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ABSTRACT

The core profiles (r/a = 0.3~0.7) of the electrostatic potential fluctuations and electron
density fluctuations have bee n measured for the first time in the MST reversed field
pinch with a heavy ion beam probe (HIBP). Traditional fluctuation measurements with
Langmuir probes have been limited to the edge plasma region (r/a > 0.8) at low
current. The HIBP has been used to ex tend the MST measurements to the core
reglon of the plasma and cover broader range of plasma parameters. The measured

@ is ~30-40Vrms (e(p/T ~ 10-15%) for standard 380KA discharges, while n/n ~ 10-

15%. The measured power spectra of both (p and N/n show a peak at the tearing
mode frequency. Broadband fluctuations (>30kHz) are also found at frequencies
higher than the core resonant tearing modes and their rela tionship is studied with bi -
spectral analysis. Simultaneous measurements have been made at two sample
locations, thus allowing us to estimate electrostatic fluctuations induced transport.
The 2 sample volumes are nearly radial aligned and therefore do not provide

information about K,. Correlation between the measured core @ from the HIBP and

edge (~p from a Langmuir probe (TLP) will also be discussed.
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PRINCIPLES OF BEAM PROBING

= Singly charged ions
are injected into a
magnetically
confined plasma

Doubly charged
lons generated by
electron impact
lonizations are
separated from the
singly charged ions
by the magnetic

field: TL B

The secondary ions
are detected and
analyzed outside
the plasma

lon baam is comprised of
Na, K or Li ions

Singly lonized beam (Na+)

enters plasma
Na++ Is detected in the energy analyzer

Doubly lonized beam (Na++)

exits from plasma EE

N5++ beam on the spit plate detector

Magnetic field separates
Na++ from Nas

PRINCIPLES OF HEAVY ION BEAM PROBING




HIBP MEASURES ¢, ¢, ii/n, ETC.

Plasma potential:

(p = secondary ion energy — primary ion energy

Potential fluctuations:

~

¢ = fluctuations in the secondary ion energy

Density fluctuations:

n, oc fluctuations in the secondary signal intensities

Magnetic field and/or fluctuations:

B, oc toroidal motions of the secondary ion beam



RADIAL SCAN BY CHANGING BEAM
ENERGIES & INJECTION ANGLES
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CORE AREA HAS BEEN MEASURED

* Present system set-up allows measurements from

r/a ~ 0.2 to 0.8 for standard plasmas

ST Wl Lmes for 390K 4.5 handand plaamas
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FLUCTUATION DATA ARE ANALYZED

WITH ENSEMBLE AVERAGING
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BOLTZMANN RELATION IS FOUND IN
STANDARD DISCHARGES
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FLUCTUATIONS ARE REDUCED IN

PPCD DISCHARGES
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FLUCTUATIONS IN NON-REVERSAL
& MODE-LOCKING DISCHARGES
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LOW FREQUENCIES DOMINATE THE
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FLUCTUATIONS INDUCED PARTICLE
TRANSPORT IS SMALL

» Electrostatic fluctuations induced radial particle transport is:
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FLUCTUATIONS ARE CORRELATED
WITH (M/N =1/6) MAGNETIC MODE
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MST-HIBP MAY DIAGNOSE THE
LOCALIZED MAGNETIC FIELDS
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CORE & EDGE POTENTIAL
FLUCTUATIONS ARE CORRELATED
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CORE & EDGE DENSITY
FLUCTUATIONS ARE UN-CORRELATED
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CORE E. IS UN-CORRELATED WITH

MINORITY ION FLOW VELOCITIES

IDS (lon Dynamic
Spectrometers)
measures the core
toroidal and poloidal
impurity ion flows
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WAVE-WAVE COUPLING IS SMALL

FROM BI-SPECTRAL ANALYSIS

 Bi-coherence gives a
measurement of non-
linear coupling between
two different
frequencies or wave
numbers:
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PROBABILITY DENSITY FUNCTIONS

ARE GAUSSIAN LIKE

Core HEF Mk Lraments Edge TLF meaaraments
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X IS:

P{x > xo} = [ p(x)dx o

where p(x) is called the
probability density
function (PDF) of the
signal x
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PATH (TRAJECTORY) ATTENUATION
EFFECTS ARE SMALL
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MEASURED DENSITY FLUCTUATIONS
ARE NOT SENSITIVE TO ELECTRON
TEMPERATURE FLUCTUATIONS

» Fluctuation signals:

P — P VOO
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Is = Is_den + Is_temp D No+no

* Relative importance:
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results shown that n
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sensitive to T,




SCRAPE-OFF EFFECTS MAY EXIST

Large Ep iIn MST cause the secondary beam to fluctuate toroidally

Scrape-off affects n/n measurements, but not ?p

Scrape-off effects have been reduced by sweep plates modification

Feedback control to further reduce the scrape-off effects
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SCRAPE-OFFK EFFECTS HAVE BEEN
SIMULATED

Simulated scrape-off effects An example of real signals
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SUMMARY

For the first time, plasma potential and electron density fluctuations are
simultaneously measured in the core of the MST RFP

e/ T, is significantly reduced in PPCD plasmas

For the first time, electrostatic fluctuations induced particle transport is
measured small in the core of the MST RFP

Both (~p and n/n are correlated with the core resonant MHD modes
Core @ is found related to the edge @, while n/n is more localized

FUTURE WORK

Expand the application of the MST-HIBP to more discharge types
Expand the fluctuation measurements to the edge and center of MST
Investigate the core B, measurements

Increase the signal level by improving the ion optics

Modify the poloidal sweep plates in the secondary beamline to improve
the diagnostic coverage

Apply feedback control to avoid the scrape-off effects

Improve the primary beam measurements
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