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A generalized analytic representation for the magnetic field and current density profiles in a 
reversed-field pinch (RFP) is proposed. These profiles have zero current density at the wall 
and finite plasma pressure. The profiles are characterized by two free parameters here taken to 
be the field-reversal parameter (F> and pinch parameter (0). From the profiles, many useful 
quantities such as magnetic energy, beta, inductance, resistance, and Ohmic input power are 
calculated. These quantities provide a basis for analyzing experimental data and performing 
electrical circuit modeling of RFP discharges. 

I. INTRODUCTION 

The magnetic field and current density profiles in a re- 
versed-field pinch (RFP) appear to relax toward what pre- 
sumably represents a minimum energy state subject to cer- 
tain constraints. If the constraints are constant toroidal 
magnetic flux and total magnetic helicity, the solutions for 
an axisymmetric, pressureless, cylindrical plasma are’ 

B, = B, (0)4(20r/a), 

B, = B,(O)J,(20r/a), 
j, = 20B,(O)J,(20r/a)/~,a, 

j, = 20B,(O)J,(20r/a)/~,a. 

In the equations above, a coordinate system (r,8,4) is used 
in anticipation of applying the results to a toroid with large 
aspect ratio (&/a) in which the toroidal circumference 
2rR,, replaces the length of the cylinder. The poloidal (8) 
and toroidal (4) fields vary with radius according to the 
Bessel function of zero and first order, respectively, and 
hence this model is referred to as the Bessel function model 
(BFM) . In the BFM a single parameter (0) uniquely deter- 
mines the profile shape. Note that in the BFM the current is 
everywhere parallel to the field as required for a zero-pres- 
sure plasma in equilibrium and that the ratio j/B is indepen- 
dent of radius: 

A = /+d/B = 20/a. 

A difficulty with the BFM is that it predicts a nonzero 
current density at the wall (r = a) whereas experiment2-5 
shows a vanishing current density as rapproaches a. For this 
reason, a variation of the BFM, called the modified Bessel 
function model (MBFM), is often used6,’ in which il is tak- 
en constant for O<r<b and is assumed thereafter to fall 
linearly to zero at r = a. The MBFM thus has two param- 
eters (0 and b) and agrees better with experiment than the 
BFM. The best fit to experiment is found for b /a about 0.7. 

The MBFM still ignores plasma pressure which would 
produce a component of current perpendicular to B and re- 
quires a numerical evaluation of V XB = ;I B in order to 
determine the field and current density profiles. For these 
reasons a model was proposed’ in which the fields are ex- 
pressed as polynomial functions of radius with enough terms 
kept in the polynomials to ensure that V XB = p,,j, j(u) 
= 0,il’ (0) = 0, and il B (0) = 0. This polynomial function 

model (PFM) shares with the BFM the property of having a 

single parameter that specifies the shape of the fields, but 
unlike the other models, it has a perpendicular diamagnetic 
current whose value is consistent with the beta values ob- 
served in experiment. The expressions for the fields in the 
PFM are 

B,=B,(O)[1-0~(r/~)~+0~(r/u)~/2], 

B, =B4(0)0,(r/u)[1 - O;(r/~)~/2 

+ co; - 1)(r/a)4/3], 

j, = 2B,(O)O,[ 1 - @;(r/a>* 

+ (0; - 1) (du)4]/pou, 

je = 2B,(O)@ (r/u) 11 - (~/u)~]/,LL,~. 

The parameter 

00 = PO@6 Kwq5 (0) 
uniquely determines the profile shape for the PFM just as 
does 0 (or 2) in the BFM. This model has been used suc- 
cessfully to explain many of the properties of RFP dis- 
charges.‘-” 

When applied to specific RFP experiments, the PFM is 
too restrictive since it predicts a unique relationship r;( 0) in 
contrast to observations in which the plasma often deviates 
from such a unique curve. For this reason, a new model is 
proposed here, which, like the MBFM, is characterized by 
two parameters (which we take to be F and 0) but which 
incorporates finite plasma pressure and fields whose vari- 
ation can be expressed as analytic functions of radius. Since 
the functions are polynomials, we call this model the modi- 
fied polynomial function model (MPFM) . It generalizes the 
PFM in the same way that the MBFM generalizes the BFM, 
by introducing an additional parameter. The parameters are 
chosen to be those whose measurement is easiest (F and 0). 
From these analytic expressions, we proceed to calculate 
many useful formulas and then apply them to the analysis of 
experimental data and electrical circuit modeling of RFP 
discharges. 

II. MODIFIED POLYNOMIAL FUNCTION MODEL 
For the MPFM, we start with Maxwell’s equation 

VX B = ,ud and apply the boundary conditions 

j(a) = 0, 
A’(0) =o. 
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Unlike in the PFM, however, we do not require R ’ (0) = 0. 
This means the same number of terms in the polynomial 
series for the fields as in the PFM can be used and still allow 
arbitrary beta values for each value of 0. The solutions for 
the fields are 

3, = B,(O) [ 1 - @(r/u)* + O,:(r/u,4/2], 

B,=B,(O)(r/a)[O,- (20,-3C)(r/~)~ 

-I- (00 - 2Cl (da141, 
j, =2B,(O)[@,-2(20,-3C)(r/a)’ 

+ 3(0, - 2C) (r/u)4]/poa, 

j, = 2B,(O@ (r/u) [ 1 - (r/~)~l/~,a, 
where 

C= B,(u)/B,(O). 
In an experiment, the easiest quantities to measure are F 

and 0, given by 

F= B,(a)/@,), 

0 = B,(u)/@,), 
where (3,) is the toroidal field averaged over the circular 
cross section 

(B,) =-$~“B,(rW~~ 

which is related to the toroidal flux Cp by 
Q = na’(B,). 

The parameters of the MPFM can thus be expressed in terms 
of Fand 0 as 

GIo=J(6-6F)/(3-2F), 

C= O/(3 - 2F), 

from which it follows that 

B,(O) = (3 - 2F)(B,). 

The radius at which the toroidal field reverses is inde- 
pendent of 0 and is given by 

r, = a 1 - ,!F/(3F- 3) . 

The MPFM can also be used to calculate the normalized 
internal plasma self-inductance defined by” 

Ii = 
2.f;Bgrdr 
a2B2,(u) * 

In terms of F and 0, 

Ii= [24F*-6OF+36+80,/(6-6F)(3-2F) 

i- 3 102] /6002, 

which can be combined with the value ofBe derived in Sec. 
IV to obtain the asymmetry factor defined by” 

A = ps + 1,/2 - 1. 
The asymmetry factor is a measure of the outward shift of 
the flux surfaces that results when the pinch is bent into a 
toroid. Experimentally, A is found to be close to zero in RFP 
devices. ‘*-I5 

FIG. 1. Contours ofconstant asymmetry factor A in F-0 spaceas predicted 
by the modified polynomial function model. 

A= [48F*f 132F- 180+8@,/(6-6F)(3-2F) 

+- 3102],‘12002, 

Contours of constant A in F-0 space are shown in Fig. 1. 

Ill. EXPERlMENTAL COMPARISONS 
The equilibrium magnetic field profiles have been mea- 

sured on many RFP devices.*-’ On the MST device at the 
University of Wisconsin,‘6 insertable magnetic probes with 
multiple coils measuring magnetic field in three orthogonal 
directions have been used to study the magnetic held evolu- 
tion and the magnetic-ffuctuation-induced transport. To 
compare with the MPFM, measurements of the magnetic 
field profile were made by moving the coils to different posi- 
tions across the outer part of the plasma minor radius, The 
signals obtained from the coils were then processed through 
analog integrators to obtain the magnetic field at each posi- 
tion. 

The probes consisted of six coils (two for each orienta- 
tion) made from copper wires and mounted on thin stainless 
steel tubing and inserted into either graphite or boron nitride 
shields with an outer diameter of I.5 cm. The shields protect 
the coils from overheating by the plasma heat flux. To mini- 
mize the error pickup field due to the plasma equilibrium 
outward shift, the probes were inserted horizontally. 

All the data were taken at low plasma current (Id - 200 
kA) because the high-current plasmas would generate a 
large heat flux and destroy the probes in a few shots. Even for 
the low-current cases the probes could only be inserted to 
about 15 cm from the wall (whose radius is at a = 52 cm) 
since either the plasma was significantly perturbed or the 
probes couId not survive the heat pulse. 

The data were digitized with LeCroy 82 10 digitizers at 
frequencies up to 200 kHz. The results shown in Fig. 2 were 
taken at the time of peak current and represent averages of 
several shots. The MPFM predictions are shown as solid 
curves and were calculated using the measured values of F 
and Q, and thus contain no adjustable parameters. 

A second point of comparison of the model with MST 
was made by Almagri ” who measured the asymmetry factor 
A using an array of 16 coils at the surface of the wall at a 
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FIG. 2. Magnetic field profiles measured in MST (crosses) compared with 
the predictions of the modified polynomial function model (solid curves). 

single toroidal azimuth but distributed around the poloidal 
circumference. The poloidal field at the wall was Fourier 
analyzed to obtain the m  = 1 component which is propor- 
tional to A. Fifty shots were taken over a range of 
1.7 < 0 < 2.1 (0 > F> - 0.37), and the inferred values of A 
fell in the range - 0.16 < A < 0. The values calculated by the 
MPFM were in agreement to within a standard deviation of 
Sh = + 0.02. 

IV. DERIVED QUANTITIES 
A crucial test of the model is whether the perpendicular 

diamagnetic currents are consistent according to j X B = Vp 
with the values of plasma pressure observed experimentally. 
In order to test this prediction, we define a volume-averaged 
pe in the customary manner, 

Be = Q-dp)/B~(a), 
and calculate its value as predicted by the MPFM: 

Be =--$&-ff~U& -j,B,Mrrdr, 
tl I 

with the result 
& = 1 - (9 - SF- F2)/5@. 

Thus each point in F-0 space has associated with it a  unique 
value of fib, as indicated in Fig. 3. The predicted beta values 
are consistent with the range of values observed in RFP ex- 
periments. Any attempt to infer the value of beta from an 
experimental F-O curve is unlikely to be successful since 
small profile changes effectively mask any changes in beta. 
In fact, it is fortuitous that the beta predicted by the model is 
positive; it could just have well been negative. In the case of 
MST, the predicted beta is about twice what is actually mea- 
sured, although there is considerable uncertainty since the 
experimental profiles are not accurately known. 

In similar fashion the total plasma energy can be calcu- 
lated, 

a  Up = h?R, 
ss 

‘Cj4Bs -j,B,)drrdr 
0  I 

to give 
U,, =  3R,Q”(5a2 - 9  +  8F+ F2)/10poa2. 

F o ____________-_-_-- 

-0.5 

-1 I I I \I \ 

0 0.5 1 1. 5 2 

Q  

FIG. 3. The F-0 plot for the modified polynomial function model at various 
valuesofp,, compared with the Bessel function model (BFM) and the poly- 
nomial function model (PFM ) 

Finally, the total magnetic energy is given by 

if,,, =kf% 
s 

’ B2(r)rdr, 
PO 0  

+ 8 a,/(6 - 6F)(3 - 20 + 310’1. 

which evaluates to 

U,” = R@2 ---[ 144 - 156F+ 72F2 
W w 2  

Contours of constant lJ, normalized to R,@‘/p,a2 are plot- 
ted in F-O space in Fig. 4. 

V. ELECTRICAL CIRCUIT PARAMETERS 
As a starting point for calculating the electrical circuit 

parameters for an RFP we consider the energy balance equa- 
tion, 

dun, V&I, + VJ, =-+POh, dt 

where the terms on the left-hand side can be thought of as the 
Poynting flux at the plasma surface produced, respectively, 
by the poloidal and toroidal field windings. This input power 

‘I o.51 k=& //A 

.,, 
I/ 

” ". 5 1 1.5 2 
-1 - 

0 

FIG. 4. Normalized contours of magnetic energy in F-0 space as predicted 
by the modified polynomial function model. 
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is distributed between increasing the stored magnetic energy 
and Ohmic power dissipation by the plasma. Other losses 
such as that required to magnetize the space external to the 
shell that surrounds the plasma and resistive heating of the 
liner are considered part of the external circuit. The magnet- 
ic energy U,,, is taken to be a function of I,, I@, and @, in 
terms of which F and 0 can be expressed as 

F = poa’r,/2R,+, 

0 = pu,aI,J2cD. 

Thus the rate of change of U,,, can be decomposed into three 
pam 

dUm aU, dr+ aUrn dr, au,,, d<p -=--+-- --* 
dt ar, dt a, dr 

+ 
aa dt 

Now we define a resistive voltage V, such that its product 
with the toroidal plasma current gives the Ohmic input pow- 
er, 

POh = v,r, = v,r, + v,r, - -, 
dt 

and define three new parameters L, A4, and A such that 

VI7 = v+ -z$+Aff$LA v,, 

where use has been made of the fact that V, = d@/dt. The 
three new parameters are given by 

r 1 aurn L=--, 
4 ah 

&f= -cum _ -z-r-t 1, dfe 
A=pum re ---. 

r+ a* rb 
These are the circuit parameters that are required to predict 
the behavior of an RFP when connected to an external cir- 
cuit. Their evaluation from the MPFM is straightforward 
but tedious: 

o.51 
0.4 - 

..L 
PO& I&'1 

0.2 - 

0.1 - 

0 I f I 
0 0. 5 1 1. 5 2 

e 

FIG. 5. Normalized self-inductance of an RFP plasma with fixed I,, and @. 

e 

FIG. 6. Normalized mutua1 inductance of an RFP plasma with fixed f, and 
Q. 

A=&- 2(6-SF) + 24- 13 
3 

R,F, 
1Oa (6-66F)(3-287 0 a@ 

These relations provide a practical means for calculating the 
resistive voltage and Ohmic input power to an RFP plasma 
whenever I*, IO% and Cp are changing in time. 

The plasma resistance given by R, = VR /r, can also be 
calculated in terms ofthe plasma resistivity 7, assuming neg- 
ligible conductivity perpendicular to B using the relation 

IiR, = 
s 

’ &iW2 - 4~‘R,r dr. 
0 B? 

If 7 is constant in space, the integral above has a unique value 
for the MPFM from which the resistance can be calculated 
as follows: 

R _ 4n”&rl 
s 

a 
P- 

tid, +j~&~2 rdr 
r,$ o B;+Bf, . 

5 

4 

3 
-!I- 

($1 
2 

1 

0 
0 0. 5 1 1. 5 2 

e 

FIG. 7. Normalized coupling coefficient of an RFP plasma with fixed I,, 
and I,. 
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FIG. 8. Normalized resistance ( V,/I,) of an RFP plasma with a spatially 
independent parallel resistivity 7. 

Unfortunately, the above expression does not seem to have a 
simple analytic representation, but the value of R, normal- 
ized to 2Roq/a2 (often called the “screw-up factor”) can be 
evaluated numerically. From its value, the average resistiv- 
ity 7 can be determined from experimentally measured 
quantities. Setting the measured value of v to the Spitzer 
value (with Z,, = 1) gives the conductivity temperature. 
Alternately, if the temperature is independently known, the 
calculation allows one to calculate Z,, or the resistance 
anomaly. Note that the screw-up factor is not zero at 0  = 0 
because of the nonuniform toroidal current density required 
to satisfy j(a) = 0. 

The circuit parameters are complicated functions of 
both Rand 0. Their values have been calculated versus 0 for 
various Be using the MPFM and the results plotted in Figs. 
5-8. The values have also been calculated along the F-0 
curve corresponding to the PFM, and for the range 1 < 0 < 2 

are found to fit within 2% the simple functions 

L z (0.297 + 0.0430&Ro, 
Mr (0.222 + 0.2460)/~~a, 

Ar(0.503 + l.O170)R,/a, 

R,, z2( - 0.685 + 2.8160)R,~/a2. 

VI. CIRCUIT MODELING 

An RFP plasma can be considered as a two-port electri- 
cal network in which the poloidal and toroidal field circuits 
are coupled nonlinearly through the plasma.6-8*‘8 In such a 
case the variables are I’,, I$, V, (or @) , and Ib). Thus four 
equations are needed to solve the system. Two of the equa- 
tions are provided by the external electrical circuits connect- 
ed to the windings. The third comes from the definition of 
VR and some assumption about the plasma resistivity, and 
the fourth can be deduced from the plasma energy balance 
equation, 

dup v, 
dt = I4 vR - -7 ’ 

with some assumption about the functional variation of en- 
ergy confinement time T  with the other parameters. To these 
one must add equations for any additional external electrical 
circuit components connected to the field windings. For any 
given case, the equations can be reduced to a system of first- 
order, ordinary, initial-value, differential equations that can 
be solved by any of the standard methods. 

As a specific example, consider a case in which V, and T  
are constants, the poloidal field circuit is connected at t = 0 
to a capacitor bank C, charged to voltage V,(O) and the 
toroidal field circuit is connected to a series inductor LT, 
resistor R T, and voltage source V, in which an initial cur- 
rent I0 (0) is flowing. The system of equations to be solved 
would then be 

dV, 4  
dr= --’ CP 
4 1  ---$=z Y,--Y,+Mf-$-A$ ( > ) 

da 
-z= 

-L,%-R&i VT, 

dr, (V, 
dt= 

-IoRT)(54@-241,L) +2OL(V,I, - U/,/T) - lS(V+ - V,&RG~, 
lS(AL, + M)I,R&o + 6I,L(L, - 4L,) + 6+(9L, + 4L) ’ 

I 
where L, A, M, and U, are given in terms of the four vari- instability if the solution is started exactly from such a vacu- 
ables for the MPFM by formulas previously derived. urn condition. 

Although the above equations are written with time de- 
rivatives on the right-hand side for simplicity, they can be VII. TIME-DEPENDENT SOLUTIONS -. - 
evaluated in an order such that only the values of the vari- The system of t ime-dependent equations above were 
ables need be known (for example, V,, I,, a, and finally I, ) . solved for parameters typical of the MST devicelh as it cur- 
In addition to V, (0) and I0 (0), two additional initial condi- rently operates. The device has a major radius of R, = 1.5 m  
tions must be specified. The usual initial conditions will be 0 and a minor radius of a  = 0.52 m. The poloidal field capaci- 
=0 [or I,(O) =0] and F= 1 [or Q(O) =,u,,~*1~(0)/ tor bank is represented by a one-turn equivalent capacitance 

2R,], although there may be some difficulty with numerical of 32.4 F, and it is typically charged initially to a one-turn 
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FIG. 9. Numerical solutions of the time-dependent MPFM circuit equa- 
tions for a case resembling the MST experiment (R,, = 1.5 m, Q = 0.52 m, 
C,=32.4F,Lr=0.1,uH,R,-=lO& V,.= -2V, V,=15V,and 
T= 1 msec). 

equivalent voltage of 180 V. The toroidal field circuit is as- 
sumed to be imperfectly crowbarred through a single-turn 
equivalent inductance of 0.1 ,uH with a resistance of 10 ,~a 
and a fixed externally applied voltage of VT = - 2 V. The 
plasma is assumed to have a resistance such that the resistive 
voltage V, is a constant 15 V, and the energy confinement 
time 7 is assumed to be a constant 1 msec. The other initial 
conditions were chosen to be I@ = 0.1 A, CD = 0.136 Wb, and 
I0 = 1.2 MA. The poloidal field circuit is passively crow- 
barred when I’, reaches zero. The resulting waveforms as 
shown in Fig. 9 agree well with typical MST discharges as 
reported elsewhere. ” 

VIII. LlNEAR STABILITY OF THE CIRCUIT EQUATIONS 
The circuit equations of Sec. VI consist of four, flrst- 

order, coupled, nonlinear, ordinary differential equations. 

Such a system presents the possibility of complex behavior 
including phenomena such as oscillations, instability, bifur- 
cations, and chaos. The equations have been subjected to a 
linear perturbation analysis about a time-independent equi- 
librium. To obtain a time-independent equilibrium solution, 
C, is set to infinity so that V, is constant. Each of the vari- 
ables is assumed to be given by the superposition of a con- 
stant (zeroth-order) term and a small (first-order), com- 
plex, oscillatory perturbation, as, for example, 

I ,$ = I@ + I,, e’“‘. 

The zeroth-order terms lead to a set of equilibrium equa- 
tions, 

v&j = VR, 
I#) = u,/v,r, 

I,, = VT/R., 

in which the fourth variable, <p,, can be chosen arbitrarily. 
The first-order terms lead to an algebraic equation for 

the complex frequency GI of the form 

- (20MV,7, - 3I,,LL, - 24L@,)L,rw” 

“f- cpob-, -t- r)MV, - 31,,LL, - 24LQG,] L, 

+ 4(61BoLL, + SAL, V,T, - 27LdD,)R.r>io 

+~[~~,,LL,+~(~,+T;?)AL,V, -27L@,,]R,=O, 

where several new variables have been defined: 

~l=3h&t?0~4vR~ 

rr! = 3(2L, -I- I)L,)L@dJS(AL, + M)L, V,, 

Lc = poa2/2R,, 
where L, is the internal inductance of the toroidal field cir- 
cuit in the absence of plasma. The above equation takes on a 
simpler form for the case of R T = 0: 

iur = 6(F2 + 8Ff 50’ - 9) 
200,(40, $310) [(F + 4)L, + (9 - 4F)L,] 

2@[ (5 -4&L, f (6 - 5flL,] + a,[ (13 - 12flL, + (24 - 23F)&] 

Although this equation is a complicated function of L,, 
F, and 0, for the experimentally interesting range ofparam- 
eters, it reduces approximately to 

ilw&J3 - 1. 

Thus one can see that for the usual case of p0 < I, perturba- 
tions exponentially damp in a time approximately equal to 
the energy confinement time r, and the equations have lin- 
early stable solutions, at least so long as V, and 7 are con- 
stant. 

Wb, 0 = 1.6 F = - 0.325, & = lo%, L, = 0.1 ,BH, V, 
= 25 V and r = 1 msec. With R, = 0, an exponential decay 

back to the equilibrium value is observed with a decay time 
within a few percent of the energy confinement time. With 
R, > 0, the perturbation still damps on the same time scale 
but with a real (oscillatory) part of frequency 

The analytical results above have been verified using a 
time-dependent numerical calculation to observe the decay 
of a small (5%) perturbation of @ about its equilibrium 
value. Parameters were chosen to be representative of an 
MST discharge: I+ = 350 kA, & = - 205 kA, Q, = 0.0715 

There are many other cases that could be examined in 
which, for example, VR and 7 are functions of Im and Up. A 
number of such cases have been studied numerically with a 
result that resembles that described above or perhaps a slow 
( > 50 msec) growth of the perturbation. This comment is 
not meant to exclude the possibility of cases in which inter- 
esting oscillatory or chaotic phenomena occur, but the var- 
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iety of possibilities is large, and some guidance is required 
from experiment or from further theoretical calculations. 

X. CONCLUSIONS 

The modified polynomial function model provides a 
reasonable representation of the magnetic fields in a re- 
versed-field pinch in terms of simple polynomial functions of 
the minor radius. The coefficients of the polynomial terms 
are functions only of the easily measured parameters F and 
0. The profiles agree well with experimental measurements 
on the MST device. 

From the model profiles, analytic expressions have been 
obtained for such quantities as magnetic field on axis, field- 
reversal radius, total plasma and magnetic energies, poloidal 
beta, and various electrical circuit parameters, all in terms of 
F and 0. The circuit parameters provide a means for calcu- 
lating the Ohmic input power, resistive voltage, and bulk 
plasma resistance from experimentally measured quantities 
when the plasma is not in a steady state. The circuit param- 
eters also allow one to predict experimental waveforms for 
an RFP plasma coupled through its poloidal and toroidal 
field windings to external electrical circuit components. The 
waveforms are found to agree well with those observed on 
the MST device. 

The linear stability of the electrical circuit equations has 
been examined. For a range of conditions typical of experi- 
mental operation, the equations are stable, and perturba- 
tions to the equilibrium damp on the time scale of the plasma 
energy confinement time. Thus nonstationary behavior such 
as sawtooth oscillations do not appear to result from the 
model. 
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