
Introduction
Control of magnetic turbulent transport in the reversed  field
pinch yields increased energy confinement, plasma
temperature, and beta. Relative to standard toroidal
induction with incumbent dynamo relaxation, added poloidal
current drive in MST increases the energy confinement time
ten-fold to 10 ms, increases beta from 9% to 15%, and
permits electrons to exceed 1 keV despite decreased Ohmic
heating, a clear demonstration of reduced transport.  The
electron heat diffusivity drops to ~5 m2/s, comparable to
typical tokamak plasma values.  Central to these
improvements is a broad spectral reduction of tearing
fluctuations associated with magnetic relaxation and
dynamo,  implying reduced magnetic stochasticity.  The role
of particular spectral features in determining transport will
be emphasized. For example, the reduction of poloidal
number m=1 modes resonant in the middle to outer region of
the plasma is crucial to realize the best improved
confinement.
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Pulsed poloidal current drive (PPCD) has evolved to 
produce ~10 ms periods of fluctuation suppression.
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 ~10 ms period of
 reduced fluctuation
 maximum to date

 reversed Etor < 0
 following PPCD
 maintains E|| > 0

 E|| > 0 drives outer
 region current

Auxiliary current drive replaces dynamo sustainment of 
poloidal current.
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E||  +  Edynamo = ηJ|| 

 Current in outer region
 (dominantly poloidal)
 cannot be maintained by
 steady toroidal induction

 Auxiliary current drive:

         stabilize tearing

         replace dynamo

 • Break “paradigm” :  RFP = turbulent relaxation = stochastic transport

 • First cut toward optimization of low-BT toroidal confinement
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An RFP without Dynamo

•  q(a) > 0 at start of PPCD
        – minimize m=0 instability
        – ending q(r) closer to standard

•  “Oscillating” PPCD
        – time average improvement?
           (some gain observed in RFX)
        – BT-half of OFCD (sinusoidal)
        – non-sinusoidal

Future PPCD:  “What’s the optimum E(a,t) which 
minimizes transport for longest time period and why?”

•  “Self-similar decay” (or “Catching”)
      >  space-time separable solutions of 
          magnetic diffusion, for example:

  
−
∂B
∂t

=
η
µo

∇ × (∇ × B) =
ηλ2

µo
B

   Separable solution B(r,t) = Bo(t) b(r)
   has stationary b(r) and q(r) with

  
τself =

τR

(aλ )2 ~ 0.1τR  Bo(t) = B̂oe
−t /τself

Nebel & Schnack, 2000
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3D nonlinear MHD comp.

Record Confinement & Beta

9X improved energy confinement, Te > 1 keV with PPCD.

 • 200 kA PPCD exceeds RFP
   ‘constant beta’ scaling.
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 • 400 kA PPCD:
    Teo = 800 eV  (from 400 eV)
    βtot = 11%  (from 5%)
    τE = 9 ms  (from 1 ms)

 • 500 kA PPCD:
    Teo ≈ 1.3 keV (MST max. to date)
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 χ ~ 5 m2/s, only a few times
 larger than typical tokamaks

20 40 60 80
Energy (keV)

10 -5

10 -4

10 -3

10 -2

H
X

R
 S

pe
ct

ru
m

 (
er

gs
/c

m
2 /

s/
st

er
/e

V
)

PPCD

Standard

10 15 20 25
Time (ms)

20

40

60

80

E
ne

rg
y 

(k
eV

)

Three-order of magnitude increase in high energy HXR 
emission with PPCD.

HXR Energy Spectrum PPCD Spectrum vs Time

 •  Toroidal loop voltage in core during PPCD ~5 V
    ⇒ >104 toroidal transits to reach 80 keV

 •  Suggests partial restoration of closed flux surfaces.
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Electron temperature doubles.

Standard picture for parallel streaming transport depends 
on stochastic diffusivity from locally resonant modes.

• Quasi-linear heat diffusion (collisionless limit):

with

Rechester-Rosenbluth
(for tokamak ordering)
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additional ambipolar constrained “incoherent” response 
discussed in P.W. Terry et al., Phys. Plasmas 3, 1999 (1996)

Magnetic Transport

MHD tearing produces large magnetic fluctuations in RFP.
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Transport reduction greatest just inside reversal surface 
where many high-n, m=1 modes packed closely together.
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  Question:  What magnetic features control PPCD confinement and shot-to-shot variation?

  Approach:  Correlate core electron temperature with magnetic spectral dynamics.

Example shot-to-shot PPCD variation.

“Super” PPCD “Mediocre” PPCD

Controlling magnetic features not  transparent.

Filtered SXR ratio correlates well with central 
electron temperature (Thomson scattering).

 Central electron temperature should be a good
 global confinement indicator:
 
   •  tracks increase in beta

   •  determines magnitude of Ohmic input power

 Use SXR ratio as
 single shot core
 temperature
 measurement.

Correlation of SXR temperature at 18 ms
with

Magnetic fluctuation amplitude at 18 ms

Correlation of SXR temperature at 18 ms
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Average fluctuation amplitude 12-18 ms
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 Answer:
   •  Temperature at end of PPCD period correlates
      best with time-average amplitude of m=1, high-n
      modes.

   •  These modes are resonant exactly where the
      temperature gradient increases with PPCD.

   •  The time-average amplitude of m=0 modes is also
      typically smaller in the hottest PPCD plasmas, but
      the correlation isn’t as strong as for high-n modes.

   •  The temperature correlates weakly with the
      amplitude of the innermost resonant modes
      m=1, n=6,7.

         ⇒ “Quasi-single-helicity” spectra do not appear
             to be a determinant of high temperature.

Summary

 •   Auxiliary poloidal current drive greatly
     improves RFP confinement and beta.

 •   Maximum temperature (and confinement)
     occurs in PPCD plasmas with long periods
     of low amplitude m=1, n=9-15 modes.

 •   The innermost core-resonant mode
     amplitudes (m=1, n=6 & 7) weakly 
     correlate with core temperature.

 •   Increased temperature gradient in region
     of high-n modes fits physical picture of
     stochastic transport in the RFP.

 •   Very best PPCD plasmas have
     temperatures greater than shot-averaged
     Thomson profiles:

   ⇒ PPCD plasmas almost surely exist with
       higher energy confinement for known
       reasons (measurable with single-shot
       diagnosis).

Correlation data shown below:
    – four consecutive days of PPCD (each day’s data plotted as a separate color) 
    – plasma current 390±15 kA
    – plasma density 1.0±0.1×1013 cm–3

    – mode rotation throughout PPCD
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