Experimental observation of plasma paramagnetism in a

tokamak
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The increase in the toroidal magnetic field of a tokamak due to plasma presence is measured
experimentally and compared with predictions of an equilibrium code.

It is well known that tokamaks are diamagnetic at high
B and paramagnetic at low g8; i.e., at low § the diamag-
netic current (~vP xB/|B|?) is negligible, current
flows parallel to the magnetic field (jxB=0) and the po-
loidal component of the parallel current causes the tor-
oidal magnetic field to increase from its vacuum value.
This feature of the equilibrium has not been reported
experimentally. It is to be distinguished from the type
of paramagnetism that arises in some systems when the
plasma-induced current (vPxB/|B|?) is in such a direc-
tion as to increase the field. Numerical calculation' in-
dicates that the boundary between paramagnetism and
diamagnetism in a tokamak is roughly 8,~1, where 3,
=81((P),—po) /B, b, is the pressure at the plasma
edge, B, is the poloidal magnetic field, and ¢ ), and (),
represent averages over the plasma volume and sur-
face, respectively,

Here, we report observations of the paramagnetic ef-
fect in the Tokapole II device,” a tokamak with a four-
null poloidal divertor (Fig. 1). The plasma and field
shaping is accomplished by four internal rings which
create an octupole vacuum field. The temperature is
sufficiently low (7,~100 eV,n~10'® em~%, I,~40 kA, and
B;~3.5 kG for this experiment) so that a magnetic
probe may be inserted into the plasma without serious
effect. The measured experimental AB, is shown in
Fig. 2, The poloidal current density on the midplane
may be inferred from the data [j,~(1/R)(8 B R)/8R].

FIG. 1. Numerical poloidal flux plot of Tokapole II.
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FIG. 2. Experimental measurement of AB,/B, vs distance from
from main axis. Measurement from the dashed baseline elim-
inates the contribution from the poloidal current in the scrape-
off region.

Results are compared with an equilibrium code which
solves the Grad-Shafranov equation

A*Y =0/ ar® - (1/7)oy/or +8%p/82% = ~ ugr® ' (P)— FF' ()

for tokapole geometry. Since $,~0.2 in the experi-
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FIG. 3. Equilibrium code predictions for the fractional change
in toroidal magnetic field AB,/B, (solid line) due to plasma
and poloidal current density j, (dashed line) as a function of
distance from the major axis.
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ment, p’(y) =85 /8y is negligible and may be ignored. dal field AB, to be roughly 3.5%. In order to accurately

F() =7B, is prescribed in the plasma to be F(y) compare with theory which excludes current in the

- =[1+g@ - ¥,/¢,, - ¥;)*], where ¢, is the limiting flux scrape-off region, it is necessary to discount the con-
surface, i, is the value of the poloidal flux function ¥ tribution of current outside the separatrixto AB,. Thus
at the central magnetic axis, o is a shaping parameter for comparison, A B, should be measured from the
set equal to 1.1, g is adjusted to keep the total current dashed baseline drawn in Fig. 2. The AB, below the
constant, and F, is a constant equal to F in the vacuum baseline (which intersects the curve at the separatrix) is
region. An initial guess at y(»,2) is used to evaluate due entirely to the current outside the separatrix. Ex-

F(r,z). The operator A* is then inverted subject to the periment and code calculations agree well.
boundary conditions that ¢ be constant on the rings and

walls. F is recalculated with the new y(r,¢) and the

process is repeated until §(»,z) converges, The limit-

ing flux surface ¥, is taken to be the divertor separa- 13, D. Callen and R. A. Dory, Phys. Fluids 15, 1523 (1972).
trix, The solution for §(r,z) and the magnetic surfaces %A. P. Biddle, R. N. Dexter, R. J. Groebner, D. J. Holly,
has previously been verified through direct experimen- B. Lipschultz, M. W. Phillips, S. C. Prager, and J. C.

Sprott, Nucl. Fusion 19, 1509 (1979).
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tal measurements.?'?

Nonlinearly stable equilibrium statistical states for
spheromaks
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Even though the eigenfunctions of the curl operator do not form a complete set, one still obtains the
force-free spheromak field as the only nonlinearly stable state for spherical plasmas.

In recent papers!™ on incompressible magnetohydro-
dynamic turbulence and the nonlinear stability criterion
which readily emerged from these statistical calcula-
tions, an assumption was made that the eigenfunctions % {ﬂ cosmens . M _ pm -sinm¢ (5} (5)
of the curl operator, VX F=AF with F.#=0 at the con- [ ¢] sing ~ " [cosrmp ] ’
ducting wall, formed a complete set for solenoidal vec-
tor fields. It now appears that this assumption is in- with
correct. In this note, we rectify this error for spheri- _ .
cal plasmas (spheromak?), using the notation of Ref. 3. v xM""“’[f’] - A’WN”"‘"["] ’ (6)

N, o[4]

ALY

nn+1)  __rcosm¢i., 1 d .
fulil. Wand— +
"P"[ Apg? dr (7x)

sinm¢

sinm¢

We expand the magnetic and velocity vector potentials VXN, 8] = 2 M, 8] (7
A and A,, terms of the vector fields® M,,, and N, gen-
erated from the eigenfunctions of the scalar wave equa-
tion Vi + A% =0 by M, ., =V X ($,,7?) and N, = X,1¥

The eigenvalues ), are determined from the boundary
conditions B,=0=v, at the wall r=gq, i.e., },, is the

anmq’ i'e-; qth zero of
1 (2) jn(hnqa) =0. (8)
A= (B [EIM, (5] + £ 0IN,  [EDC g » W

M, o1 N[5

B=YXA=3 X CamelbnmelsNomels]
are orthogonal

+E£$0 [ M, . [2]) )

nmglo
fM ] N =0,
V=VX Av =E Anqcnmq(nr(nlu)q[g]Nnmq[i] nmate mmate

while
Hhmals Mo (5D 5 ®3)
where J Mo l2] M 15 = 0= [ Ny lo]- Ny 21
M""'“[f’]zsge j P [‘Slﬂm(f’]é _j"B_I.’L[COS'"‘P]‘ , (4)  trivially, for all n, n’, m, m’, g, and ¢’. The c,,, are
cosme sinm¢ the normalization constants with the property
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