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A tutorial on the Reversed Field Pinch (RFP).

• Worldwide research on the RFP has been ongoing since
1960’s when a “quiet period” observed in ZETA device
plasmas was correlated with reversed toroidal field at the
edge of the plasma.

• Although the integrated effort in RFP research is much
smaller than for the tokamak or stellarator, the RFP
program continues to make progress in key areas
important to establishing the viability of the concept for
fusion energy.

• This tutorial will focus on answering “What’s an RFP?”
– advantages as a fusion concept
– important physics results

Key theme:  Role of magnetic turbulence in plasmas
– a laboratory in nonlinear MHD
– magnetic dynamo
– transport from magnetic fluctuations
– reducing transport using physics understanding



•  Toroidally axisymmetric, 
   current-carrying plasma:
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Smaller magnetic field makes the RFP
conceptually compact, high power density
fusion reactor.

Key RFP reactor attributes:
• compact
• high beta β~10%
• high “engineering” beta (low field at plasma surface)
• low magnet forces, non-superconducting construction
• current disruption-free operation; “soft” density limit
• free choice of aspect ratio R/a

Relative
Major Physics & Engineering Challenges: Emphasis

• improving confinement & beta 1
• conducting shell stabilization 0.1
• large current drive requirement 0.05
• large wall loading (high power density) 0.01



MST (UW-Madison)
0.5 MA

RFX (Italy)
2 MA design, 1 MA to date

EXTRAP-T2 (Sweden)
0.3 MA,  formerly OHTE (GA)

STE-2 (Japan)
<0.1 MA

TPE-2M (Japan)
<0.1 MA,  poloidal/toroidal divertor

TITAN
18 MA

TPE-RX (Japan)
1 MA

Modest international RFP program

Operating

In Construction

Most Recent
Reactor Study

• Past medium sized experiments:
  HBTX Series (Culham),  ZT-40M (LANL),  TPE Series (Japan), 
  OHTE (GA), ETA-BETA-II (Italy),  REPUTE (Japan)
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Toroidal field reversal guarantees large shear 
necessary for ideal MHD stability.
•  Ideal kink stability generally requires either no shear
   minima or q > 1 (Kruskal-Shafranov).

•  Ideal interchange stability requires finite shear for q < 1 :
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•  Ideal MHD beta limit ~40% < observed beta 10-20%



An apparent mystery: how is an RFP sustained?

•  A resistive, steady-state, axisymmetric reversed toroidal field
   equilibrium is not possible :
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•  But in an RFP, field reversal is maintained as long as toroidal
   current is sustained (               ) :
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RFP seeks “relaxed” minimum energy state.
• A relaxed state is the minimum energy configuration of a
  finite resistance plasma subject to the global constraint of
  constant magnetic helcity [J.B. Taylor, PRL 33, 1139 (1974)].

  
K = A ⋅ BdV

V
∫magnetic helicity: = constant of motion

•  For a pressureless (force-free) plasma within a closed,
   perfectly conducting shell, relaxed states are :

  ∇ × B = λB  where  λ = µoJ ⋅ B / B2 = constant
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“Discrete event” dynamo illustrates tendency 
toward relaxed state.

5 ms

Iφ

〈Bφ 〉

Bφ (a)

“discrete” dynamo cycle

Time

before after

•  Sudden relaxation events result in toroidal flux generation

λ = J| | / B

radius, r a
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peaking from:
(1)           maximum on axis
(2) current diffusion to hot core
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Resistive MHD provides a detailed theory for the 
RFP dynamo mechanism.
• Essential behavior captured in pressureless limit

•  Turbulent                                 sustains        required

    for               :

radius, r

less
current
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〈 ˜ V × ˜ B 〉|| = ηJ|| − E|| Jθ

〈Bφ 〉 > 0

–  essential for conventional, Ohmically driven RFP.
–  converts poloidal flux into toroidal flux.
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• Nonlinear, resistive MHD computational demonstration of
   RFP sustainment :
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Resistive MHD tearing modes are the dominant 
turbulence in the RFP.

•  Tearing modes                            driven by           at

   q=m/n resonant surfaces (k⋅B=0).
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•  “Tearing” refers to the reconnection of magnetic field
   lines allowed by finite resistivity.
   – changes magnetic field topology, exactly what is required
      for the RFP dynamo
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Although mode amplitudes only ~1%, island 
overlap produces global stochasticity.
• Mode amplitudes, spectrum, eigen-structure, etc. agree well
  with theory.

• Close spacing of resonant surfaces encourages island overlap
   ⇒    global stochasticity.
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Energy transport in the RFP results from 
magnetic fluctuations.
• Well known expectation for transport in a stationary, stochastic
   magnetic field (Rechester & Rosenbluth,1978)

B χ ~ vT Lc( ˜ 
r / B)2

vT = thermal velocity

Lc = parallel ˜ B  correlation length
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• Global power loss correlates strongly with fluctuation amplitude



Closer examination finds surprises in nature of 
transport.

• Generally, magnetic-fluctuation-induced radial fluxes from
  parallel motion are :

˜ ˜ J B 
Γr = 〈nV|| ⋅ ˆ r 〉 = 〈J||B ⋅ ˆ r 〉

qB = 〈 || r 〉
qB

particles:
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=
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Bheat:   
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2 mv2v||
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• Probe measurements of                               identify expected
  magnetic-fluctuation-induced transport
  

  〈 ˜ J || ˜ B r 〉 and 〈 ˜ Q || ˜ B r 〉

…but with surprises:   Qe ≈ 3
2 TeΓe (convective transport)

(ambipolar constrained)  Γe,Qe ~ vTi( ˜ B r / B)2

convective, ambipolar magnetic transport can 
occur when local magnetic fluctuation
is dominantly generated by modes resonant at
distant radii (P.W. Terry et al.)



Controlled reduction of magnetic fluctuations
best path to improved RFP confinement.

• Possible ways to reduce tearing fluctuations:
– natural S-scaling (larger, hotter plasmas have smaller     ̃ B )
– active current profile     J(r)-control (attack free energy)
– active feedback stabilization
– sheared flow (some experimental evidence)

• Natural S-scaling appears weaker at larger   S = τres / τAlfven:

– best possible scaling if ˜ B ~ ˜ V ~ S−1 / 2  &   Phase( ˜ V , ˜ B ) ~ S0

                E|| +〈 ˜ V × ˜ B 〉|| = S−1J||   (dimensionless Ohm’s law)

– weak scaling implies active fluctuation control
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Current profile control to reduce dynamo.

Conventional RFP
(MHD dynamo)

J(r)-controlled RFP
(reduce dynamo)

Apply Eφ

peak λ = J|| / B

m=1 tearing
heat &
particle

loss

˜ V × ˜ B 

flatten

minimize
m=1 tearing

reduce heat &
particle loss

adjust

+
Jθ drive

Apply Eφ

dynamo

λ = J|| / B

λ = J|| / B
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MHD Simulated Current Profile Control 
Demonstrates      Suppression    ̃ B 
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Nonlinear, 3D resistive
MHD computation
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•  Ad hoc parallel force added to Ohm’s law to simulate
    generic poloidal current drive :
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force
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Inductive J(r)-control improves energy
confinement five-fold in MST.

PPCDConventional RFP

  τE
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Poloidal Beta,

Energy
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• Methods for J(r)-control:
  – inductive pulsed poloidal current drive (PPCD)
  – electrostatic current injection (in progress)
  – RF current drive (future)
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What’s the MHD optimized RFP?

• Current profile:
– steady-state via electrostatic and RF current drive are or

          will be tested.

• Pressure profile:
– need auxiliary heating to test beta limit (separate from

          transport)
– with improved energy confinement from current profile

          control, pressure is increasing ⇒ pressure profile control

• Shape and aspect ratio:
– all but a couple of RFPs have been circular toroids
– all RFPs have   R / a ≥ 3; at small aspect ratio, there are
   fewer resonant modes ⇒ possibly better confinement
   or easier active control.
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Summary

• RFP contributions to plasma science wide ranging:
– practical fusion power
– terrestrial laboratory for magnetic plasma dynamo
– behavior of plasmas with strong magnetic turbulence

• Practical fusion potential stems from low field, high beta:
– compact
– low magnet forces, non-superconducting
– disruption-free operation, & free choice of aspect ratio

• Conventional RFP requires a magnetic dynamo:
– nonlinear, resistive MHD success story
– consequent strong magnetic turbulence

• Understanding of fundamental processes reverses stigma
“relaxation = poor confinement”
– current profile control to circumvent dynamo
– preserves and enhances attractive reactor features

Online RFP bibliography, including RFP reviews:
http://sprott.physics.wisc.edu/rfp/bib.htm

or
search: “Madison Symmetric Torus”


