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The off-resonance heating that is observed in hot-electron plasmas is explained in terms of harmonic
resonances, appropriately modified to include relativistic and Doppler effects. A theoretical expression
for the heating rate is proposed and is found to agree with the results of a computer simulation over a range
of parameters. The theoretical heating rate is evaluated numerically for several special cases, including
a uniform magnetic field, a mirror field with a 2:1 mirror ratio, and a large-aspect ratio bumpy torus.
The enhanced axial loss observed experimentally with heating below the cyclotron frequency is explained
by absorption at harmonics of the electron bounce frequency.

I. INTRODUCTION

Electron cyclotron heating has become a widely used
technique for producing and heating plasmas in a
variety of magnetic field configurations. The observed
heating rates are consistent with theoretical predic-
tions, although detailed quantitative comparisons have
not been made. More recently, Dandl ¢f al.! have shown
that microwave power at frequencies well above the
cold-electron cyclotron frequency can efficiently heat
relativistic electron plasmas in simple mirror systems.
This off-resonance heating is beneficial for suppressing
certain microinstabilities that occur when resonance
heating alone is used. Off-resonance heating has also
been observed in mirror/quadrupoles at Oak Ridge® and
in a mirror® and toroidal octopole* at Wisconsin. Micro-
wave heating below the cold-electron cyclotron fre-
quency is observed to produce enhanced axial losses in
the mirror devices.!*

The earliest theoretical calculation of off-resonance
heating was done by Grawe® who hypothesized that
the electrons lose coherence with the applied rf electric
field in a time equal to the bounce time between the
mirrors. His result agrees with other calculations in the
limit of resonance heating, but grossly underestimates
the heating for frequencies well above resonance.
Kawamura et al.b calculated the heating at harmonic
resonances, and Eldridge” included, in addition, the
shift of the resonances due to the relativistic mass in-
crease and Doppler effect.

The purpose of this paper is to show that the ob-
served off-resonance heating can be explained in terms
of harmonic resonances, appropriately modified to
include relativistic and Doppler effects. The predicted
heating rate is compared with the results of a computer
simulation over a range of parameters. The heating
rate is then evaluated numerically for several special
cases,

II. THEORY

Electron cyclotron heating rates can be determined
either by integrating the equation of motion of a
particle along its trajectory® or by integrating the local

heating rate as determined from the plasma conduc-
tivity along a field line.* In the cold-plasma limit, the
results are the same, and the perpendicular heating
rate can be written as

dW /dt=mwe[E*n(r)8(B—B,) dr/2[n(r) dr, (1)

where E. is the rms component of the rf electric field
at frequency w perpendicular to the dc magnetic field
B(r), n(r) is electron density, and B, is the magnitude
of the magnetic field at the cyclotron resonance (By=
mew/e). This equation has a simple physical interpreta-
tion since the heating rate is proportional to the
average density in the resonance region divided by
the average density throughout the volume. Note that
the heating rate is energy independent and that no
heating is expected in the absence of a resonance.

For a high-mode cavity (many wavelengths across),
the electric field is approximately isotropic on the
resonance surface, and the E. in the integral can be
factored out and replaced with its spatial rms value
E: (~2FE%/3). The electric field is assumed to be
locally unperturbed by the plasma, and the calculation
is therefore limited to low densities such that

MlVBW%o

w?.

wpr=net/emK {
For a cavity the over-all electric field must be calcu-
lated self-consistently using the input power and the
perturbed Q. The result! is to show that above a certain
density (w,2~w?/Qy, Qo=unperturbed Q), the plasma
dominates the cavity Q and total absorption is expected.
Equation (1) was compared with the result of a
computer simulation in an earlier publication.’ The
simulation code calculated the guiding center tra-
jectories of a collection of noninteracting, nonrela-
tivistic electrons near the axis of a spatially sinusoidal,
dc magnetic field in the presence of a spatially homo-
geneous, perpendicular rf electric field. The computed
heating wave was in good agreement with the theo-
retical prediction.
A particle of finite energy experiences a resonance at
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the Nth harmonic when
w=Noe/y+k v, (2)

where w, is the cold-electron cyclotron frequency
(=eB/m), k|, and v;, are the components of the wave
vector and velocity parallel to B, and y= (1—1?)~172,
The & function in Eq. (1) must then be replaced by

W it [

In the above equation the electric field is assumed to be
isotropic so that the parallel wave vectors are dis-
tributed uniformly over the interval —k <k <k, where

k=w/6= (k;2+k||2)1/2.

Equation (3) can then be used to find the average
heating rate for an arbitrary plasma provided the dis-
tribution function f(r, v) and field shape B(r) are
known. The general problem of finding the time evolu-
tion of f(z, v) is more difficult since it requires a solution
of the Boltzmann equation with a collision term cal-
culated from the heating rate using the Fokker—Planck
equation.

E A, v) v

N=1

III. COMPUTER SIMULATION

A computer code was written to calculate the
trajectories and average kinetic energy of a collection of
noninteracting electrons in an external dc magnetic
field and an external rf electromagnetic field. The
fields are given by

E.= E, sinwt (sinky+ coskz),
E,= E, sinwt(sinkz+coskx),
E,= E, sinwt(sinkx+cosky),

_ (1-R)x ( 2) 5 kE,
B,= 1L B(0) |1+ STt sin — + -
X coswt (sinky-+cosks) ,
— 2 E.
B,= wg(o) (1+ )sm,_z— + kEq
4L w
X coswl (sinkz—+ coskx) ,
7 2
B,=1 —_
2[B(0):|[(1+R)+(1 —R) (H— 4L2) cos L]

kE
+ == coswi(sinka+ cosky).
w

The electric field is the superposition of three, mutually
orthogonal, standing waves, which should approximate
the field in a high-mode microwave cavity. The mag-
netic field consists of an infinite series of axisymmetric
magnetic mirrors with an axial mirror ratio of R and
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S[NB—vyBy(1—kj#;;/w)]. The heating rates for the
various harmonics are weighted according to the Bessel
function®? Jy_s*(vkivi/w), whose argument is the
order of the gyroradius divided by the rf wavelength.
The heating rate for a distribution of electrons is ob-
tained by summing the harmonics and integrating over
the electron distribution function f(r, v):

(vkm> [NB_VBO(I_ ’ﬂ'ﬂ)]dk,]dvdr/ [0 wyavar.

length 2xL, and of a small, time-varying component
chosen to satisfy Maxwell’s equations in free space for
the rf electric field. The dc magnetic field satisfies
V:B=0 exactly and VxB=0 up to a term of order
(R—1)(r/L)%/32. This case was chosen because it
should approximately represent the conditions in the
proposed large-aspect ratio, high-beta bumpy torus at
Oak Ridge.”” Other field configurations including linear
octopoles and mirror/quadrupoles have been simulated,
but these cases will not be discussed here. Various
initial conditions were used, but for most of the cases
described, the particles were initially monoenergetic,
isotropic, and distributed with constant density out to
the flux surface with a midplane radius of L, which
corresponds approximately to the last field line that
clears the radial wall in the Elmo! device.
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Fi1c. 1. Typical simulated heating rate for 50 initially isotropic
electrons in a 2:1 mirror of length £ L=>50, with Ey=0.1¢Bq, and
w/w.(0) =3.
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OFF-RESONANCE HEATING

The particle trajectories were calculated using the
exact, relativistic, three-dimensional equations of
motion:

(d/dt) (ymv) =e(E+vxB).

The time interval of the iteration step Af and the dura-
tion of the computer run #y.x are typically related to
the other characteristic times according to

104 A8~ 108/ o~ 103/ 0~ 10/ wg~Tmax,

where wg is the bounce frequency between the mirrors,
The accuracy of the computation was verified by
varying At and by setting E1=0. The average kinetic
energy was calculated by two independent methods:

W) =N S W),

fe=l

N, ¢
=N, [ef vi()-E dt+W,~(0)] ,
i=1 0

where N, is the number of particles (typically 50).
The two methods generally agree to within a few
percent. This computer code represents a considerably
more sophisticated version of a code previously used® to
test the resonance heating predictions of Eq. (1).

In the present version of the code, the theoretical
heating rates given by Egs. (1) and (3) were simul-
taneously integrated using the distribution function
determined from the simulation at each time step in
order to derive a theoretical W(¢). Actually, the dis-
tribution function was never determined, but the
predicted energy was calculated by the mathematically
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Fie. 2. Comparison of theoretical heating rate calculated from
Eg. (3) and simulated heating rate.
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F1c. 3. Average energy vs time, showing saturation for a spatially
uniform electric field.

equivalent method of increasing the predicted average
energy by the value of the integrand of Eq. (3) every
time a particle satisfied the resonance condition of
Eq. (2). For energies below about 100 keV, both the
cold-plasma theory of Eq. (1) and the hot-plasma
theory of Eq. (3) were found to agree with the results
of the simulation to within about a factor of 2 whenever
a fundamental resonance was present. For frequencies
above resonance, the cold-plasma theory predicts no
heating but the hot-plasma theory was found to
approximately agree with the simulation as shown, for
example, in Fig. 1. About 50 cases were examined
covering the range of parameters 0.001< Eo/cBy<0.1,
0.5<w/w(0) <50, 0.1<W <1000 keV, 1.01<R<100,
and 1<kL<1000. The simulated heating rates were
compared with the rates predicted by Eq. (3) and the
results are shown in Fig, 2. The average of all the runs
gives

log(theoretical rate/simulated rate) = —0.0444-0.298,

and so the agreement is within about a factor of 2,
which may be consistent with the statistics of the
simulation, considering the small number of particles
that were used.

In the earlier, idealized, computer calculation,?® it
was observed that for resonance heating, the particles
tended to turn at the resonance surface and a saturation
in energy sometimes occurred at high energies. These
effects were not observed in the more realistic calcula-
tion which includes a spatial variation of E, a com-
ponent of E parallel to B, and an rf magnetic field
consistent with the applied E field. These additional
effects apparently alter the simple periodic motion
that causes a failure of stochasticity. Ultimately, any
bounded physical system governed by deterministic
equations of motion will be periodic but the time scale
for the periodicity increases as the equations become
more complicated.! An example of this is shown in
Fig. 3, where the mode structure of the rf electric field
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was removed from the calculation, causing the energy to

saturate. Similarly, the turning point distribution is

sharply peaked near the resonance for the ideal case,

but more uniformly distributed for the realistic case.
The average anisotropy, defined by

2'01.2/'02
22 v/

was also calculated as a function of electron energy and

A=

microwave frequency. In contrast to the idealized
resonance calculation which showed a large anisotropy,
the present calculation gives A~1 above 100 keV for
all microwave frequencies. Even at low energies
(<1 keV), the maximum anisotropy is A~2 for mid-
plane heating. It was hoped that heating below the
fundamental resonance would show A<1, thereby
explaining the enhanced axial diffusion observed experi-
mentally.!® Unfortunately, the heating for these cases
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OFF-RESONANCE HEATING

was unobservably small. It may be that the enhanced
axial diffusion results when the perpendicular heating
vanishes as Eq. (3) predicts below resonance, while the
parallel electric fields drive harmonics of the bounce
motion, leading to a parallel heating. This hypothesis is
examined in more detail in Sec. V.

IV. SPECIAL CASES

Since Eq. (3) correctly predicts the heating rates ob-
served in the computer simulation, it is instructive to
examine the predictions for some special cases. For this
purpose, the integral in Eq. (3) was evaluated for
a variety of f(r, v) and B(r). For example, Fig. 4
shows the heating rate as a function of heating fre-
quency for a case in which the magnetic field is spatially
uniform and the electrons are isotropic with an energy
distribution of

JW) < exp(=W/W).

The cold-plasma heating rate is a delta function at the
fundamental. For W>0 the harmonics appear and the
resonances are broadened as a result of the isotropic
distribution of wave vectors, the Doppler effect, and the
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F16. 6. Contours of constant heating rate for a large-aspect
ratio bumpy torus.
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F1c. 7. Ratio of perpendicular to parallel heating for a uniform
isotropic plasma in a parabolic mirror.

spectrum of relativistic masses. Above 100 keV, the
resonances are washed out, and the heating rate de-
creases smoothly as the frequency increases. The heating
rate is in units of eE1%/wBy (i.e., electron volts per
radian). For an electric field of 100 V/cm at a fre-
quency of 10 GHz, one unit represents a heating rate of
2.8 10% eV/sec. In these units, we expect total absorp-
tion whenever the heating rate exceeds w?/Qww,?, and
in this limit the electric field adjusts itself so that the
actual heating rate is just equal to the input microwave
power divided by the number of electrons in the cavity.

Figure 5 shows a case in which the magnetic field is a
spatially sinusoidal mirror with a 2:1 mirror ratio. The
electrons are distributed with constant density inside a
flux tube of infinitesimal cross section centered on the
mirror axis. The electrons are monoenergetic and iso-
tropic except for the loss cone which is unpopulated.
The spatial and velocity distributions are chosen to be
self-consistent in the sense that they represent a steady
state on a time scale long compared with the bounce
time. Note that cold plasma is heated only over the
range of frequencies where a fundamental resonance is
present [1<w/w(0) <2]. At higher energies the heating
decreases in steps as successively higher harmonics
dominate.

Figure 6 shows a similar case but displayed as a plot
of contours of constant heating rate as a function of
electron energy and heating frequency. The magnetic
field is an axisymmetric sinusoidal mirror with a 2:1
axial mirror ratio, and the electrons are isotropic and
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monoenergetic and distributed with constant density
out to a flux surface well off axis. This case is of interest
because it approximates the proposed high-beta bumpy
torus at Oak Ridge.

V. PARALLEL HEATING

The discussion thus far has concerned perpendicular
heating, since the heating mechanism depends on the
cyclotron motion. In a nonuniform magnetic field,
parallel heating can also occur. Three such mechanisms
will be considered here, and it will be shown that at
sufficiently low frequencies, the parallel heating exceeds
the perpendicular heating, providing a possible explana-
tion of the enhanced axial losses observed experi-
mentally.

Consider a parabolic mirror field of the form

B(z)=B(0) (1+22/L?),

in which electrons execute sinusoidal bounce oscillations
with a frequency of

wg=L7'[2uB(0)/m ],
where u is the magnetic moment,
u=mv.2/2B.
If u is conserved except within a narrow region of z

where perpendicular heating causes u to change abruptly
by an amount Au (=BAW.), then the change in

de

wg w

2 f(x, v)Jx?

N=1

e [

Equation (4) was integrated numerically along with
Eq. (3) for a parabolic mirror with 2L=1, and an
isotropic monoenergetic distribution with constant
density inside a flux surface. The ratio of perpendicular
to parallel heating rate for E1?=2E,2 is shown in Fig. 7
as a function of heating frequency for several energies.
Well above resonance, the anisotropy vanishes. Near
resonance the perpendicular heating dominates, espe-
cially at low energies, while below resonance the parallel
heating dominates. This result resembles the prediction
of a collisional, cold-plasma, uniform-field calculation
published earlier.?

Although the parallel heating below resonance is
several orders of magnitude smaller than the resonance
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parallel energy averaged over a bounce period is
AW =3A[W—W 1(0) ]=34[ AW 1— B(0) Ax]
=4[1-B(0)/BJAW ..

A parallel heating then always accompanies a perpen-
dicular heating in a nonuniform field as a result of the
uvV | B force which couples the perpendicular and
parallel motion. It is this parallel heating that causes a
cold electron initially turning at the resonant surface
to continue turning there as its perpendicular energy
increases.

A second parallel heating mechanism arises whenever
a parallel rf electric field is present, as it must be in a
high-mode microwave cavity. This parallel field drives
harmonics of the bounce motion just as the perpendicu-
lar field drives the cyclotron motion. The resulting
parallel heating rate is given by an expression similar
to Eq. (3), but with the cyclotron frequency replaced
by the bounce frequency. A similar calculation has been
used to explain the anomalous loss of electrons from the
Van Allen belts,’? as well as trapped particle effects in
tokamaks,1?14

The third mechanism is a resonance interaction
whereby a particle with finite gyroradius experiences an
acceleration from the parallel rf electric field as it
crosses a region of cyclotron resonance. Eldridge’
has calculated that the heating rate for this mechanism
is proportional to Jx?(vkiti/w).

The resulting parallel heating rate from all three
mechanisms is given by

Wy _ 2///N=1(1—§(£)f( VWit (Vk;“> [NB 730<1—M)Jdk,,dvdr/c;/f/f(r v) dky dv dr

+meE| ff Ni:lf(r’ v)JN_12(7k”v“) (Nwﬂ

)dk”dvdr/ZBo ff F(x, v) dky, dv dr

(fykuu) [NB 730(1_ E'—'—-[—])]dhdvdr/ /f f(x,v) dkyydvar. (4)

heating rates, the perturbed cavity  is much higher in
the absence of cyclotron resonance and the electric
field rises in order to maintain total absorption of the
microwaves. Whether or not the proposed mechanisms
account quantitatively for the observed axial losses can
be determined only by more detailed experimental
measurements.

VI. CONCLUSIONS

The experimentally observed off-resonance heating
can be understood in terms of harmonic resonances,
appropriately modified to include relativistic and
Doppler effects. The cold-plasma resonance heating
theory has been generalized to include these effects,
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but the resulting equation is sufficiently complicated so
as to require numerical evaluation for special cases.
The theoretical heating rate has been compared with the
results of a computer simulation, and the agreement is
about a factor of 2 over a wide range of parameters.
The theoretical heating rate has been evaluated for
several special cases. The parallel heating rate was also
calculated, and it was shown to exceed the perpendicu-
lar heating rate at low frequencies, providing an ex-
planation for the experimentally observed enhanced
axial losses. This calculation represents a first step
toward the prediction of a self-consistent, time-de-
pendent distribution function for an experimental
device using resonant and off-resonant microwave
heating. In the laboratory experiments, other mecha-
nisms not included in the simulation, such as collisions
or collective effects, may contribute to the heating,
but at least for the more relativistic plasmas, the
harmonic effects are sufficiently strong to account
qualitatively for the observations.
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