(THERE WERE NO PROBLEMS 1-5)

Physics 103 October 5, 2000 Exam 1 --- EXAM AAAAA

6. Using the dimensions for the variables given in the table,

ariable	Dimension 1		
f	<u>[T]</u>		
1	[L]		
g	$\frac{[L]}{[T]^2}$		

IN MESE

PROBLEMS, I

KEEP MORE DIGITS

THEN I NEED AND

ROUND OFF AT

THE END, SO SOME
TIMES THERE ARE

SMALL DIFFERENCES

BETWEEN MY

ANSWERS AND THE

CHOICES,

determine which one of the following expressions is correct.

A)
$$f = 2\pi i g$$

B) $2\pi f = \sqrt{\frac{g}{l}}$

C) $f = \frac{g}{2\pi i}$

D) $f = 2\pi \sqrt{gl}$

E) $f = 2\pi \sqrt{gl}$
 $f = 2\pi \sqrt$

7. A 2.5-m ladder leans against a wall and makes an angle with the wall of 32° as shown in the figure. What is the height h above the floor where the ladder makes contact with the wall?

N= 2.5M ros 32° = 2,12 M

- A) 1.6 m
- B) 1.9 m
- C) 1.3 m
- D) 2.4 m
- E) 2.1 m
 - 8. Three vectors A, B, and C add together to yield zero: A + B + C = 0. The vectors A and C point in *opposite* directions and their magnitudes are related by the expression: A = 2C. Which one of the following conclusions is correct?
- A and B have equal magnitudes and point in opposite directions.

 B) B and C have equal magnitudes and point in the same direction.
 - C) B and C have equal magnitudes and point in opposite directions.
 - D) A and B point in the same direction, but A has twice the magnitude of B.
 - E) B and C point in the same direction, but C has twice the magnitude of B.
- 210 = 1A1 =>2181=1A1

18/+1c/=/A/

- 9. The x and y components of a displacement vector are -3.00 m and +4.00 m, respectively. What angle does this vector make with the positive x axis?
- A) 127°
- B) -53.0°
- C) 53.0°
- D) 233°
- E) 37.0°

$$0 = 53^{\circ}$$
 $0 = 180^{\circ} - 0 = 127^{\circ}$

10. Use the component method of vector addition to find the components of the resultant of the four displacements shown in the figure. The magnitudes of the displacements are: A = 2.25 cm, B = 6.35 cm, C = 5.47 cm, and D = 4.19 cm.

Ax = 2,25 (05 60° = 1,125
Ay = 2.25 SINGO = 1.948
Ay = 2,000 = 5,967
$B_{X} = 6.35 (05.20^{\circ} = 5.967)$
By = -6,35 SM 200 = -2,172
Cx = 5,47 SM 36 = 3,215
- 10 11 475

	•	•	" ///==
	x component	y component	Cy = -5,47 cos 36 = -4,425
(A)	6.93 cm	-2.19 cm	
B)	1.09 cm	-3.71 cm	Dx = -4,19 cos 32° =-3.390
C)	5.45 cm	-2.82 cm	1 160 m 210 = 7 UG3
D)	3.71 cm	-1.09 cm	Dy = 4,195M 360 = 2,463
E)	2.19 cm	-6.92 cm	Ax + Bx + Cx + Dx = 6.917
		•	Ay + By + Cy + Dy = -2,186

- 11. A car starts from rest and accelerates at a constant rate in a straight line. In the first second the car covers a distance of 2.0 meters. How fast will the car be moving at the end $x = x_0 + v_0 t + \frac{1}{2}at^2$ $x_0 = 0$ $v_0 = 0$ x = 2.0 + t = 1, so $x_0 = \frac{1}{2}a(1)^2$ of the second second?
- A) 32 m/s

- B) 4.0 m/s C) 8.0 m/s

- D) 16 m/s
- -> A=4.0 M/s2, NOW t=2, AND
- E) 2.0 m/s
- N=vo+at = 0 + 4,0(2) = 8,0 m/s
- 12. A race car has a speed of 80 m/s. At t = 0, the driver starts decelerating at -4 m/s². How far will the car travel before it stops?
- A) 20 m
- B) 1000 m
- C) 400 m
- D) 200 m
- E) \800 m
- N= No+ at No= 80 m/s

Use the following to answer question 13:

An object is moving along the x axis. The graph shows its position from the starting point as a function of time.

Various segments of the graph are identified by the letters A, B, C, and D.

13. During which interval(s) is the object moving in the negative x direction?

A) Iduring interval B only

B) during intervals B and C

C) during intervals C and D

D) during intervals B and D

E) during intervals B, C, and D

MOVING IN NEGATIVE & DRECTION

MEANS X VS. & GAMPH MUST

HAVE A NEGATIVE SCOPE, SINCE OF IS DIE SCOPE, ONLY IN B IS SCOPE NEGATIVE.

Use the following to answer question 14:

A tennis ball is shot vertically upward with an initial speed of 20.0 m/s from the surface of planet Krypton--a planet with no atmosphere. One second later, the ball has an instantaneous velocity in the upward direction of 15.0 m/s.

14. How long does it take the ball to reach its maximum height?

$$v_{t} = v_{0} + at$$
 on $a = (v_{t} - v_{0})/t$

$$V_f = 15.0 \,\text{m/s}$$
 $V_o = 20.0 \,\text{m/s}$
 $t = 15$, so $\alpha = 15.0 - 20.0 = -5.0 \,\text{m/s}^2$

FM MAXIMUM HEIGHT, V = 0

Use the following to answer question 15:

A projectile is fired at an angle of 60.0° above the horizontal with an initial speed of 30.0 m/s.

15. How long does it take the projectile to reach the highest point in its trajectory?

16. A projectile is fired horizontally with an initial speed of 57 m/s. What are the horizontal $\frac{1}{M/s^2} = S$ and vertical components of its displacement 3.0 s after it is fired?

	horizontal	<u>vertical</u>		y]	
A)	210 m	44 m	•	•		
(B)	170 m	- 44 m			→ V ₀ x	> ×
CÍ	210 m	0 m			1	
D)	44 m	29 m			1	
E)	170 m	− 29 m			1	•

HORIZONTAL COMPONENT 15 57 M/S

IT DOES NOT CHANGE SO

X= X0 + Vox t = O + S7.3.0 = 171 M VENTICAL COMPONENT STARS AT ELRO AND ACCELERATES DOUNDAND DUE TO GRAVITY

Use the following to answer questions 17-18:

A rock is kicked horizontally at a speed of 5 m/s from the edge of a cliff. The rock strikes the ground 55 m from the foot of the cliff of height H as suggested in the figure. Neglect air resistance.

Nox = 5 m/s
Doesn't CHINGE

X - X. + Vo t

55 m = 0 + 5, t

t = 11 5

- 17. How long is the rock in the air?
- A) 11.0 s
- B) 22.0 s
- C) 1.2 s
- D) 3.4 s
- E) 1.0 s
- 18. What is the approximate value of H, the height of the cliff?
- A) 700 m
- B) 595 m
 - C) 830 m
 - D) 540 m
 - E) 270 m

Use the following to answer question 19:

A spaceship is observed traveling in the positive x direction with a speed of 150 m/s when it begins accelerating at a constant rate. The spaceship is observed 25 s later traveling with an instantaneous velocity of 1500 m/s at an angle of 55° above the +x axis.

19_	What was the	magnitude of the acceleration of the spaceship during the 25 seconds?	
A	$_{57 \text{ m/s}^2}$	1500 SIN 550= 1229 4	1/5
	1.5 m/s^2	13.	ر′
C)	28 m/s^2	155° AV = 1500 COS 55°-150 = 710 m/s	2
,	48 m/s ²		•
E)	7.3 m/s^2		,
		121 = 1021/At=1419/25 = 56.8 m/s2	
20	The figure sh	ows the velocity versus time curve for a car traveling along a straight line.	
20.	Inc figure sit	WO WILL THE TOTAL THE TOTA	
		B MA SO CO	
		B C FNOT = Ma SO Q	
	7 electity (m/s)	The Decay of State of the State	
	A	HAS THE SAME SIGN AS	
	9 - - - -	First AND $a=0 \Rightarrow F_{Mer}=0$	
			1
		1 1 1 1 - 2 TRU	15
		Time (s) NO CHANGE IN V => 0 = 0 7RV following statements is false?	
	Which of the	following statements is false? Let's on the car during interval B. CHANGE IN $V \Rightarrow Q \neq Q$ TRUE on the car during intervals A and C. CHANGE IN $V \Rightarrow Q \neq Q$ TRUE ces may be acting on the car during interval B. NO CHANGE IN $V \Rightarrow Q \neq Q$ POSSIBLY TRUE	
A)	No net force	icts on the car during interval B.	
B)	Net forces ac	on the car during intervals A and C. No CHANGEIN V = 0 4 0 POSSIBLY TRU THE ANA DELA THE ANA DELA THE ANA DELA THE ANA DELA THE ANA ON THE CAR DURING INTERVAL C.	
C)	Opposing for	ces may be acting on the car during interval B. No Computer PUSSIBLY TRUE BOX THEY DON	に
	Opposing for	ces may be acting on the car during interval C. BY THEY DON le of the net force acting during interval A is less than that during C. CINCEL.	IT
E	The magnitu	e of the net lorce acting during most at 12 to	
	1	W. D. C. A. T. A. D. L. D. A.	
		NO, THE SCOPE OF LINEA COULD BETRUE	
		IN GREATER MAGMINDE IF MET FINCE	
	•	MAN SLOPE OF LINE C, SO IS NEWATIVE,	
		Siako,	
	I	a,1>1ael	
	I	2/1/2/2/61	
		SINCE F = ma AND M DOESN'T CHANGE,	
		Page 7	
		Tage,	
		FASFC	

Use the following to answer question 21:

In space, a 70.0-kg astronaut pushes to the left on a spacecraft with a force F.. (In orbit, both the astronaut and the spacecraft are weightless). The spacecraft has a total mass of 1.0×10^4 kg.

During the push, the astronaut accelerates to the right with an acceleration of 0.36 m/s².

- 21. Determine the magnitude of the acceleration of the spacecraft.
- A) $3.97 \times 10^{-4} \text{ m/s}^2$
- B) 51.4 m/s^2
- C) 0.36 m/s^2
- D) $7.0 \times 10^{-3} \text{ m/s}^2$
- (E) 2.5 × 10⁻³ m/s²

Page 8

Use the following to answer question 22:

A force P pulls on a crate of mass m on a rough surface. The figure shows the magnitudes and directions of the forces that act on the crate in this situation. W represents the weight of the crate. F_N represents the normal force on the crate, and f represents the frictional force.

FN BALLNES THE DOWNWARD FORCE OF THE CRATE ON THE ROUGH SURFACE, WHICH IS THE WEIGHT OF THE CRATE GESS THE VENTICAL COMPUNEAT OF THE FORCE P

- 22. What is the magnitude of F_N, the normal force on the crate?
- AV 57 N
- B) 80 N C) 196 N
- D) 230 N
- E) 160 N

Prench = 160 N x 8W 600 = 139 N

- 23. A boy pulls a sled of mass 5.0 kg with a rope that makes an 60.0° angle with respect to the horizontal surface of a frozen pond. The boy pulls on the rope with a force of 10.0 N; and the sled moves with constant velocity. What is the coefficient of friction between the sled and the ice?
- A) 0.10
- B) 0.18
- C) 1.0
- D)/0.12E) 0.20

THE FREE BODY DIAGRAM IS JUST

LIKE THE ONE IN PARKEM 220

AM SINCE THERE IS NO ACCENERATION

THE FRICTION & MUST BALANCE

PHINIZONEN = 10,0 NX COS 600

f = 10.0 N COS 60° = 5.0 N

f = MFN SO NOW WE NEED TO FIND

IN . THAT WILL BE THE WEIGHT OF

THE SLED LESS THE VERTICAL PART OF P. FN = MG - PSIN 60°

FN = 5.0 kg (9.8 M/s2) - 10.0 5 m 600

FN = 49-8.66 = 40.3N

f=UFN