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A computer is used to calculate the trajectories of a collection of noninteracting, nonrelativistic electrons
near the axis of a spatially sinusoidal, dc magnetic field in the presence of a spatially homogeneous, per-
pendicular rf electric field. The computed heating rate is in good agreement with the prediction of various
equivalent stochastic models for a wide variation of parameters. The distribution is approximately Max-
wellian, and the particles tend to turn at the resonance surface. Departure form the stochastic theory
is observed for high-energy particles that turn near the resonance surface, and a condition for stochasticity
is derived. Trapping of particles initially in the loss cone is observed with strong electric fields.

1. INTRODUCTION

Electron cyclotron resonance heating in nonuniform
magnetic fields has been the subject of a great deal of
theoretical and experimental study over the past decade.
Detailed quantitative comparisons of the predicted and
observed heating rates have not been made, however,
and so the issue cannot be considered closed. Experi-
ments by Dandl ef al.! at Oak Ridge using simultaneous
resonant and off-resonant microwave heating in the
Elmo device, for example, have revealed the presence of
interesting and useful heating mechanisms that have
not yet been adequately explained theoretically.

In this paper we present the results of a series of
computer calculations of the trajectories of a collection
of noninteracting, nonrelativistic electrons in an
external rf electric field and in a nonuniform dc mag-
netic field. By this method, we are able not only to
determine heating rates, but to follow the time evolution
of the distribution function. This work is similar to that
of Lichtenberg ef al.? and of Namba and Kawamura ?
except that we follow a large collection of particles and
emphasize the macroscopic behavior of the system,
rather than the detailed mechanism of the resonant
interaction.

II. REVIEW OF THEORETICAL WORK

The usual method for calculating resonance heating
rates begins by determining the change in energy of a
particle moving along a magnetic field line that passes
through a region in which the local cyclotron frequency
w, 1s equal to the frequency of the external rf electric
field w. The energy change depends on the phase of the
velocity of the particle as it crosses the resonance
surface. If the phase is random at successive crossings
of the resonance, the particle executes a random walk in
velocity space, and the mean energy of a collection of
such particles increases in time. The average energy
gained by an electron during one transit through the
resonance is

AW =LimAvi= (2EL2/4m) T?, (1)

where E., is the magnitude of the perpendicular com-
ponent of the rf electric field at the resonance, and T is

the effective time during which the electron is in reso-
nance. Kawamura and Terashima* used this expression
to calculate the heating rate in a mirror machine at
Nagoya. Lichtenberg ef al.? have proposed a similar
expression. The transit time of an electron through the
resonance can be approximated by a method suggested
by Guest? and by Ard®:
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where B is the dc magnetic field strength and v is the
component of the velocity of the particle parallel to B.
The subscript 0 refers to the value of the quantity at
the resonance. Solving for T gives

T=[wBo/w | 011,V11oB |14, (2)
and substituting into Eq. (1) gives
AW =weE1.}/4 | v)1,V11,B |.

Kuckes’ and Eldridge® have derived this same result by
solving explicitly the equation of motion of an electron
that moves through the resonance with constant #;) in
a field with ‘d constant V|;B. A particle trapped in a
magnetic mirror field crosses the resonance four times
in a longitudinal bounce period, and so the heating rate
can be expressed in terms of the bounce frequency wg as

aW 2w
— = ZP AW =eEijup/2 | niVneB L. (3)
at T
For a parabolic mirror, the heating rate is
dW  eEL R,
= T [(Ry—1) (Rr— Ro) 12
dt 4B, [( 0 ) ( T 0)] ’

where Ry is the mirror ratio at the resonance surface,
and Ry is the mirror ratio at the turning point. This
result closely resembles the resonant, nonrelativistic
limit of a calculation by Grawe.?

In an arbitrary magnetic field, the bounce frequency
is a complicated function of Ry. Furthermore, in a real
experiment the particles would have a distribution of
turning points, and this distribution would change
during the heating. It is at this point that the single-
particle heating calculations become inadequate. The
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2.5 ‘ ; ; II. FORMULATION OF COMPUTER PROBLEM
1 PARTICLE 6, = 0.001 Ro=1.5 ) ) .
2,0 (a) R=2 t=5 _| Consider an electron in a dc magnetic field
3 il | RESONANCE cROSSINGS B=3}B(0)3[ (1+R)+ (1—R) cos(kz/L)],
L L S T . L : _—
o ot o where L is the dimensionless mirror length in units of
:Z,J 1O T TOTAL = - free-space wavelengths at the heating frequency, R is the
e, Al R .‘*""";.[._._..' ~ mirror ratio, and 2=w/c, and in an rf electric field
05 P g s
o pARALLEUJ/ E=E.Z sinwt.
20 T 1 T ~—_—  The magnetic field represents the field on the axis of an
37| 10 parTicLES THTEOR/YI e infinite set of connected mirrors. If the electric field is
> 15 (4 o not too strong (eE+<mwvs), the electron will gyrate in
§ | TOTAL a circular orbit, and the nonrelativistic equations of
g 1o e Hieake S motion can be written in the two-dimensional form
w - - - -
o) v %y .
E 05 S o, PARALLEL': — Ftwlx=(eEs/m) sinwi
s i e N - e _ udB
0 g+ — — =0,
25 ‘ m dz
2 20 T j THEORY- e where u is the magnetic moment,
== 100 PARTICLES e R '
% s (e) / ,,Wi u=m(E+w2?) /2B.
] ’ L ‘-—-’" T C . . - . . . -
% P = ToTaL The use of the guiding center approximation is justified
w 10 == since neither E nor B have gradients in the perpendicular
2 L../ PARALLEL direction and since the parallel gradients are necessarily
g 08 = I~ AT E small for the cases considered (v;;<<c¢, L>1). This
0 approximation reduces the computation time and com-
0 500 1000 1500 2000 2500 3000 3500 4000 puter storage required while still retaining the three-
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Fic. 1. Average energy versus time for one particle (a), 10
particles (b), and 100 particles (c})).

heating rate can be expressed in terms of the density
distribution by considering a collection of particles that
turn at the same Rr but at random times. The density
distribution is

n{l) = (no | v, |/Bo)[BX) /| v (D],

and the bounce frequency is
o | 2y, |

_( dl )“_
TN Tonl) T Bofn()) di/BQ)

where / is the distance along the field line. Substitution
into Eq. (3) gives a heating rate

aw _ Wﬂer.Loz
dt Z.B()l VI!OB ' fﬂ dl/B )

When written in this form, the result is valid for a
distribution of turning points, and includes untrapped
particles as well. This same result was obtained by
Sprott!® by treating the plasma as a resistive dielectric
medium and integrating the local heating rate along the
magnetic field. Equation (4) will be used to compare
with the heating rates obtained by computer calcula-
tion.

(4)

dimensional character of the problem. This relatively
simple configuration was chosen because exact compari-
sons with the analytical theory are possible.

An IBM 360/91 computer was used to calculate, by
successive iteration of the equations of motion, the
trajectories of a large (100-1000) collection of electrons
which were started at =0 with various initial condi-
tions. The time interval of the iteration step Af and the
duration of the computer run fmax are typically related
to the other characteristic times according to

At~ (Sw) I~ (Sw,) TI~1073/wg~ 104 ox.

A particle crosses a resonance about ten times during a
run. The accuracy of the computation was verified by
varying Af and by setting Ei=0.

For this field shape, the heating rate from Eq. (4)
becomes
aw L 4N

— 204 2 _R - i
dt mc*w} (7G12Ro) [Ro(1+R— Ry) RY Nk dz |

(3)

where N is the total number of particles, dN/dz | is the
number of particles within dz of the resonance, and G.
is the normalized electric field

Gr=eEy/muwc.

For w=2xX10 GHz, G. is in units of 1.07X10® V/cm.
The computer is programmed to calculate dN/dz|o as
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well as the average perpendicular and parallel energies
of the particles at time intervals of 1/w.

A particle can permanently change its energy only if
in its frame of reference, the electric field has a Fourier
component at zero frequency. This can happen if
collisions are present to broaden the frequency spectrum
or if the particle crosses a resonance surface. Otherwise
the energy must be a periodic, although complicated,
function of time. A single particle that repeatedly
crosses a resonance executes a random walk in velocity
space, since it may either gain or lose energy during each
resonance crossing. The most probable energy of a single
particle that executes a random walk in velocity space
is its initial energy no matter how long one waits, and so
a heating rate cannot be determined by observing the
energy of a single particle as a function of time, This fact
is demonstrated in Fig. 1, where the average energy of 1,
10, and 100 particles is shown as a function of time. The
single-particle energy merely fluctuates, but the average
energy of a large collection of particles increases
monotonically.

IV. COMPUTER CALCULATIONS

There are two distinct classes of particles: (1) those
that are always reflected before they reach a resonance
(Rr<Ry), and (2) those that are never reflected before
they reach a resonance (Rr>R;). The second class
contains both trapped (Rr<R) and untrapped (Rr> R)
particles. Note that since the field is infinitely periodic
in the parallel (z) direction, the untrapped particles are
not lost. The average energy of the particles in class (1)
fuctuates slightly but does not grow, while the average
energy of those in class (2) increases in a relatively
smooth way. A particle in class (1) will forever remain
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Fic. 2. Comparison of computed heating rate and rate calculated
from Eq. (4).
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Fi16. 3. Energy versus time for a case that shows satura-
tion resulting from failure of the stochastic theory at high
energies.

in that class since the variation in its turning point is
small and periodic. A particle in class (2) has a finite
)y as it crosses the reonance, and so it will necessarily
cross the resonance on the succeeding bounce, regardless
of how large the change in its perpendicular energy.
Since only class (2) particles are heated, optimum use of
the computer is achieved by choosing initial conditions
such that most of the particles have Rr>R,. In the
cases to be described, the particles were started at z=0
and x=0 with velocity »; (monoenergetic) and a uni-
form distribution of pitch angles [sin~'(2,/v;) ] in the
interval v 1—~1/Ry]V2< v, <v;. Other initial conditions
were tried, but the statistics are generally worse and the
heating rate is unaffected apart from its dependence on
dN /dz |,

About 50 different sets of conditions were chosen orve
the range 0.001<G1<0.1, 25 eVESW,<1 MeV,
1<LL100, 0.01<R—1<100, and 0.02<R—1<0.98
(for R=2). The scaling with each parameter was thus
confirmed independently. Figure 2 summarizes the
results by showing the computed and the theoretical
heating rates for each set of conditions.

For large electric fields, it was often noted that the
energy would rise, in good agreement with the theory
up to some value, and then saturate. Those cases were
omitted from Fig. 2. Figure 3 shows such a case. The
turning point distribution at wf= 500 for this case (with
ten times as many particles) is shown in Fig. 4. Note
that nearly all the particles turn very near the resonance.
When an appreciable number of energetic particles turn
near the resonance, the theory is inadequate for two
reasons: (1) The density at the resonance is not well
defined because the axial density gradient is less than
the resonance width, or, equivalently, the parallel
velocity of a particle is not constant across the resonance.
(2) When the energy is sufficiently high, the electric
field does not appreciably perturb the trajectory of the
particle, and the phase of the electric field at successive
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F1c. 4. Turning point distribution showing the tendency of
particles to turn at the resonance surface.

resonance crossings is periodic rather than stochastic.
We will derive a modified heating rate appropriate for
(1) and a criterion of stochasticity for (2).

The heating rate for particles that turn exactly at
resonance can be obtained from Eq. (1) assuming 7T is
given by

VieB | (T
w‘____“i_l / m (O)wgﬂ dlg%ﬂ',
By 0
or
Tyt ( 3w 2R )1/3

~¢ \#[(R—1) (Re—1) J"[Ro(1+R—Ro) —RJ?/ °

The heating rate for this case is

AW (NP GL (R—T\
dt mw(i) §1TL_<R0)

x( xRy )2/3 P
[R—1) (R ) TR+ R—R)—&T?) ~ ¥

For the case in Fig. 3, the heating rate is ~60 eV /rad in
this limit. The observed heating is slower than this
value, and so the saturation apparently represents a
failure of stochasticity.

In the frame of reference of the particle, the phase of
the electric field is given by

Ry—2R+1
— wl.

o) = /t [o—an(t) Jars =0

SPROTT AND P. H. EDMONDS

For Rr=<Ry and t=1m/w;,
d=(mcL/v) (1— Ry) [Ro(R—1) T2,

For the case in Fig. 3, the phase change per bounce is
~6mr. The resonance interaction causes this phase
change to fluctuate an amount

where AW is given by Eq. (1) with a T appropriate
to the case, where all particles turn at the resonance.
If we require that A¢ exceed 2w/bounce, the condition
for stochasticity becomes

<g>w/s< L(Ry—1)Gu2
C
3rL2Ry

8[Ry(R—1)Ju2
2/3
X ( ) . (D
[(R—1) (Ro— 1) J*{Ro(1+R—Ro)— K1

This result is similar to a criterion derived by Nekrasov.!!
For the case in Fig. 3, we calculate a failure of stochas-
ticity when the energy exceeds about 40 keV, in good
agreement with the computed saturation. For low-
energy particles that turn well beyond the resonance,
the fluctuation in energy and turning point cause ¢ to
change by more than 2r/bounce, but as the energy rises
and Ry approaches Rj, the phase change is relatively
constant and the energy of a particle is nearly periodic
in time.

Figure 5 shows the energy distribution for this same
case (with ten times as many particles). The distribu-
tion is approximately Maxwellian, as expected for a
velocity-independent stochastic heating process. Since
it is necessary to use a large number of particles to
determine distribution functions, it is not known
whether a Maxwellian is obtained for all cases studied
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Fic. 5. Energy distribution function.
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since most of the runs were made with 100 particles for
reasons of economy.

Since electrons tend to turn at the resonance surface
in this model, it would appear that electron cyclotron
heating could be used to inhibit scattering into the loss
cone in mirror devices. To investigate this effect, the
case in Fig. 3 was modified so that all 100 particles were
started at the midplane with a uniform distribution of
pitch angles in the loss cone. The fraction of particles
trapped in the first mirror and the average axial position
of the distribution (k(s2)!/2/L) at wt=200 is shown in
Fig. 6 as a function of the rf electric field strength.
Significant trapping should occur when the energy
change for one crossing of the resonance is comparable
to the initial energy, or

G222 (20 /xLRo®) [Ro(1+R—Ro) —RJ2. (8)

For the case in Fig. 6, we calculate G.=6.5X10738 in
agreement with the computed results.

A number of cases were also run with a more realistic
electric field of the form

E=E.Z sinwt sin(kz+¢,) + E) 2 sinet sin(kz-+¢y).

Such a field should simulate a multimode cavity. The
computed resonance heating rates were not significantly
different, however, and the theoretical calculation is
more difficult because the position of the resonances is a
function of the energy because of Doppler shifts.

For Ry> R or for Ry< 1, no fundamental, cold-plasma
resonance occurs, and the computed heating rate is zero.
Off-resonance heating was observed, however, by
modifying the calculation to include any one of the
following effects: (1) relativity (mass increase causes
w=aw,for Ry>R), (2) finite k|; (Doppler shifts a particle
into resonance from either above or below), (3) finite
k1 (causes absorption at harmonics of w.), (4) finite
V4B (also causes harmonic absorption). These phenom-
ena are being studied using a more realistic three-
dimensional model and will be the subject of a later
publication. '

V. CONCLUSIONS

It has been shown by computer calculation of the
trajectories of a collection of particles in a nonuniform
dc magnetic field and in a uniform, homogeneous, rf
electric field, that the average energy of the particles
increases at a rate that agrees with that calculated by
various theoretical models. The distribution approaches
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F16. 6. Effect of electron cyclotron heating on trapping efficiency.

a Maxwellian, and the particles tend to turn at the
resonance surface, as expected. Although the computer
model is somewhat oversimplified, the good agreement
encourages us to extend the calculations to more realistic
situations that include relativity, cavity modes, parallel
electric fields, and perpendicular magnetic field gradi-
ents.
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