/D₂
 - On JET it measures H_2/D_2 and T_2/D_2
 - On Tore Supra it measures He/D₂

22 Managed by UT-Battelle for the U.S. Department of Energy

Penning-OGA at JET with T runs*

for the U.S. Department of Energy

Sample mass spectra from ITMS

- ITMS mass scan covers a full range from 1-150 amu
 - Exceeds ITER measurement requirement
- Single scan achieved in 85 ms
 - Noise reduced by ensembling multiple scans
 - Data shown is ~1 minute avg.
- Zoom in on "mass 4" region shows that He and D₂ mass peaks are resolved (50/50 mixture at P~8x10⁻⁶ Torr)

24 Managed by UT-Battelle for the U.S. Department of Energ

He/D_2 discrimination possible at 1% He

- Percentage of He gas in D₂ gas stream was varied in CVC:
 - Target: 0, 1, 2, 5, 10, 20, 50, 100%
- If a SNR~1 can be tolerated, then even a ~1% concentration of He in D₂ can be measured within the 10 s measurement requirement for E11 DRGA.

25 Managed by UT-Battelle for the U.S. Department of Energ

Desire: ITMS to perform as well as OPG, and as well as conventional QMS

OPG & ITMS

- Previous slide is example of OPG monitoring of relative concentration of He and D₂
- OPG was not calibrated for these tests
- OPG was not operated simultaneously with ITMS

QMS & ITMS

- Conventional QMS cannot resolve He/D₂ at full (1-100 amu) mass scan rates.
- ITMS also scans > 1-100 amu range
- Claim by MKS that MV-2 QMS can resolve He/D₂
- Cross-comparison tests of OPG & ITMS & QMS to be performed on fully calibrated prototype DRGA

Documents Delivered

/ <u>55.G4 - RGA</u> / <u>Incoming</u> <u>Documentation</u> (DA > IO) / <u>Planned</u> <u>Documentation</u> / <u>PDR related</u>

documentation

17:43 2012 02 Apr 2013 29 Mar (1) 2013.03 PA Risk and Mitigation Plan 5.5.P1.US.01.55.G4 RGA (ITER D DVVK6X v1.0) 11:04 2013 01 Apr 2013 01 Apr Aperture Replacement Strategy Report (ITER D D3ZT7C v1.0) 16:51 2013 Assessment of Penning OGA operation with the Penning tube mounted between stages of Turbo Pump 29 Mar 2013 28 Mar ITER D 09:52 2013 29 Mar 2013 29 Nov Chit tracking table 5.5.P1.US.01 55.G4 RGA (ITER D CUMGSG v0.0) 11:42 2012 03 Apr 2013 28 Mar DDD for PD stage of diagnostic RGA (ITER D EH6N29 v1.0) 20:44 2013 29 Mar 2013 29 Mar Design Compliance Matrix (ITER D F92TXM v1.0) 11:08 2013 19 Dec 2012 Diagrams and Drawings 21:32 28 Mar 2013 28 Mar DRGA I&C Integration Plan (FAT and SAT Scenarios) (ITER D FZTHXJ v1.0) 22:27 2013 28 Mar 2013 28 Mar DRGAI&C Software Design Description (ITER D F933J9 v1.0) 22:17 2013 28 Mar 2013 28 Mar IDRGA Software Requirement Specification (ITER D_F84LHC v1.0) 22:10 2013 03 Apr 2013 28 Mar In Electrical Power and Grounding Requirements (ITER D DWYMQY v1.0) 20:36 2013 03 Apr 2013 28 Mar Electromagnetic Forces Analysis Report (ITER D EAUDY4 v1.0) 20:25 2013 19 Dec 2012 Interface documents 21:35 01 Apr 2013 01 Apr Ion-trap mass spectrometer testing for the ITER DRGA (ITER_D_DCNXTY v1.0) 16:11 2013 03 Apr 2013 28 Mar ITER DRGA Calibration Procedure (ITER_D_DX8JZM v1.0) 20:41 2013 03 Apr 2013 28 Mar Icad Specification for PDR (ITER_D_EAYTDW v1.0) 20:38 2013 29 Mar 2013 29 Mar (I) Report on Magnetic Shielding Calculation for the ITER DRGA (ITER D DWYUUL v1.0) 12:20 2013 29 Mar 2013 29 Mar (i) Report on Radiation Shielding Calculation for the ITER DRGA (ITER D DHXJDM v1.0) 12:25 2013 03 Apr 2013 28 Mar (1) Seismic Response Analysis (ITER D EAWR34 v1.0) 20:34 2013 03 Apr 2013 28 Mar ① Structural Integrity Report (ITER_D_EAXVST v1.0) 20:39 2013 No. of Records : 21

2012.04 PA R&D Plan 5.5.P1.US.01 55.G4 RGA (ITER D 7GH226 v1.0)

Date

23 Apr

29 Mar 2013

27 Managed by UT-Battelle for the U.S. Department of Energy

DRGA I&C Architecture

T.M. Biewer, ITPA 2013 Diagnostics Topical Group Mtg., San Dieg 28A, USA, Jun. 4-7th, 2013

28

History of DRGA project

- 2007: Diagnostic Systems design review
- July 2010: CDR for DRGA (W. Gardner, et al.; ORNL)
- September 2011: PA signed (5.5.P1.US.01) between ITER IO and US DA (<u>IDM: D2G28K</u>)
 - Official begin to PD phase
- November 2011: ORNL QP established as supplier to US DA (ITER_D_57384X)
- December 2011: MOA signed between ORNL-PPPL
- R&D, Preliminary Design, etc.
- April 2013: PDR

for the U.S. Department of Energy

- Documentation (IDM: D2G28K), Presentations (IDM: ENR3XF)

CAS Milestones for DRGA

ActivityID	Activity Name	Finish
USDA0604001400	IO - RGA CAS - Preliminary Design G4 Residual Gas Analyzers Approved by IO	10-May-13
USDA0604002400	IO - RGA CAS - Final Design Review G4 REsidual Gas Analyzers Approved by IO	13-Jan-14
USDA0606002944	IO - RGA CAS - Manufacturing Readiness Review and MIP Approved by IO	21-Aug-14
USDA0607016730	IO - RGA CAS - Delivery of Vacum Interface G4 Residual Gas Analyzers EQ11 to Integration Site	2-Mar-15
USDA0607020030	IO - RGA CAS - Delivery of G4 Residual Gas Analyzers EQ11 to Integration Site	7-Dec-16
USDA0607023530	IO - RGA CAS - Delivery of G4 Residual Gas Analyzers LP12 to Integration Site	31-Jul-17
USDA060702750	IO - RGA CAS - Manufacture G4 Residual Gas Analyzers EQ11 Complete	2-Sep-15
USDA060703200	IO - RGA CAS - Factory Acceptance Testing G4 Residual Gas Analyzers EQ11 Approved by IO	25-Aug-16
USDA060704050	IO - RGA CAS - Manufacture G4 Residual Gas Analyzers LP12 Complete	31-Aug-15
USDA060704700	IO - RGA CAS - Factory Acceptance Testing G4 Residual Gas Analyzers LP12 Approved by IO	21-Jun-16
USDA060L011500	IO - RGA CAS - Successful Agreement of Commissioning Work Plan	13-Jan-14

- PDR Apr. 2013
- FDR by Jan. 2014
- MRR by Aug. 2014
- FAT by Aug. 2016

Strategy for Final Design phase

- FDR date between Nov. 2013 and Apr. 2014
- ITER design issues impacting DRGA design
 - Approved double-seal flange designs (~1 month)
 - Finalized TMP selection (~Summer 2014)
 - EP11 port integration baseline (???)
 - LP12 port integration: glove box/pipe extractor & PCR 502 (???)
 - Outstanding DRGA R&D (~Summer 2013)
- Conjecture: Split DRGA FDR (with PCR)
 - FDR1: Nov. (Sep.?) 2013; "front end" design needed for port plug integration, driving schedule
 - FDR2: ~Fall 2014; DRGA analysis chamber in port cell can be delivered "later", allowing time for port cell design to stabilize

31 Managed by UT-Battelle for the U.S. Department of Energy

ITER schedule from G. Sips, JET GPM5

Motivation – The ITER Research Plan

The ITER Research Plan: Allows less than two years to go from first deuterium operation, to Q=10 in DT by early 2028.

T.M. E

Project is "on budget", inc. Feb 2013

Percent Spent of Project Budget

- CDR is complete, defining 100% spend point.
- Title III Engineering, pre-Fabrication, and Fabrication haven't begun, defining 0% spend points.
- Management covers
 ~FY11-FY17: 2/7~28%
- PD budget is ½ FD budget: should be ~33% spent
- R&D is wrapping up.

34 Managed by UT-Battelle for the U.S. Department of Energ

Summary and Conclusions

- To first order, the project is "on schedule and on budget", assuming a timely completion PDR Cat 1 Chits.
- Some R&D tasks have been delayed.
 - Those R&D tasks will be completed in the Final Design phase.
- ITER port cell design is impacting ability of DRGA system to meet FDR milestone.
 - We propose splitting the FDR (with PCR) so that "front end" components reach FDR earlier, allowing port cell design to formalize, enabling FD of DRGA analysis chamber & mounts.
- Three sensor design allows for measurement redundancy if any 1 gauge fails.
- Two complete DRGA systems are expected to be delivered to ITER in Summer 2017.

Supplemental Material

36 Managed by UT-Battelle for the U.S. Department of Energy

Aperture Replacement and Local Pipe Heater Concept • One of the PD challenges,

for the Divertor DRGA, was the cryostat pass-through UHV flange connecting RGA chamber's vacuum environment to existing VV extension through the cryostat Essential to access the divertor region Preliminary Design includes Cryostat Isolation valve followed by non-SIC bellows a CONCEPT for Pumping duct Aperture Replacement To RGA Chamber --> Orifice External heating of the pass-through section of the sampling pipe. Electrical Feed-through (double-walled) See corresponding R&D Standard part of the VV extension through the cryostat (remove "spring" feature - not needed for RGA pipe, Electrical Feed-through inside containment Report for details (also which has free end, unlike water pipes) (just needs to be >> leak-tight than the orifice) related talks) Heater tape (type: Thermocoax) Moved to Ted Biewer's **RH/Mantainance Talk**

37 Managed by UT-Battelle for the U.S. Department of Energy

He/D₂ even more critical for ITER's OGA

- This also from JET Divertor Penning-OGA
 - Earlier results with the Penning emission sampled with Dα and He I filtered detectors.
 - Change-over
 experiments with
 the the MkII-GB
 (gas box divertor
 configuration)**
- This measurement is not possible with present QMS sensors

Penning-OGA Data

38 Managed by UT-Battelle for the U.S. Department of Energy

Cooling pipes bring high radiation dose into the Divertor port-cell

- Impractical to rad-shield sensors
- → Need to separate out the electronics
- → Used radiation-hardened sensors only (to the extent possible) at the sensor tree.

- Cooling pipes from the divertor come through the bio-shield and run just above the RGA chamber assembly.
- They constitute the main source of γ radiation in this region.
- Surrounding every sensor in the RGA *sensor tree* with 28" thick lead is clearly impractical!

for the U.S. Department of Energy

Alternative placement and shielding of electronics – Equatorial Port Level

- Top view of Eq.11 port cell showing the alternative place for a DRGA LCC cubicle & its radiation shielding.
- The cubicle size is 800x800x2200 mm (Height).
- The shielding space is 200mm in front and top.

40 Managed by UT-Battelle for the U.S. Department of Energy

Alternative placement and shielding of electronics -- Divertor Level

 In Lower port 12, the IO has also made provisions to have cubicles with shielding on a trolley.

 This provides for an alternative place for the Divertor DRGA LCC cubicle & its radiation shielding.

<u>Recall</u>: The RGA Chamber Assembly is on a cart, anchored to the floor and right next to the wall

41 Managed by UT-Battelle for the U.S. Department of Energy

The ITER Optical Penning will use spectrally resolved detection

- The Optical Penning experience with the JET DT operation) exhibited Radiation Induced Luminescence of up to ~20% of the total signal [JET-P(98)80].
 - Plan to use spectrally-resolved measurements to isolate this background signal from the spectral line emission.

Compact Spectrometer Recall: Optical Penning is currently aimed only for the He/D₂ measurement (not H₂/

 D_2/T_2)

42 Managed by UT-Battelle for the U.S. Department of Ener Pure silica optical fibers

Penning-OGA Optical Fiber Concerns

Figure 7.1: RIA behaviour in low OH (STU) and high OH (SSU) pure silica fibres (100 μm core diameter) irradiated at 1.5 kGy/h (25 °C) as a function of (a) wavelengths (b) irradiation time.

- Radiation-Induced Attenuation (RIA) can impact transmission \rightarrow S/N.
 - Produces a "transient" response as a function of total γ radiation dose.
 - Potentially problematic for the "standard" Penning-OGA mode of operation is that RIA bands appears around both preferred He I lines and $H_{\alpha}/D_{\alpha}/T_{\alpha}!$
- Also cumulative damage
 - \rightarrow curing by heating the fibers and/or regular replacement
- However, most RIA data are from much higher radiation rates that we anticipate in ITER

43 Managed by 01-Balterie experience with pure, high-OH SiO₂ core/clad fibers on JET and TFTR with DT operation for the U.S. Department of Energy

Optical Penning Gauge Spectra on CVC

- Optical emission spectra of He and D are distinct, and emission lines are easily resolved and monitored.
- Ocean Optics HR4000CG-UV-VIS spectrometer
 - 200-1100 nm coverage
 - 4 ms to 10 s integration periods
- To resolve H/D/T will require higher resolution
- Example of ~1 hour of CVC operation

Ensembling improves read noise

- Unlike QMS (dwell time/mass determines count total & total scan period), ITMS scan rate and resolution is fixed (85 ms)
- Standard deviation of sample-tosample count variation (at constant pressure) for various ensembles
 - ~same at all masses as expected
- Ensembling "reduces" noise level and improves signal quality
- Desired SNR determines effective integration time

45 Managed by UT-Battelle for the U.S. Department of Energy

ITMS sufficient for He/D₂ resolution

- Gaussian line shapes fit to raw ITMS output logged at constant pressure
- Shown are the fit results for each 85 ms sample (D₂, black and He, red) compared to the ~1 minute ensemble fit values (green)
 - Resolution is inherent to the ITMS gauge:
 - R=(mass)/(FWHM)
 - R~195 measured, i.e. >R~164 needed
- The ITMS can resolve He/D₂, provided there is sufficient signal to discriminate the peaks above the noise floor.

Unsheilded ITMS is sensitive to B

- Magnet coil current varied at constant fill pressure.
- Raw mass peak becomes increasingly distorted as coil current ramped up.
- Resolution degraded and accuracy compromised.

47 Managed by UT-Battelle for the U.S. Department of Energy

ITMS testing on Tore Supra

Tore Supra

 Shielded ITMS successfully operates in rf-noise, B-field, etc. of Tore Supra for long pulse.

- ITMS was installed on Tore Supra, physically adjacent to QMS.
- Similar magnetic shielding on both.

48 Managed by UT-Battelle for the U.S. Department of Ener

Mass variation of ITMS resolution

- R=(mass)/(FWHM) is mass dependent, generically
- Measured FWHM of ITMS follows ~1/(mass) relation, such that R_{ITMS}~190, independent of mass
- ITMS has insufficient resolution for N- compound

Cost Performance Report (inc. Feb. 2013)

- Most recent numbers from US DA (WBS managers) indicate:
- Cumulative Project Metrics:
 - Cost/Performance Index (CPI): 0.98
 - Cost Variance (CV%): -2%
 - Schedule/Performance Index (SPI): 0.82
 - Schedule Variance (SV%): -18%
- Since we are currently at PDR, schedule variance was recovered by work performed in March (not reflected here).

			001	III ACI												
FORMAT 1 - WORK BREAKDOWN STRUCTURE																
PERFORMANCE DATA								-								
February 2013	CURRENT PERIOD						CUMULATIVE TO DATE									
r obraary zoro	BUDGETED COST		ACTUAL	VARIANCE			BUDGETED COST ACTUAL		VARIANCE							
	WORK	WORK	COST WORK					WORK	WORK	COST WORK						1
ITEM	SCHEDULED	PERFORMED	PERFORMED	SCHEDULE	SV%	COST	CV%	SCHEDULED	PERFORMED	PERFORMED	SCHEDULE	SV%	SPI	COST	CV%	CPI
1.05.03.06 Residual Gas Analyzer	180	62	71	-118	-66%	-9	-15%	1,230	1,014	1,031	-216	-18%	0.82	-17	-2%	0.98
1.05.03.06.01 Management Support	9	9	3	0	0%	6	68%	145	145	135	0	0%	1.00	10	7%	1.07
1.05.03.06.02 R&D	61	11	34	-50	-82%	-23	- 206%	291	231	258	- 60	-21%	0.79	-27	-12%	0.89
1.05.03.06.03 Conceptual Design	0	0	C	0 0	0%	0	0%	220	220	220	0	0%	1.00	0	0%	1.00
1.05.03.06.04 Preliminary/Final Design	109	41	34	-68	-62%	7	17%	575	419	419	-156	-27%	0.73	0	0%	1.00
1.05.03.06.05 Title III	0	0	C	0 0	0%	0	0%	0	0	0	0	0%		0	0%	
1.05.03.06.06 Preparation for Fabrication	0	0	C	0 0	0%	0	0%	0	0	0	0	0%		0	0%	
1.05.03.06.07 Fabrication	0	0	C	0	0%	0	0%	0	0	0	0	0%		0	0%	1

PIPE THERMAL EXPANSION

- Sample Pipe is fixed at bioshield & port plug; pipe sections figured separately
- Linear expansion = $C_{EXP}L\Delta T$
- ΔT = 200 °C (for bake-out)
- Coefficient of Linear Thermal Expansion for 304 SS pipe

$$\mathsf{C}_{\mathsf{EXP}} = \frac{17.3 \times 10^{-6} \, m}{m \, ^{\circ} \mathrm{C}}$$

51 Managed by UT-Battelle for the U.S. Department of End

Clash with standardized RH rail (PCR 502) in lower port cell

DRGA P&ID p.1: Sample Line & Cal. Infrastructure

T.M. Biewer, ITPA 2013 Diagnostics Topical Group Mtg., San Dieg 53A, USA, Jun. 4-7th, 2013

DRGA P&ID p.2: High-Vacuum Section

for the U.S. Department of Energy

DRGA P&ID p.3: Foreline Section

for the U.S. Department of Energy