Equilibrium studies of a poloidal divertor pinch with a reversed toroidal field
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An analytic solution for the force-free magnetic field, VX B = A B, in the poloidal divertor
configuration of the Tokapole II device [ Nucl. Fusion 19, 1509 (1979)] is presented.
Experiments conducted on Tokapole 1I which provide equilibrium magnetic field profile
measurements using a magnetic probe are then described. Observations include a non-
constant-A profile and a large diamagnetic current near the magnetic separatrix.

. INTRODUCTION

The reversed-field pinch (RFP)'? is an axisymmetric
toroidal plasma confinement system. Many RFP experi-
ments® have operated since 1965 when toroidal field reversal
was correlated with increased stability and better confine-
ment on the ZETA experiment.* The long-lived plasma
equilibria observed in present machines, violating naive ar-
guments>® that predict their decay via resistive diffusion,
have generated great interest within the fusion community.

The use of a minimum-energy principle that appears to ac-

count for these reversed-field equilibria was suggested by
Taylor.” Such variational principles had been introduced
into astrophysics earlier, as well as into fusion physics.® In
Taylor’s model, these equilibria are described by the zero-
beta magnetohydrodynamic equilibrium equation,

VXB=AB, A =const.

The one-dimensional axisymmetric solutions of this equa-
tion in a long cylinder are well known to be Bessel functions
and are called the Bessel function model (BFM).

The success of the constant-4 model in predicting RFP
equilibria leads to the consideration of its applicability to
other geometries. It appears that the salient features of the
equilibria in the spheromak®'° and multipinch,"" a noncir-
cular RFP with a magnetic well, are described by the con-
stant-4 model. The geometry considered here is that of the
Tokapole II device,'? normally operated as a four-node po-
loidal divertor tokamak which can be also operated with a
programmed-reversed toroidal field.

This paper presents the Taylor equilibria of this divertor
configuration and the actual equilibria obtained from experi-
ments performed on Tokapole II.

The sustainment of the equilibria and the general im-
provement in plasma quality associated with the reversed
toroidal field are attributes of the RFP that are attractive for
fusion purposes. We are ultimately concerned with the effect
of the divertor geometry on sustainment and plasma quality.

Using existing techniques, it is straightforward to obtain
two-dimensional analytic solutions of VX B = A Binthe To-
kapole II geometry. However, evidence from the tokamak
operation of Tokapole II shows the plasma current is largely
confined within the magnetic separatrix (see Fig. 3 for a
description of the nomenclature used for Tokapole II flux
regions). The relatively current-free, high-fieid-strength re-
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gions of common and private flux must have lower A values
than that of the large current density, low-field-strength re-
gion within the separatrix. The constant-4 solutions are
therefore unlikely to be an accurate description of the mag-
netic field topology in Tokapole II.

Although the constant-4 model predicts the stark fea-
ture of a reversed toroidal magnetic field near the edge of the
RFP plasma, a constant-4 profile provides too simplistic a
description of the magnetic field in the RFP. The modified
Bessel function model (MBFM), which assumes A is con-
stant over the interior of the plasma but decreasing linearly
to zero at the edge, provides better agreement with the ex-
periments.'? An Ohmic force-free paramagnetic plasma nat-
urally exhibits a non-constant-A profile. The decrease in 4
results from a decrease in the parallel electric field (E-B/B)
as well as the observed increase in plasma resistivity in the
outer region of the plasma. These same effects occur in Toka-
pole II as well, but the conducting rings, which generate a
magnetic field nearly orthogonal to the applied electric field,
force a decrease in the parallel electric field far from the
conducting wall.

The constant-4 equilibria of the RFP are completely
specified by two parameters, whereas the corresponding
equilibria in Tokapole II require the additional specification
of the values of the ring currents. Because of the complica-
tion created by the presence of the rings and the expectation
that A is not constant, equilibrium magnetic field profiles
were obtained along the midplane of Tokapole II using a
movable magnetic probe.

Il. ANALYTIC SOLUTION OF VxB=AB IN TOKAPOLE I
GEOMETRY

For simplicity, we ignore toroidal effects and model To-
kapole II as a long straight tube. Our solution will be ob-
tained for an arbitrary rectangular cross-sectional tube al-
though we will evaluate it here only for the special case of a
square cross section to model Tokapole II.

Choosing the z direction to be along the tube, we wish to
solve VXB(x,y) = A B(x,y), where B is subject to the
boundary condition that its normal component vanishes at
the surface of the perfectly conducting rectangular bound-
ary. The boundary is assumed to stretch from O to g along the
x axis and from O to b along the y axis. Setting

B =AVXd: + VX (VXB2) = AVeXE — V45, (1)

where ¢ satisfies
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(VP + A2 d(xp) =S(x.p), (2}
and where
9 _g
dz
we reduce our problem to the determination of a scalar po-
tential ¢ (x,y). The boundary condition on B requires that ¢

be a constant, say ¢,, on the boundary. Note that Eq. (1)
implies that

H

B.=a% B _19% B _iy
dy dx
Here S(x,y) is a source function to be determined by the
positions and values of the filamentary current sources
which are idealizations of Tokapole ID’s internal conducting
rings.
If we make the transformation from ¢ to y,
X(x,y)=¢(x,y) —¢0’ (3)
we find that y satisfies the inhomogeneous Helmholtz equa-
tion
(V2 + A2 (xp) = — A %o + S(x,)
subject to the
X |b dy = 0.
Therefore if we know the Green’s function G(r,r’) that
satisfies

(V24 AH)Grr) =890 —r') (4)

homogeneous boundary condition,

with homogeneous Dirichlet boundary conditions, then

& a
y(xy) = f dy f dx'[ — A%y + S(x"y)1G(xyx' y).
(4] O

(5)
The Green’s function can be represented as
Grr') = 3 GL(xx)G, (), (6)
n=1
where
G{xx')y=sink,x sink,x, (N
where, for A 2>k 2,
GLy)=C,sina_,y_|[sina_,y_ cosa_, b
—cosa_,y, sina_,b] (8a)

and, for A2 < k2,
GL(y')=C,sinha_,y_ [sinhea, ,py. coshea, b
—cosha .y, sinha  ,b]. (8b)
We are using the definitions
k,=nw/a, a,,=[=xk,—-1H)]"3,
and the convention that y_ (y_) represents the greater
(lesser) of y and p’. The values of the C,’s are determined by
inserting Egs. (6) and (7) into Eq. (4), which yields
3G (') 2
———+ AP —kG ) =68 — ).
dy a

If we integrate this result over the interval y=y — ¢ to
y =Y+ € and then let € -0, we obtain
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G |y=¥ +e 2
lim i == —, (9
<0 Oy ly=y—ec a
By inserting Eqgs. (8) into Eq. (9), we obtain the values of
the C,’s:

C, = 2 (for A25k2), (10a)
ae_,sin a_,
or
2 2 2
C, = (for A2<k?). (10b)

ga , sinha b

From Egs. (6)-(8) and (10), we derive the final result for
G(r,r’),

9 sin k,,x sin k,x’
b
X[sina_,y_sina_,(y, —b)]

G(rr') = -
; a s _,sina _

n

2 sin k,x sin &k, x’
=
a Swa,,sinha, b

X[sinha  ,y_sinhe, , (y, —b)] (1)

in which n* is the maximum value of n such that A *>k 2. We
shall use the notation G, (r,1") to represent the Green’s func-
tion for the vacuum case when A = 0. One notes immediately
that

2 & sink,xsink, x’'
G, (rr') =— —

a 4~ k,sinhk, b

X [sinh &,y _sinhk,(y, —b)]. (12)

We next turn to the determination of the source function
S(x,y). We first note that a straight filament carrying cur-
rent [ along the z axis generates a magnetic field in the neigh-
borhood of the filament given by

By (r) = ppl /2.
From our scalar representation [Eq. (1)] of the magneti:
field, we note that
By =AVgxs= — 198 K
ar  2mar
or, equivalently, that

6= (—pud/2r)nr. (13)
Thus near » = 0, ¢ is determined by the Poisson equation,

2 _1_3_( ﬁé):—_%ffs_(_’l
V(ﬁ—rc?r rc?r A 2r’

in which neighborhood the A *¢ term of the Helmholtz equa-
tion is negligible. Since this result must be invariant under
translation, we immediately obtain the structure of the
source function,

S(r) =_—/1”~°- S 182 —r,), (14)
i== ]

in which the sum is being taken over the case of n currents

{£,} positioned at the n positions {r, = (x,,5,)}, i = 1,...,n.

Inserting Egs. (11) and (14) into Eq. (5) and using the

identity”
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4 = sin &, x l(sinl(x—a)—sin/lx )
_ +1),

A A —k2) A? sin Aa
odd
we obtain
; — a4} —si in k i —b) —si
Y(r) = _¢0(1+sm/l(x .a) 51niuc)_/12¢SO 4 sin ,,x{sma,,,(y' ) sma;,,y)
sin Aa T noddens nO*_, \ sina _,b
il sin k., x /Si“h“+"y,_smh“+"(y_b))] —Ho S 1Grr)). (15)
T nodd>n* na2+,, \ Slnha+nb A j=1

In order to improve convergence of the sum, we shall isolate the logarithmic singularities of the final sum of Eq. (15). We can
perform this isolation by adding to and subtracting from Eq. (15) two representations of the solution of

V2¢=—Tlu'0 zlj&(z)(r_rj) (16)
=

within the aforementioned perfectly conducting rectangular boundary. Note that this “vacuum” equation is obtained from
Eq. (2) by letting A equal zero on the left-hand side of Eq. (2).

The first representation of the solution can be obtained by the method of images. We already know [see Eq. (13)] the
solution in an unbounded domain for a single filament at r; carrying the current /;:

., = (pol;/2mA)In|r — 1.

The solution for the case of 1 filaments located within the rectangularly bounded region can be obtained from Eq. (13) by the
method of images. One merely imagines a lattice of suitably arrayed positive and negative image currents and, thereby, obtains
the representation

Wy — _—Ho < I

¢, (1) yoy) ,«; f
RS n({[er(2al—xj)]2+[y+(me—y,-)]z}{[yc+(2al+x,-)]2+[y-l—(2bm+y,-)]2]‘)
ot {[x+(2a1_x,)]2+[y+(2bm+y,)]2}{[x+(2a1+xj)]2+[y+(2bm—y,.)]2}'

To produce the second representation of the solution of Eq. ( 16), we express the solution in terms of the vacuum Green’s
function, Eq. (12):

¢ (r) :‘}HQ > IfJGu(r,r')a‘Z)(r'—rj)dr'-

i=1
This yields
= sin k,,x sin k,, x;

N VYR
s =—"F 3 I 3

bk b [sinh &,y _; sinh k, (y.; —b)],
j=1 m=1 m m

where y_; (y_;) is the greater (lesser) of y and y;. Replacing the final term of Eq. (15) with

(—T;{ﬁ > L,G(rr) — ¢52>(r>) + ¢ (r)

j=1

and using Eq. (3), we attain our final result for ¢:

sind(x —a) —sin/lx)
r)= —
4(r) ¢0( sin Aa
_4,12¢,0[ sink,,x{sina_,,(y—b)—sina_,,y)+ sink,,x(sinhaﬂy—sinhaﬂ(y—b))]
T n,odd<n* na2_n \ Sina*nb n,odd > n* na2+n \ Sinha+nb
2uy <& . . sina _,y_; sina_,(y,; —b) sinhk,y_; sinhk,,(y>j—b))
_ 0 I k k x. _
a2 ’[; St & S "xf( o sina_b k sinh k, b
© S sink,x Sinknxj(sinh()z+,,y<j si.nha+,,(y>j —b) B sinh k,y_; si.nh k,(y.; —b) )] fe 2 I
A a,,sinha, b k, sinh kb 47d =

+w ({[x+(2al_xj)]2+ [y+(2bm _yj)]z}{[x+(2(zl—|—xj)]2+ [y+(2bm +yj)]2}>. (17)

> n{[x+(2al—xj)]2+[y+(2bm+y,—)]2}{[x—+-(2al+xj)]2+[y+(2bm—yj)]2}

mi= — o
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FIG. 1. Contours of B, in a square with four filaments, each carrying 75 kA
positioned at (0.17q, 0.17a), (0.17a, 0.83a), (0.83a, 0.17a), and (0.83a,
0.83a): (a) ad =0.5, B, pounaary = 845G, 1, =17 kA; (b) al =3.0,
B poungary = — 385G, I, =62 kA; and (c) ai=100, B
= —3272G, I, = — 166 kA.

z boundary

We shall use our solution, Eq. (17), to describe flux
contours and B, profiles for the specific case of a square
boundary with four current-bearing filaments placed near
the corners along the diagonals of the square, i.e., Tokapole
IP’s geometry. The contours denote equal increments of &,
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FIG. 2. Profiles of B, for ad = 3.0: The solid curve is y/a = 0.5, the dashed
curve is y/a = 0.18, and the dot—dashed curve is y/a = 0.3.

that is, of B, . The local tangent vectors to these contours are
parallel (or antiparallel) to the local direction of B, % + B,j,
where X and J are the unit vectors pointing, respectively, in
the positive x and y directions.

In Fig. 1 we display these contours as a function of al
with the value of B, at the center of the square and the values
of the current filaments held fixed. In this sequence of fig-
ures, one observes the formation of a magnetic separatrix
whose x points move increasingly close to the filaments. We
also observe the formation of islands located between the
current-bearing filaments when A is increased. This behavior
is associated with the lack of symmetry about the z axis as a
result of the square boundary and the existence of the cur-
rent filaments.

In Fig. 2 we display B, profiles for the al = 3.0 case
along three chords of constant y/a: on the symmetry line,
near the filaments, and an intermediate chord. Note that the
profiles are nearly flat in the central region with the strong
gradients occurring near the edge. Also note the extremely
large axial current density (J, = AB,) near the filaments
resulting from the force-free nature of the equilibria; this is
the type of current unlikely to be realized in a real device.

We wish to note finally that by taking a line integral of B
around the square boundary, we can determine the plasma
current. The values of the plasma currents for the cases de-
scribed in Fig. 1 above are listed in the associated captions.
We also list the (constant) value of B, at the boundary hav-
ing fixed the value of B, at 1000 G at the center of the square.
Each filament bears 75 kA and is positioned along the diag-
onal a distance 0.24¢ from a corner. The length of the
square’s edge, a, is fixed at 44 cm. These numbers, which are
similar to those in the experiment, will allow direct compari-
son of profiles.

ll. EXPERIMENTAL DETERMINATION OF
EQUILIBRIUM PROFILES

As was briefly discussed in the Introduction, Tokapole
ITis a small device (44 cm square cross section; major radius
of 50 cm) designed to operate as a poloidal divertor toka-
mak. The magnetic divertor is produced by inductively driv-
ing four internal conducting rings in parallel with the dis-
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FIG. 3. A typical flux plot for the poloidal divertor tokamak configuration
in Tokapole IL. The separatrices are shown as dotted lines, and the surfaces
that link all five currents are called common flux surfaces while the surfaces
linking just one ring are called private flux surfaces.

charge. A typical flux plot is shown in Fig. 3. The central
region is set up as a tokamak with the majority of the plasma
current confined within the magnetic separatrix.
Attempting to form a reversed toroidal field in this same
divertor configuration, a current was applied in the toroidal
field windings which was forced to reverse direction after the
initiation of the plasma current. Similar programming is
used routinely on present day RFP experiments.' Typical
waveforms of the electrical parameters are shown in Fig. 4.
To obtain magnetic field profiles, a single coil magnetic
probe was inserted and moved radially along the midplane
from the wall to the geometric axis. Several discharges were
averaged to produce a data point at various radii thus con-
structing a profile. A decrease in the plasma current oc-
curred with the probe inserted, but this was generally small
(~10%-20%), and the data obtained are believed to be

||‘r|l|||rlvr||l‘|rv

Poloidal Gap Volts

|yfrr1

150

é 50

2 0 :_J_LL_J_L 4_p4, J.._LA_l_L J[»_FL_LJ LJ_L44,

of : —r— 1—¥ T T
SOE I,~toroidal

g (KA)

(Bg) (Gauss)

. Time (msec)

FIG. 4. Representative waveforms of the programmed-reversed mode of
operation. The toroidal field is the average toroidal field defined as flux/a?,
where @ = 44 cm for Tokapole II.
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FIG. 5. Typical toroidal and poloidal (plasma component) field profile
data with the fitted least-squares polynomials superimposed. The data
shown were taken at 680 usec.

representative of the unperturbed plasma. The use of probes
in this fashion is not a new technique; recent studies using
magnetic probes have been made on RFP’s to obtain the
equilibrium structure and to study fluctuations.'*!>

The reversal point moved inward from the wall and dis-
appeared at the center in a time period of ~50-100 usec,
leaving the toroidal field reversed everywhere thereafter.
Coincident with reversal occurred a “quiet” period of re-
duced fluctuations both in the edge magnetic field and plas-
ma density (determined with a Langmuir probe biased to
collect ion saturation current); the reduction in amplitude
was at least a factor of 5. The fields and currents were decay-
ing so that sustained reversed-field plasmas were not ob-
tained. Nevertheless the decay was probably slow enough
that the plasma relaxed through successive equilibria since a
typical poloidal Alfvén time for these plasmas is a few micro-
seconds. This time period, when there was a reversal point in
the plasma, was examined in detail.

Least-square polynomial fits to the magnetic field pro-
file data were used to obtain the current density profiles and
A profiles through the relations

Jy _JB J JXB

VXB=pd, A =H=25 4 =;j=|—;<2—|.

To perform these calculations, toroidal axisymmetry has
been assumed. For the calculation of the toroidal current
density, the additional assumptions of a uniform horizontal
equilibrium shift of the flux surfaces within the separatrix
and that the poloidal magnetic field generated by the toroi-
dal plasma current is nearly cylindrically symmetric were
made. The latter assumption is the most severe, leading to an
overestimate of the toroidal current density in the region
near the separatrix of at most ~ 8% of the axis (peak) value;
no attempt was made to correct for this error. Examples of
typical data for the toroidal field and the plasma generated
poloidal field profiles with fitted polynomials are shown in
Fig. 5. Figure 6 shows a time step sequence of the polynomial
fits demonstrating the field decay, and Figs. 7 and 8 show
profiles of the derived quantities at an intermediate time.
The error bars shown represent the statistical accuracy of
the data.
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FIG. 6. Radial profiles of the (a) toroidal field and (b) poloidal field as a
result of plasma currents shown at 20 usec intervals for the time period 640—
740 usec after the initiation of the plasma current.

As expected, based on the arguments given in the Intro-
duction, /'L“ is not a constant function. Comparison of the
toroidal field profiles in Fig. 2 (y/a = 0.5) and Fig. 6 dem-
onstrates the result of nonconstant A.

The location of the magnetic separatrix may be estimat-
ed by locating the positions of the poloidal magnetic field
nulls. In a cylindrical approximation which assumes the

80 A
3 ]
60— ]
& [ ]
g pry ]
N L 4
g‘ [ ]
s [ 1
20 .
N N
[ . A
0 20

FIG. 7. The toroidal and poloidal plasma current density profiles at 680
usec.
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FIG. 8. The parallel (J*B/B ") and perpendicular (|JXB|/B ?) A profiles at
680 usec.

plasma current is symmetrically distributed about the minor
axis, these nulls lie along the diagonals of the square bound-
ary at the points where the octupole component balances the
plasma component of the poloidal magnetic field. This ge-
ometry is identical to that used to find the constant-4 mag-
netic equilibria described in the previous section of this pa-
per. Assuming the plasma current I, flows within the radius
#, the plasma contribution is simply B 5 = uyf./2xr. By lin-
ear superposition, the ring contribution is

B R __ IU‘OIR 63

8

’
2rd 1 —¢€* d’

where d is the diagonal length from the minor axis to the
center of the rings and I, is the total ring current. By approx-
imating the separatrix boundary as square shaped, the loca-
tion where the separatrix crosses the midplane, Xgep» May be
estimated. The advantage of this simple model is that it only
requires knowledge of 7, and I, while providing a reasona-
bly accurate location of the separatrix when compared with
more complicated two-dimensional equilibrium calcula-
tions. For the plasmas discussed here, B} = B ¥ implies
Xsp = 10 + 1 cm during the 100 usec time period of interest.
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FIG. 9. The plasma pressure profile obtained from the force balance rela-

tion JXXB = Vp at 680 usec. Overlaid are the total and poloidal magnetic
pressure profiles.
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There are several interesting features associated with
the current profiles. The first is the double peak in the poloi-
dal current; the off-axis zero, interestingly, falls in the separ-
atrix region. The “second” peak at x~15 cm is a parallel
current giving rise to the small peak in A at the same posi-
tion. This same current, located in the common flux region
and driven by the reversing toroidal field, was studied in
detail by others while investigating poloidal Ohmic heating
of an octupole.'® The second striking feature is the peak in
the toroidal current density at x ~9 cm. This current, as can
be seen by the corresponding peak in A |, is a large diamagne-
tic current. By integrating the force balance relation,
JXB = Vp, the plasma pressure profile may be obtained.
Figure 9 shows this profile for the data represented in Figs. 7
and 8.

The sharp gradient in the pressure, resulting in the large
diamagnetic current, occurs in the separatrix region. Like-
wise the parallel currents fall sharply in this same region.
With the exception of the parallel poloidal current that flows
in the common flux region, all of the interesting plasma fea-
tures are associated with the plasma interior to the separatrix
region. One is thus led to think of the magnetic separatrix as
a limiter. By definition, it is the boundary between two types
of field topology; inside the boundary the flux surfaces are
the usual nested, helical structures seen in current carrying
toroidal devices while outside the boundary the field is large-
ly poloidal as in a multipole. It is reasonable, therefore, to
think of this magnetic topology as the usual RFP configura-
tion but with a magnetic limiting boundary instead of a ma-
terial limiting boundary. In addition, there is no obvious
nearby conductor.

The multipole field cannot be neglected, however. The
plasma pressure indicated by the force balance calculation,
which is consistent with independent measurements of
n, ~2x 10" particles/cm? from a central chord microwave
interferometer and T, ~70 eV from spectroscopic measure-
ments, results in large central 8 = 2up/B? values; appar-
ently the multipole field provides much of the confinement.
The magnetic pressure B?/2u, is shown with the plasma
pressure in Fig. 9 to illustrate this effect. The pressure profile
may be used to estimate the stored kinetic energy and
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FIG. 10. Typical toroidal and poloidal (plasma component) field profile
data with the poloidal limiter plates inserted. The data shown were taken at
700 psec.
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FIG. 11. Radial profiles of the (a) toroidal field and (b) poloidal field as a
result of plasma currents shown at 20 usec intervals for the time period 620
760 usec after the initiation of the plasma current with poloidal limiters
inserted.

the energy confinement time 7. Such a calculation gives
T ~20 usec.

The parallel poloidal current driven by the reversing
toroidal field has the effect of slowing down the penetration
of the reversal programming, i.e., this current ‘“backwinds”
the external coils. Because the plasma current is already de-
caying when the toroidal magnetic field reverses direction at
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FIG. 12. The toroidal and poloidal plasma current density profiles at 700
psec for the limited plasma.
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FIG. 13. The parallel and perpendicular A4 profiles at 700 usec for the limit-
ed plasma.

the wall, the additional delay resulting from this shielding
effect is undesirable. To reduce this current, poloidal limiter
plates were inserted into the common flux region, already
magnetically limited, relying on field line helicity early in
time to limit the poloidal current.

With the limiters inserted, the equilibrium profiles
shown in Figs. 10 and 11 analogous to Figs. 5 and 6 were
obtained. The current densities and A profiles are likewise
shown in Figs. 12 and 13. The common flux poloidal current
was reduced, as desired, allowing the reversal of the toroidal
field to move in more rapidly, but the reversed profile still
decayed in ~ 100 usec. Note that the diamagnetic current is
somewhat more pronounced with the poloidal limiters in-
serted, but the overall character of the equilibrium is similar
to the unlimited case.

IV. CONCLUSIONS

This paper presented the solution of VXB=AB,
A =const, in a rectangular domain allowing for current
sources. This solution was used to predict the flux plots and
field profiles in the Tokapole II geometry. Experiments on
Tokapole II, which provided the actual field, current, and A
profiles, were then described.

The expected result that 4 is not constant was con-
firmed by the direct equilibrium measurements. The large
currents that the constant-1 model requires in the common
and private flux regions simply cannot be driven by the small
parallel electric fields that are applied. However, the separa-
trix was found to serve as the limiting boundary for the plas-
ma pressure and currents, and the region interior to the se-
paratrix is described by A profiles very similar to the RFP. In
analogy to the Bessel function model, the constant-4 solu-
tion of this paper may provide a useful description of the
equilibria for this region within the separatrix, since the se-
paratrix is most nearly rectangular in shape.

Sustained reversed-field plasmas in the Tokapole II con-
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figuration were not demonstrated. As a result of hardware
limitations of both the applied toroidal electric field and
transformer core volt seconds, the toroidal plasma current
could not be maintained (/,R ,>50V at peak current); lack
of sustainment of Tokapole II plasmas may be a result of
these limitations. In order to investigate the possibility of
sustainment of reversed-field plasmas in poloidal divertor
configuration, these experiments are being extended to a
larger (1.39 m major diameter, 1.0 m? cross-sectional area)
device with optimized internal rings and a larger applied
toroidal electric field.
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