<u>Abstract</u>

With auxiliary inductive parallel current drive, fluctuation reduction and improved confinement are now routinely achieved in the MST. Most recently, this has resulted in an MST-record electron temperature of 840 eV, a total beta of an estimated RFP-record 14%. and energy confinement time of 9 ms, which substantially confinement scaling that the exceeds has heretofore characterized RFP plasmas. Recent probe measurements show that the current drive induces a reduction in the edge parallel current and an increase in the edge current gradient. The current reduction occurs primarily due to a measured reduction of the MHD dynamo electric field. A similar edge current profile is observed during spontaneously improved confinement, achieved without current drive. The impact on our understanding of the physics of improved confinement will be discussed.

Introduction

-- Old result: auxiliary parallel inductive current drive reduces core-resonant MHD, improves confinement; but improvement limited by new burst-like instability in the edge

-- New result: improved current drive reduces core instability <u>and</u> suppresses edge bursts, leading to additional confinement improvement

-- New result: observe decrease in edge current, dynamo electric field, and electrical conductivity during improved confinement with current drive

-- New result: similar decrease in edge current and conductivity observed in plasmas with spontaneously improved confinement (without current drive)

<u>The dominant magnetic fluctuations in</u> <u>the MST are m = 0 and m = 1 modes</u>

-- q profile (calculated) typical of discharges with auxiliary current drive:

-- Bursts formerly occurred throughout most of current drive phase, impeding confinement improvement, but no longer

Burst suppression achieved with improved sustainment of surface parallel electric field

 $- E//= E \cdot B/B = (E B + E B)/B$

-- Added additional E pulse to original four; space stages in time such that E > 0; added E reversal maintains E// 0

With burst suppression, magnetic fluctuations decrease, and the temperature and density increase

<u>Contributing to improved confinement</u> with burst suppression is a substantial increase in the core electron temperature

Beta and confinement increase with burst suppression

	Ι	⊲n _e >	T _e (0)	tot		Poh	dW _{th} /dt			
Standard>	210	0.8	200	9.0	9.0	2.0	0	0.6	1.4*	
Improved>	210	0.7	546	13.8	16.3	0.9*	0.4	4.7	9.0	
Standard>	430	1.0	400	4.8	4.8	4.0	0	?	1.6*	
Improved>	390	1.0	770	9.2	10.2	2.1*	0.4	?	6.9	
Improved>	470	1.2	840	?	?	?	?	?	?	-
	(kA)	10 ¹⁹ m ⁻³	(eV)	(%)	(%)	(MW)	(MW)	(ms)	(ms)	

*Improved ohmic input power estimated via $J^2dV...$ see next page

*excluding sawtooth crashes; time-averaged (standard) 1.0 ms including (regularly occurring) sawtooth crashes; crashes are suppressed during improved confinement How we estimate improved P_{ohmic}

-- $P_{ohmic} = P_{input} - dW_{magnetic}/dt$ works for standard plasmas

-- P_{input} measured; dW_{magnetic}/dt modeled

-- Models fail with improved confinement, so P_{ohmic} estimated via J^2dV , where $Z/T_e^{3/2}/(1 - f_{trapped})$

-- estimated Z_{eff} (related to Z) 1.7 @ 210 kA and 2.0 @ 390 kA

-- f_{trapped}(r) and J(r) calculated with
toroidal equilibrium model
constrained by measurements of, e.g,
edge profiles of J and B

Has MST reached its limit?

-- Doubtful.

-- Observe no onset of internal MHD, wall modes...

-- Instead, believed limited by:

(1) finite duration of improved confinement coupled with

(2) finite, reduced Pohmic

-- Presently working to lengthen periods of improved confinement and apply auxiliary heating

-- Ideal MHD limit 50%

At 210 kA, estimated __with burst suppression substantially exceeds RFP <u>"constant β " scaling for the first time</u>

Goal of auxiliary current drive is to shape J(r) to reduce current-driven m = 1 magnetic fluctuations Is this what is happening in these plasmas? J(r) measurements have just begun...

Edge current is reduced with auxiliary current drive and burst suppression*

*Phys. Plasmas 7, 3491 (2000) ask for reprint

With burst suppression, edge current is reduced and edge current profile steepens

With burst suppression, edge dynamo emf and(?) electrical conductivity drop

-- Parallel Ohm's law: $J = (E_{applied} + E_{dynamo})$

-- $E_{dynamo} = \langle v \times b \rangle$, measured with magnetic and spectroscopic probes 3 cm from plasma boundary:

 E_{dynamo} (standard during sawtooth crashes) = 9.2 V/m E_{dynamo} (standard between crashes) = 0.83 V/m E_{dynamo} (improved with burst suppression) = 0.16 V/m

-- Thus, E_{dynamo} and/or decrease more than E_{applied} increases

Edge current also reduced between bursts in spontaneous improved confinement (without auxiliary current drive)

-- J//(standard) between crashes (4 cm from plasma boundary) 12.5 A/cm^2

Edge J and (?) reduced between bursts in spontaneous improved confinement

-- E_{dynamo} not yet measured, but magnetic fluctuations drop... E_{dynamo} does too?

<u>What do these edge current</u> <u>measurements imply, if anything?</u>

-- Some MHD simulations (by Carl Sovinec) of RFP plasmas with stable current profile exhibited reduction of edge current (due to drop in edge dynamo) similar to those shown above

-- Do the edge current profiles in the two cases shown above reflect an overall more stable current profile? Magnetic fluctuations drop in both cases, so is certainly possible

-- Then how is a stable current profile achieved spontaneously?

-- Besides bursts, edge current reduction, etc., these two types of plasma share other similarities... -- For example, spontaneous improved confinement depends on sufficiently large (reversed) B (a) [dB (a)/dt = 0]

-- Large B (a) intrinsic to inductive auxiliary current drive

-- Only clear (known) difference between these plasmas is the burst repetition rate (bursts occur regularly without auxiliary current drive)

-- One <u>hypothesis</u>: the physics underlying the improved confinement in these plasmas is fundamentally the same (under investigation)

-- Would imply that the reduction of magnetic fluctuations with current drive results from something other than the current drive

<u>Summary</u>

-- With improved current drive, core and edge fluctuations reduced, confinement/beta improved

-- No obvious beta limit reached

-- At low current, exceed historical RFP confinement scaling

-- Reduction of edge current observed during improved confinement with and without auxiliary current drive

-- Much of the physics underlying the improved confinement is as yet unknown