Diffusion of magnetic fields into conductors of nonuniform resistivity
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Solutions are obtained for the spatial variation of electrical resistivity of cylindrical and
rectangular conductors such that the magnetic field external to the conductor maintains a
constant spatial variation as the magnetic field diffuses into the conductor. Practical

implementations of the ideal solution are described.

I. INTRODUCTION

Sometimes it is desirable to produce or shape a magnetic
field with a current-carrying conductor in such a way that
the spatial variation of the magnetic field external to the
conductor is constant as the magnetic field diffuses into the
conductor. An example is a pulsed, magnetic device for plas-
ma confinement. In such a case the stability and confinement
properties are often determined by the shape of the magnetic
field, and it is usually desired that the magnetic field remain
tangent to the surface of the conductor so that there is no
direct path for the plasma to escape by flowing parallel to the
magnetic field into a material surface. Such considerations
are especially important for devices with internal rings such
as toroidal multipoles’ and poloidal divertor tokamaks® as
well as for devices with close-fitting conducting shells such
as spheromaks** and reversed-field pinches.® An example as
shown in Fig. 1 is a quadrupole magnetic field produced by
currents in two, circular, resistive rods, and surrounded by a
thick resistive wall which might be the vacuum vessel in
which the plasma is confined.

In this paper we consider conductors of two prototypi-
cal shapes, a circular cylinder such as the resistive rod in Fig.
1 and a rectangular slab such as might be used to represent
the resistive wall in Fig. 1. A resistivity variation is sought
that will render the external magnetic field shape insensitive
to diffusion. Practical implementations of the ideal resistiv-
ity variation are described. Conductors of more complicated
shapes can be represented approximately by the solutions
described.

The general equation which describes the diffusion of a
magnetic field B into a conductor of nonuniform resistivity p
is
to B
p It
The task is to find a spatial function p that will cause the
direction, although not necessarily the magnitude, of the
vector B to remain constant in time in the region external to
the conductor. We will specialize to the case in which there is
initially no magnetic field normal to the conductor surface,
but we allow the tangential magnetic field to have a spatial
dependence which we attempt to maintain as the magnetic
field diffuses into the conductor. We will also assume that
any currents external to the conductor which contribute to
the field at its surface are fixed in space and have magnitudes
proportional to the field at the surface of the conductor.

Rather than solve the full diffusion equation [Eq. (1)],
we will solve for the resistive (d B/dt = 0) limit and argue

VZB——vpﬁx(va) - ()
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that a conductor that has the proper boundary conditions in
the inductive (¢t = 0) and resistive (£ — oo ) limits will prob-
ably closely approximate the desired solution at intermedi-
ate times. As an added condition we can require that the
variation of the resistivity at the surface be such that the
boundary condition is satisfied asymptotically at early times
(z—0) when the field has diffused only a small distance into
the conductor. With this added condition, the resulting solu-
tion is, for all practical purposes, identical to the exact solu-
tion.

Il. LONG CIRCULAR CYLINDER

Consider the case of a long, circular cylinder centered
on r =0 and carrying a current [ in the z direction. If all
other curents are sufficiently small or far away, the magnetic
field in the region external to the conductor is in the & direc-
tion with magnitude B = uf /27r for all time. However, we
will consider the case in which other nearby currents cause
the field at the surface to deviate from perfect axisymmetry.
An example would be one of the current-carrying rods of
Fig. 1.

From B =VXA, we can define a flux function
Y= —A,. From VXB=yu, and V-A =0 (Coulomb
gauge), the current density is j = — V?A/u,, or in cylindri-
cal coordinates,

. 1 8( 81//) 1 3%
, =—— A\ r= )+ - 2
Hor or\ ar wor* 96° (2)
The magnetic field is
1 3¢, d¢:
B= ———}+ 706
;o6 | or (3)
Resistive

Rod
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FIG. 1. Configuration in which a plasma is confined by the quadrupole
magnetic field produced by electric currents in two resistive rods. The cur-
rents are into the page and return in a resistive wall which might also be the
vacuum vessel.
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Without loss of generality, we can define the flux to be zero
at r = Oand 1 at the surface of the conductor, which we take
to have a dimensionless radius of » = 1. We consider only the
lowest Fourier component of the field variation at the sur-
face of the conductor and write the boundary conditions

thus:
Y(r=0)=0, (4)
Y(r=1)=1, (5
B,(r=1)=a(l +e€sinp), (6)
J.(r=1) =B(1 + €sin )*. (7

In the resistive limit, the electric field E is constant over the
cross section of the cylinder, and the solution of the desired
conductivity o(r,8) is the same as the solution of j, (r,8)
since j = oE. However, solutions in which j, is not unidirec-
tional are unphysical.

As stated above, the problem is underspecified, and a
variety of solutions are possible. In order to proceed, we
adopt the strategy of choosing a ¢ function that is sufficient-
ly simple to evaluate analytically and yet sufficiently compli-
cated to allow the boundary conditions to be satisfied with
one free parameter that can be varied to exhibit a range of
possibilities. A function that meets these requirements is

W(r0) =a(@)yr+b(8)r 4+ c(9)r +d(O)r. (8)
From the boundary conditions and the requirement that j,
be finite and continuous at r = 0, the coefficients can be de-
termined:

Y= — (ae/2)rsin @

+[3—a+d,— (a€?/2) cos 2817
+ [@ — 2 —2dy + (@€/2) sin 6 + a€ cos 2017

+ [dy — (a€?/2) cos 28] 7, (&))
where d,, is a free parameter in terms of which a and 3 are
given by

a=B8/2=2(3—-4d,)/(3 —¢€). (10)
The form of Eq. (9) is such that ¢¥(r=0) =0 and
Y(r=1) =1, and the value of B, derived therefrom be-

comes zero at r = 1 (as desired) while B, at » = | has the
form shown by Eq. (6). From Eq. (2) we obtain

Hoj: =12 —d4a + 4dy + (9a — 18 — 18d,, + dae sin
+ S5a€’ cos 20)r + (16d, — 6ae® cos 20)r%.  (11)

The form of Eq. (11) is such that with « given by Eq. (10),
J. (r=1) is of the relatively simple form proposed by Eq.
(7) with B = 2a. A useful parameter is the ratio of maxi-
mum to minimum value of B at the surface:

V=B, /Bpin = (1+¢€)/(1 —¢€). (12)

Contours of  and j, (or o) over the cross section of the
cylinder for v = 2 for various values of d, are shown in Fig. 2.
The solutions span the range from a low conductivity core
surrounded by highly conducting shell (d, <0) to a highly
conducting core surrounded by a low conductivity shell
(dy,>0).

Guided by the solutions above, we are led to consider
practical implementations in which the cylinder is con-
structed of two different materials of conductivity o, and o,
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FIG. 2. Contours of magnetic flux and conductivity inside a cylinder for
which the magnetic field on the surface varies by a factor of v = 2 in the
resistive limit. The contours are normalized to a value of unity at the top of
the figure and are in units of 0.1. (a) d, = — 0.5, (b)d,=0, (¢c)d,=0.5.

FIG. 3. Configuration in which a circular cylinder of conductivity o, is
embedded in a circular cylinder of conductivity o, but with centers offset by
an amount 8. In the resistive limit, the field external to the outer cylinder
can be calculated as if filamentary currents were located on the axes of the
cylinders.
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with one material embedded in a circular cavity in the other
but with a center offset from the axis by an amount § as
shown in Fig. 3. For such a configuration, the field at the
surface can be calculated as a superposition of the field due
to each of the cylinders and a field B, due to the external
currents. In carrying out the calculation, the large cylinder is
treated as if it were solid with a uniform conductivity o, and
the smaller cylinder is treated as if it had a conductivity
0, — 0,50 as to cancel the contribution of the large cylinder
over the region occupied by the smaller cylinder. In the resis-
tive limit, the field due to the cylinders can be calculated as if
the currents were concentrated in filaments on their axes.
The field B, is taken as a constant over the surface as would
be the case if the other currents are sufficiently far away.
The filamentary currents are given by

I,=0,l/0 (13)
and

I, = (0 — o0yl /0, (14)
where o is the average conductivity,

o=0,+ (0, — o) /1. (15)
From Eq. (12), B, can be calculated:
BO=U°’1 ”010 /‘()Il ( v _ 1 ) (16)

v+ 1 27r, 21r(v+1)\r0+6 ro—96

If we require that the flux function ¥ have the same value on
the high-and low-field sides of the cylinder, we obtain the
result:

(17)

0=

/"()Il ln(r°+5).
47rr, ro—90

Equations (16) and (17) are a pair of simultaneous nonlin-
ear equations which can be solved for § and B,. To lowest
order in §/r,, the solutions are

~Jo (18)
2 v+l o0—0
and
st V1 (19)
4mry v+ 1

In the region external to the cylinder, the flux per unit length
is given by

Y(xy) =By + %"1‘1 In(x? +y*)
T

+ Bl 4 (y— 607, (20)
47

assuming B, is constant over the region considered.

Sample flux plots for the case of v =2 and r, = r,/2
with o, = 0Oand o, = O are shown, respectively, in Figs. 4(a)
and 4(b). These flux plots represent the resistive limit and
have the feature that the flux is approximately tangent to the
boundary as would be the case in the inductive limit as
shown in Fig. 4(c) and are quite unlike the soaked-in, resis-
tive limit of a cylinder with constant resistivity as shown in
Fig. 4(d).

Although similar flux plots can be produced with the
high conductivity material either on the inside or outside,
the internal inductance is quite different in the two cases.
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FIG. 4. Contours of magnetic flux in the region surrounding a cylinder for a
magnetic field that varies by a factor of v = 2 on the surface. (a) high con-
ductivity core, {b) high conductivity shell, (¢) infinite conductivity, induc-
tive limit, (d) uniform conductivity, resistive limit.

This difference may be important because it determines the

magnetic energy that must be provided by the power supply

as well as the flux swing that is required in a transformer-

driven system. The inductance L can be calculated by equat-

ing L12/2 to the total magnetic energy inside the cylinder:
! ,f BR2nrdr,

Hol “Jo
where / is the length of the cylinder. The general case is

L= 21)

5 T T T T T T T 7 T
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FIG. 5. Normalized internal inductance of a symmetrically layered cylinder
for various conductivity ratios. The inductance is smallest when the high
conductivity material is on the outside.
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difficult to calculate, but a representative case is & = Q (or
v = 1) for which B is cylindrically symmetric and L is given
by

L =-§‘$§2—-[2(0—00)21n(u)+a% + (o7 —ad)

g — 0,

(0 —0y)?

2
)2 + 40,(0 — 0y) _*’—“—4(0_ %)"0, .

(0, =0y g, — 0y

(22)

The inductance, normalized to the internal inductance of a
cylinder of constant resistivity (u,/ /87), is plotted in Fig. §
versus r,/r, for various ratios of o,/0,,

Ill. LARGE RECTANGULAR SLAB

Consider the case of a large, rectangular slab of thick-
ness d in the x direction with a current density j, in the z
direction. The current is assumed to return in such a way
that the magnetic field is entirely on the positive x side of the
slab. This idealization would approximately represent the
wall in Fig. 1 in the limit where the wall thickness is much
less than the radius of curvature.

The current density inside the slab is given in terms of
the flux function ¢ by

. 1 (3 4 21/;)
;= + =, 23)
/ Mo\ Ox7 oy
and the magnetic field is
ay . .

dy ox

Without loss of generality, we can define the flux to be

zero on the back side of the slab at x = 0 and | on the front

surface of the slab which we take to have a dimensionless

thickness of d = 1. We consider only the lowest Fourier

component of the field variation at the surface of the conduc-
tor and write the boundary conditions thus:

Y(x=0) =0, (25)
dx=1) =1, (26)
B, (x=1)=a(l +esinky), (27)
J:(x=1) =B(1 + €sin ky)>. (28)

In the resistive limit, the electric field E is constant over the
cross section of the slab, and the solution of the desired con-
ductivity o(x,p) is the same as the solution of j, (x,) since
Jj = oE. However, solutions in whichj, is not unidirectional
are unphysical.

As in the case with the cylinder, the problem is under-
specified, and we choose a flux function

Y(xy) =a(p)x’ + b(y)x® + c(y)x*. (29)

From the boundary conditions, the coefficients can be deter-
mined:

¥=1[3+¢,—a— aesinky — (ae’/2)cos 2ky]x?
+ (@ — 2 — 2¢, + ae sin ky + a€’ cos 2kp)x’
(30)

where ¢, is a free parameter in terms of which « and S are
given by

+ [co — (@€/2)cos 2ky]x*,
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FIG. 6. Contours of magnetic flux and conductivity inside a slab for which
the magnetic field on the surface varies by a factor of v = 2 in the resistive
limit for K = 0 and ¢, = 1. The contours are normalized to a value of unity
at the high field point on the right-hand surface and are in units of 0.1.

a=B/2=2(3—c,)/(2 —€).
From Eq. (23) we obtain

(3D

Hoj: = 6+ 2¢, — 2a — 2a€ sin ky — a€” cos 2ky
+ (6a — 12 — 12¢, + bae sin ky
+ 6ae’ cos 2ky)x
+ [12¢, — a€?(6 — 2k ?)cos 2ky + aek ? sin ky]x?
— acek *(sin ky + 4€ cos 2kp)x?

+ 2ae’k ’x* cos 2ky. (32)
los
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d FIG. 7. Configuration in which a slab of
conductivity o, and width & is embedded
_ in a slab of conductivity o, and width d.
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FIG. 8. Contours of magnetic flux in the region outside a slab of variable
conductivity for a magnetic field that varies by a factor of v = 2 on the sur-
face. (a) high conductivity interior witho = 0,/2and C= — ¢,d*/2, (b)
insulating interior with o = ¢,,/2 and C = 30,d */2.

Contours of ¥ and j, (or o) over the cross section of the slab
for £ = 0and v = 2 for a typical value of ¢, = 1 are shown in
Fig. 6. This case has a low-conductivity band sandwiched in
a high-conductivity material.

From the solution above, we are led to consider practi-
cal implementations in which a variable thickness layer of
conductivity o, is sandwiched between two layers of conduc-
tivity o, as shown in Fig. 7. The quantities d, 0,, and o, are
constant, and the quantities § and x, are functions of y. In the
resistive limit, the current j, is produced by a constant elec-
tric field E in the z direction. By the principle of superposi-
tion, the magnetic field for the case of kd €1 in the region
x>d is given by

3 T T T T T T T T T
Jy*0
0,=500,
2 .
L 0,=100,
T [ o
LO
, 9*%
0,:0.10,
%*0
| 1 ] 1 | 1 1 1 T
00 1
8/d

FIG. 9. Normalized internal inductance of a layered slab for various con-
ductivity ratios. The inductance is smallest when the high conductivity ma-

terial is on the side toward the magnetic field.
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B =puyooEd + po(o, — a,) ES. (33)
Equating this field to the desired variation in Eq. (27) gives

_¢5_=a(1+esinky)fao’ (34)
d o, —a,
where o is a free parameter which determines the average
thickness & for a given choice of o, and . The quantity o lies
between o, and o, but is further constrained by the require-
ments § >0and § + x, <d.
From the requirement that the flux be constant at x = d

we are led to an equation for x, for the case of kd € 1:

C— (0, —0x)(6°—2d6) —od?

26(0, — 0y) ’
where C is a free parameter that must be chosen to make
x,>0and x, + 8 <d.

Sample flux plots for the case of v = 2 with o, = 0 and
o, = 0 are shown, respectively, in Fig. 8. These flux plots
represent the resistive limit and have the feature that the flux
is tangent to the boundary as would be the case in the induc-
tive limit. Identical flux plots can be obtained with a high
conductivity material embedded within an insulator [Fig.
8(a)] and with an insulator embedded within a high con-
ductivity material [Fig. 8(b)].

Although identical external flux plots can be produced
with the high conductivity material either on the inside or
outside, the internal inductance is quite different in the two
cases. The general case is difficult to calculate, but a repre-
sentative case is € = 0 and x, = O for which B is uniform in

the y direction and L is given by

(35)

X, =

[ pw( O | (0—00)(d~9)
I \30%d? o
oo —a,) (d? —67) Uf)(d3—§3))
, 36
* od 7 30
where o is an average conductivity given by
o=0y+ (0, —0,)8/d. (37)

The inductance, normalized to the internal inductance of a
slab of constant resistivity (pqw/Id), is plotted in Fig. 9 ver-
sus 8/d for various ratios of o,/0,.
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