Electrical circuit modeling of conductors with skin effect
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The electrical impedance of a lossy conductor is a complicated function of time (or frequency)
because of the skin effect. By solving the diffusion equation for magnetic fields in conductors of
several prototypical shapes, the impedance can be calculated as a function of time for a step
function of current. The solution suggests an electrical circuit representation that allows
calculation of time-dependent voltages and currents of arbitrary waveforms. A technique using an
operational amplifier to determine the current in such a conductor by measuring some external
voltage is described. Useful analytical approximations to the results are derived.

I. INTRODUCTION

An electrical current flowing in a conductor requires a
voltage tosustain bothits resistive (/R ) and inductive (Ld[I /
dt) components. The resistance is usually calculated in the
low-frequency limit where the current density in the conduc-
tor has reached its steady-state (often uniform) value. The
inductance is usually calculated in the high-frequency limit
where the current flows in a thin skin on the surface of the
conductor. At intermediate frequencies, the resistance is in-
creased from its dc value by this skin effect, and the induc-
tance is increased from its high-frequency value by the mag-
netic flux embedded in the conductor. The goal of this paper
is to develop methods for predicting the voltage ¥(¢) which
resuits from a current J(¢) that has frequency components in
this complicated, intermediate regime. A by-product of the
calculation is the design of an operational amplifier circuit
that allows the time-dependent current in a conductor to be
determined by measuring some appropriate voltage. The cal-
culation was motivated by a desire to model toroidal mag-
netic confinement devices for plasmas surrounded by thick,
conducting walls and with internal conducting shells or
rings, but the applications extend to any electrical system in
which skin effect is important. Skin effect has been calculat-
ed for many geometric configurations.'”> Modern tech-
niques rely heavily on numerical, finite-element methods.*®

In Sec. 11, the one-dimensional diffusion equation for
the soak-in of a magnetic field to conductors of various
shapes is solved for the special case of a constant magnetic
field at the surface of the conductor. For many cases this
corresponds to a total current in the conductor that is a step
function of time. In Sec. III the results are converted into a
time-dependent impedance using the fact that the voltage is
the rate at which magnetic flux penetrates the surface of the
conductor. In Sec. IV the time-dependent impedance is
modeled by an electrical equivalent circuit which allows the
results to be generalized to an arbitrary, time-dependent
waveform for use in circuit analysis computation codes. In
Sec. V an example is given of using the circuit model to repre-
sent a coaxial line with a solid resistive center conductor and
a resistive outer conductor of finite thickness. In Sec. VI the
results are used to design an operational amplifier circuit
that emulates the time dependence of a lossy conductor and
allows one to measure the time-dependent current. Finally,
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in Sec. VII a number of useful graphs and analytic approxi-
mations are given.

1. SOLUTION OF DIFFUSION EQUATION

In this section we consider five special but typical geo-
metrical shapes and boundary conditions. The cases chosen
have sufficient symmetry that the normal component of the
magnetic field is zero as the field diffuses into the conductor.
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FIG. 1. Case A: Plane slab with uniform magnetic field on one face (a) with
solution at t = 0 (b) and t—w (C).
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A. Plane stab with magnetic field on one face

Consider first a plane slab of conductor of resistivity p,
permeability u, and thickness d with a current density
J» (x,t) that produces a uniform magnetic field B, in the y
direction on one face and no magnetic field on the other face,
as shown in Fig. 1. The diffusion equation for magnetic field
in the slab is

JB p 9 ’B,

y

o  p o

The general solution inside the slab is a superposition of a
constant term, a term proportional to x with no ¢ depen-
dence, and a term that can be written as a product of some
function of space and some function time, The first two
terms can be determined from the boundary conditions as
t— oo, The third term is then found by the method of separa-
tion of variables and Fourier analysis to match the initial
condition at ¢ = 0. The result is given by

x & sin(nax/d)  _ owrpesas
By(x,t)=BO(1—7——2"Z e M‘d).

=1 nmw

(1)

(2)

B. Piane slab with the same magnetic field on each face

Consider now a plane slab of thickness d as above but
with a uniform magnetic field B, in the same direction on
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FIG. 2. Case B: Plane slab with uniform magnetic field in the same direction
on each face (a) with solution at 7 = 0 (b) and r— o (c).
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FIG. 3. Case C: Plane slab with uniform magnetic field in opposite direc-
tions on the two faces (a) with solution at 7 = 0 (b) and r— (c).

each face as shown in Fig. 2. The diffusion equation is the
same as Eq. (1). The solution for the magnetic fleld in the
slab as a function of time is derived as above and is given by

ne=1 niw
n odd

B, (x1) = 30(1 —4 i i‘i‘i”_“/_d)_r#n’m/w) @)
C. Piane siab with opposite magnetic field on the two
faces

Consider now a plane slab of thickness d as above but
with a uniform magnetic field B, of opposite sign on each
face as shown in Fig. 3. The diffusion equation is the same as
Eq. (1). The solution for the magnetic field in the slab as a
function of time is derived as above and is given by

2x & sin(amx/d) o suqt
By(X,t)=Bo(I—-——d—-—4n§2 sn(nmx/d) — g~ npt/nd )

neven

(4)

0. Cytindricat rod with axiat current

Consider now a cylindrical conducting rod of resistivity
p, permeability 1, and radius @ with an axial current density
Jj. (r,t) that produces a uniform azimuthal magnetic field B,
in the @ direction at the surface of the rod as shown in Fig. 4.
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where the g,, are the roots of the Bessel function J;(g,) =0
and are given to within 0.03% for all »n for
g, =~m(n —0.25 4 0.01525/n).

(a) 115, TIME-DEPENDENT IMPEDANCE FOR STEP
FUNCTION CURRENT

If the current J that produces the magnetic field B, at the
surface of the conductor turns on abruptly at z = 0, the time-
dependent impedance can be calculated from

By v on(t)-d} fpjo(t)-dl
Z(t) = = = , 9
Bol — I I I
where V(¢).is the voltage drop along some length at the sur-
120 (b) face of the conductor and j,(#) is the current density at the
surface.
o For the plane slab with field on one face (case A of Sec.
o a r IT), the current density is j, = dB,, /dx/u, and the total cur-

rentis / = — Bow/u, where w is the width of the slab, and d
is assumed much smaljer than w. Differentiating Eq. (2) and

By substituting into Eq. (9), integrating E all the way around |
the slab (2w), gives
L w :
% Z() —”—2( +2 Ee“"’""’"’“"), (10)
t—o (c) , !
where / is the length of the slab.
00 tl: r

FIG. 4. Case D: Cylindrical rod with axial current (a) withsolutionatr = 0
(b) and t—w (c).

{a)

As before, the diffusion equation can be derived and has the
form

JB d°B 8B B
"=£( e L g——i). (5)
o u\ 97 r or r
The general solution inside the rod is given by
= J / o St 8
Ba(r,t)=Bo(L+2 _Me ﬂfp/ua), ) z
a W= padolpn) 5
where the p, are the roots of the Bessel function J,(p, ) =0 or
and are given to within 0.06% for all n by £+0 (b)
Do =w{n+0.25 —0.03106/n).
E. Cylindrical rod with azimuthal current S .
Finally, consider a cylindrical conducting rod of resis-
tivity p, permeability u, and radius @ with an azimuthal cur-
rent density j, (7,2) associated with a uniform axial magnetic B,
field B, in the z direction at the surface of the rod as shown in
Fig. 5. As before, the diffusion equation can be derived and Bo|
has the form
B, p (9°B, 1 OB, t—o (c)
= +— . (7
a  u\ Ir r or
The general solution inside the rod is given by O A :

, (8) FIG. 5. Case E: Cylindrical rod with azimuthal current (a) with solution at

B (rt)=B( —2y D) _qz"o./w)
2\ o t=0(b) and -+ (c).

n=1 anl(qn )
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into Eq. (9) with the electric field integrated once around

— Y . .
Lo Ro T the circumference 27ra gives
O T ——— MW ————

FIG. 6. Electrical equivalent circuit representation for the time-dependent
impedances calculated in Sec. III. See Table I for values of components.

For the plane slab with the same field on both faces
(case B of Sec. II), the procedure is the same except that the
current density at the surface is determined by differentiat-
ing Eq. (3) to get the result:

__Sp_l - — P (2n ~ Vpt /pd?

Z(n) od "Zle . (1
Note that the current used in Eq. (9) is the constant, exter-
nal current that produces the field B, at the conductor and
not the induced current in the conductor that decays away in
time. This definition of impedance is necessary for the elec-
trical circuit model to be described in the next section.

For the plane slab with opposite fields on each face (case
C of Sec. I1), the procedure is the same except that the cur-
rent density at the surface is determined by differentiating
Eq. (4) to get the result:

/ & 2y 2
Z(r)=f’—(1+2 e—“”f"/#d). (12)
wd ,,;l

For the cylindrical rod with axial current (case D of Sec.
II), the current density isj, = (dBg/dr + Bo/r)/u, and the
total current is / = By2wa/u. Differentiating Eq. (6) and

substituting into Eq. (9) gives

_ _/i ( <« — Pt /#“2)
Z(1) g 1+ngle , (13)
where / is the length of the cylinder.

Finally, for the cylindrical rod with azimuthal current
(case E of Sec. IT), the current density isj, = dB,/dr/u, and
the external driving current is / = — Byl /u, where / is the
length of the rod. Differentiating Eq. (7) and substituting

4Tfp o — ot /pd
Zit)y=—=~ N e . 14
=22 % (14)

n=1

IV. ELECTRICAL EQUIVALENT CIRCUITS

The time-dependent impedances derived in Sec. I11 have
the limitation that they apply only for step function currents.
On the other hand, any physical waveform can be decom-
posed into an infinite sum of step functions with varying
amplitudes and starting times. Thus, if we can represent the
impedance in terms of an electrical equivalent circuit in such
a way that it responds correctly for an arbitrary step func-
tion, then it will have the correct response for any time-vary-
ing current, and the skin effect can be analyzed by ordinary
circuit analysis techniques.

A common characteristic of all the solutions is an infi-
nite sum of exponential terms with a time-dependent ampli-
tude and progressively shorter time constants. The ampli-
tude of each term in Z(t) happens to be the same on the
surface of the conductor where the voltage is measured. This
suggests a linear electrical equivalent circuit representation
as shown in Fig. 6. In this representation, L, is the induc-
tance of the space external to the conductor and is calculated
by conventional means as if the conductor had zero resistiv-
ity and completely excluded the magnetic field from its inte-
rior. R, is the dc resistance that the conductor has after the
field has soaked completely through. The RL networks are
arranged so that the R, values are all equal to R, and the
time constants 7, = L,/R, match the time constants
exp( — t /7, ) of each term in the series. The values required
for each of the five cases considered in Sec. Il are given in
Table I.

To use the circuit representation, one would typically
truncate the series after some finite number of terms. This is
equivalent to neglecting the very fast transient behavior of
the circuit (times shorter than 7, .. ). When this is done, it
is sometimes important to add whatever inductance has been
ignored to L,. For this purpose, the sum of the inductances
from n = 1 to oo is included in Table I. This sum is a useful

TABLE I. Parameters for the circuit in Fig. 6 and the analytical representations in Sec. VII. [Note: p, =# (n+ 0.25 —0.03106/n), g, =7

(n —0.25 4 0.01525/n).}

Case A B C D E

R, pl/wd 0 pl/wd plind 0

R, 2R, 8pl /wd 2R, R, amp/l

L, 2uld /7w 8uld /7w pld /27w pl fmp} dmua®/qil
R, R, R, R, R, R,

L, L,/n? L,/(2n ~1)? L/n? piL/pt aiL/¢
=L, uld /3w pid /w pld /12w ul /87 mua’/l

7 ud*/’p ud*/mTp pd*/4rp ua'/pip pa’/qip
Tn n/n? n/(2n—1)* /n’ PT/P; Qe

4 /4 /16 /4 p/4m /4

K 310/ aJ6/m 3V10/7* 843/p? 42/¢

k 0.86 24 0.86 0.76 1.1

M 6/m 8/ /7 8/p3 4/q.

vwZ w/pl w/ul w/pl 2ma/ul 1Vu
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FIG. 7. Coaxial line with solid center conductor and thick outer conductor,
shorted at one end and open at the other.

quantity also because it is the internal inductance of the con-
ductor after the field has soaked completely through.

Geometrical shapes more complicated than those con-
sidered above can often be treated as a superposition of the
cases considered by placing the various circuits in series with
one another. Then one must be careful not to doubly count
the inductance L,

V.EXAMPLE: COAXIAL LINE

As an example of the methods outlined above, consider
a coaxial line of length /, with a free space of inner radius a,
and outer radius b as shown in Fig. 7. The center conductor
and the outer conductor are solid with resistivity p and per-
meability ¢¢. The outer conductor has thickness d. The line is
long compared with its radius, but not so long that transmis-
sion line effects (distributed capacitance) are important
(i.e., the line is short compared with the free space wave-
length). The line is shorted at one end, and we wish to model
the impedance as seen from the other end by an electrical
equivalent circuit.

Following the procedure in Sec. IV, we represent the
line as shown in Fig. 8. Here we have kept only the first three
terms representing field diffusion into the center conductor
(case D) and the first three terms for diffusion into the outer
conductor which we treat in the plane slab approximation
using a width 27b (case A). The inductance of the space
between the conductors is the familiar w, in(b /a) /2, but

Holin(b/a)
e +0.008584.4 + 0.00918u0d/b
0.02168uf  0.00646u8

|

0.00307ut

©
T AW
pR/ma? pA/maR
vit)
p2d/973b  uld/awde  udd/m3b
2
pl pl Pl 2mrbd
wbd wbd wbd

FIG. 8. Electrical equivalent circuit representation for the coaxial line in
Fig. 7 including three terms of each infinite series.
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FIG. 9. Decay of current in the coaxial line in Fig. 7 as represented by the
circuit in Fig. 8 including various number of terms of the infinite series.

with a correction added to account for the sum of the induc-
tances interior to the conductors for n > 3. The impedance of
the short at the end has been neglected. Recognize the dc
resistance of the inner conductor (p/ /7a”) and the outer
conductor (pl /2bd). The values have been taken from Ta-
ble I.

As a specific numerical example, suppose we take
M = pb/a =1.1,andd /a = 1 and measure timein the nat-
ural units of ua®/p. We take ¥(¢r) = 0 and an initial condi-
tion of I{t = 0) = I, and solve the circuit equations numeri-
cally as the current decays. This corresponds to a voltage
step function down from some initial, constant value (I,R,)
to zero. The length of the line ! does not matter since all
resistances and inductances are proportional to /. The results
are shown in Fig. 9 for nrmax = 0 (no time-dependent soak-
in), nmax = 1, and nmax = 3 (the case in Fig. 8). For this
case the skin effect is not very dramatic and is very accurate-
ly modeled with as few as three terms in the infinite series.
Soak-in is a much less prominant effect for a step function
voltage than for a step function current. It is most important
for situations in which the external inductance is small
(LogLy).

VIi. OPERATIONAL AMPLIFIER EMULATION

In many instances it is desirable to have a means to mea-
sure an electrical current that is partially soaked into a con-
ductor and to convert the measurement into a time-depen-
dent voltage for observation or recording. The usual
methods consist of either measuring the voltage drop along
the surface of the conductor and dividing by the resistance or
integrating the voltage signal from a loop that encloses some
portion of the magnetic flux produced by the current and
dividing by the inductance. For the cases considered here,
neither the resistance nor inductance are constant, and a
different approach is required. The desired operation is ex-
actly the one performed by the electrical circuit in Fig. 6.
Thus, if we were to construct the circuit in Fig. 6 and connect
it across the terminals of the conductor, the current could be
determined by reading the voltage across resistor R, for any
waveform.
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FIG. 10. Operational amplifier circuit that permits measurement of the cur-
rent in a conductor in which the magnetic field is partially soaked in.

In practice, it is usually more convenient to construct
circuits with capacitors rather than inductors, and such a
circuit using an operational amplifier is shown in Fig. 10.
The resistance values are the same as in Table I, and the
capacitors are chosen so that the time constant of each RC
branch matches the time constant of the corresponding RL
branch in Fig. 6 (i.e., C, =L,/R2 forn=01t0 «). The
resistors and capacitors in Fig. 10 could be changed to give
any convenient output voltage from the amplifier
(Vo = —IRX/R.,), so long as all the time constants
(R, C,) are preserved. The circuit in Fig. 10 can be thought
of as the usual active integrator that determines the current
from V = LdI /dt but with additional components in the
feedback loop to account for the time-dependent resistance
and internal inductance of the conductor.

VIil. GRAPHICAL AND ANALYTICAL REPRESENTATION
OF RESULTS

For all the cases considered in Sec. II, the time-depen-
dent impedance derived in Sec. III for a step function of
current has the form

Z(t) =R, + R, i e” "™,

n=1

(15)

o t/‘q !

FIG. 11. Impedance as a function of time for a step function of current for
each of the five cases described in Sec. II.
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where R, may be zero (cases B and E) and the parameters
are defined in Table I. Graphs of the impedance versus time
for the five cases are shown in Fig. 11. Note that skin effect is
very dramatic for current steps, in contrast to the small effect
for voltage steps shown in Sec. V.

For many purposes it is useful to have an analytical ap-
proximation to Eq. (15) that does not involve an infinite
series. In the limit of r— oo, the first (n = 1) term in the sum
dominates, and the impedance decays asymptotically to R,
in a simple exponential fashion with time constant 7,.

In the limit of #—0, the current flows in a thin skin on
the surface, and the diffusion equation is the same for al!
cases and can be solved to give an impedance of the form

Z(t)—(1 /w)up/mt for 1—0, (16)

where / is the length in the direction of the current and w is
the distance along the surface of the conductor in the direc-
tion of the magnetic field (as in case A).

A function with the correct asymptotic limits is given by

Z(t)=Ry+ R [(A7,/1)> + 1]"% "/, (7

where the constants 4 for the various cases are given in Table
I. In Eq. (17) the exponents 3 and 1/6 have been chosen to
produce a fit for all cases with a maximum error of approxi-
mately 10%. The worst error typically occurs at a time
t~0.1 7, and varies from about 4% (for case E) to 11% (for
case D). The fit overestimates the resistance for all cases
except case B. The +~—01limit provides a check on the calcula-
tions that led to the values in Table 1.

The electrical circuit in Fig. 6 also suggests a frequency-
domain representation in terms of a complex impedance
Z(w) which is calculated to be

w 2T 2 ;
Z(w) =joLo+Ro+ R, S oL, +jol.R,

(18)
=1 Rf+a)2Lf,

If we equate this impedance to R(w) + joL(w), the fre-
quency-dependent resistance becomes

R@)=Ro+ R, & —T2 (19)
ne1 1+ a)zrf,
and the frequency-dependent inductance becomes
L@ =Lo+ 3 —2, (20)
e O

where the parameters are given in Table 1.

Graphs of the resistance and inductance versus frequen-
cy for the five cases are shown in Figs. 12 and 13. The induc-
tance in Fig. 13 is just the portion internal to the conductor
and thus asymtotically approaches zero for all cases as
w— oo, since the magnetic field is excluded from the con-
ductor in that limit.

As was the case for the step function current, it is useful
to have analytical approximations to Egs. (19) and (20)
that do not involve infinite series. In the limit of v—0, the
denominator of Egs. (19) and (20) become unity, and the
result is a simple summation:

o fr 2
R(a))—*Ro—FR,(a)T,)zZ(—l) for wr, <1, (21)

w=1\T)
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FIG. 12. Resistance as a function of the sinusoidal frequency for each of the
five cases described in Sec. I1.

L@)—Ly+ S L, for or<l. (22)

n=1
The summation in Eq. (21) is a constant K ?. The quantity X
and the summation of L, in Eq. (22) are given in Table I.
In the limit of ®— o0, the current flows in a thin skin on
the surface, and the resistance can be calculated as if the
current density were uniform over a distance equal to the
skin depth given by

Thus, for all cases the resistance has the form
R()—pl /Wb w131, (24)

where / is the length in the direction of the current and w is
the distance along the surface of the conductor in the direc-
tion of the magnetic field (as in case A). Similarly, the in-
ductance in the limit of »— oo is given by

L(w)—Ly+ (ulb/2w) for wr>1. (25)

Note that in this limit the internal reactance w[L (@) — L]
and the resistance R(w) are equal, and thus the phase
between the voltage measured at the surface of the conduc-
tor and the total current in the conductor is 45°. At small
the impedance is resistive when R, > 0 (cases A, C, and D)
and reactive when R, = 0 (cases B and E).

Functions with the correct asymptotic limits are given
by

R(@) =Ry + R, [(K /o7)* + (2/mAwT,)*/* ]~V
(26)

and
L(@)=Lo+ L,[M® + QQo7,/7d)*] = V5, (27)

where the constants are given in Table 1. The exponent £ has
been chosen to produce a fit for all cases with a maximum
error of approximately 10% except for the inductance for
case B for which the maximum error is about 27%.
Finally, we remark that for some purposes it is useful to
know the speed with which magnetic field lines diffuse into
the surface of a conductor. This number determines, for ex-
ample, how effective a conductor is as a magnetic shield.
Since the diffusion speed is given by v = E /B and since E is

481 J. Appl. Phys., Vol. 60, No. 2, 15 July 1986

FIG. 13. Internal inductance as a function of the sinusoidal frequency for
each of the five cases described in Sec. I1.

proportional to the voltage and B is proportional to the cur-
rent, the speed at the surface has the same time-dependence
as the impedance and a proportionality factor that depends
upon the geometry as given in the last entry in Table L.

Vili. SUMMARY

In this paper the time-dependent diffusion equation has
been solved for five, special, but typical, geometrical shapes.
The solution permits the definition of a time-dependent im-
pedance for the special case of a step function current. The
impedance can be written as an infinite sum of exponentials
with constant amplitude and progressively shorter time con-
stants. The impedance suggests a linear electrical equivalent
circuit representation that is valid for any time-dependent
waveform and allows solution by conventional circuit analy-
sis techniques. As an example, the technique is used to calcu-
late the current response to a step function voltage for a
coaxial line. The electrical properties of conductors with
skin effect can be emulated by an operational amplifier with
a number of RC branches in its feedback loop. Such a circuit
provides a practical method of determining the time-depen-
dent current in a conductor by measuring some appropriate
external voltage. Finally, graphical and analytical represen-
tations of the results are given for the case of a step function
current and for a sinusoidal current.
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