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Extraction of dynamical equations from chaotic data
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A method is described for extracting from a chaotic time series a system of equations whose solution reproduces the
general features of the original data even when these are contaminated with noise. The equations facilitate calculation of
fractal dimension, Lyapunov exponents and short-term predictions. The method is applied to data derived from numerical
solutions of the logistic equation, the Hénon equations with added noise, the Lorenz equations and the Rossler equations.

1. Introduction

In many fields of science one measures quan-
tities that fluctuate in time or space with no
discernible pattern. Examples include magnetic
and electric fields in plasmas, weather and
climatological data, variation of biological popu-
lations, and stock prices. It has been generally
assumed that such situations could be described
by a large number of deterministic equations or
by stochastic ones. More recently it has been
appreciated that ordinary, but nonlinear, dif-
ferential equations with as few as three degrees
of freedom or difference equations with a single
degree of freedom can have pseudo-random
(chaotic) solutions. This has led to the hope that
such simple systems can model the real world.

Ideally, one would like to be able to extract
the equations from a fluctuating time series. In
the absence of additional information, this goal
is unrealistic. The variable observed may not be
simply related to the fundamental dynamical
variables of the system. The measurement will
be contaminated by noise and round-off errors
and limited by sample rate and duration. How-

ever, it may be possible to find a system of
equations which mimic the general features such
as the topology in a suitable phase space, and
these equations might shed insight into the be-
havior of the system.

Here we present a method for extracting from
a fluctuating time series such a set of equations.
These model equations may be used to predict
not so much the details of the time evolution,
which is limited by sensitivity to initial conditions
in chaotic systems, but topological changes such
as the change of periodic behavior through a
series of period-doubling bifurcations. Further-
more, because the model equations provide in
principle an unlimited amount of data, the calcu-
lation of fractal dimension [1] and Lyapunov
exponents (2] is much simplified, although the
relationship between such calculated quantities
and the true values remains an intriguing and
open question. It is also much simpler to calcu-
late the Lyapunov exponents directly from the
equations rather than from the data [3, 4].

Of course there have been previous attempts
to extract from a time series a simple set of
coupled equations whose solution gives an ap-
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proximation in some sense to the original data.
Difference equations [5-7] corresponding to
maps, and differential equations [8-10] corre-
sponding to flows have been deduced. Although
the method described here has features common
to this earlier work, the novel element is the use
of singular value decomposition to choose the
appropriate dependent variables that appear in
the dynamical equations rather than just using
the data and its derivatives. An added advantage
of singular value decomposition is that it pro-
vides an efficient filter for the noise that is always
present in experimental data.

2. Numerical procedure

Until fairly recently the main method of analy-
sis has been to express the time series 7(¢) in a
set of Fourier modes. Then peaks in the associ-
ated power spectrum are identified with normal
modes of the system. This approach breaks down
if there is a large noisy contribution to the
measurement or if the underlying system cannot
be described in terms of a few modes.

An alternative is to use the method of singular
value decomposition [11, 12]. In this method
T(r) is expanded in a complete set of modes
,,(t), not necessarily Fourier modes, but a set
obtained from an analysis of the data rather than
imposed from outside. The modes are normal-
ized according to

N

1 < s
A=y 2 (=), (1)
where the original data are assumed given at
discrete times nr with 1<n<N. We then ap-

proximate 7T(t) by
T(0)= 2 4, (1), (2)

where the ¢,,’s are chosen to correspond to the d
largest values of A,,.

In practice, from the data T, (= T(¢ = nr)) one
constructs a set of M-dimensional vectors V, de-
fined such that V,={7,. 7, ,,...,T,,., ,} and
the auto-correlation function C(n) defined such
that

C(n)= 2 TT,., . (3)

Using these C(n)’s one constructs the symmetric
M X M correlation matrix M with elements
M,, = C(]l - p|). The eigenvalues of this matrix
are in fact just the normalization constants intro-
duced in eq. (1), that is A,,. The corresponding
eigenfunctions (e,,) of this matrix give the
modes 4, (t) according to ¢, (r=n1)=a, -V,.

Besides giving the best set of orthogonal
modes in the sense mentioned above, this met-
hod involves some smoothing of the original
data. A purely random time series gives C(n) =
(8, , so that all the eigenvalues are equal to C.

If when the data are analyzed a few eigen-
values are significantly larger than the rest, then
the corresponding ecigenfunctions are the ones
used in the approximate expansion for 7{(¢) in
€q. (2). The neglect of the rest has the effect of
removing some of the noise. This whole proce-
dure is analogous to identifying peaks in a
Fourier power spectrum. The partial removal of
noise by singular value decomposition has been
discussed in more detail by Broomhead and King
[11]. The choice of which of the eigenvalues are
significant is not always obvious, and a subjective
judgement has been used here. A more rigorous
procedure would follow the treatment of
Hediger et al. [13].

From a physical point of view the ¢, 's for
1=m =d can be interpreted as coherent struc-
tures revealed by the method of singular value
decomposition. Modern dynamical systems
theory suggests that even small values of d may
suffice to encapsulate the essential features of
the system. These features are perhaps best ap-
preciated by examining the d-dimensional phase
space constructed using the functions ¢,
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Y, ..., ¢, These topological features are the
same as those present using a phase space con-
structed using the V,’s since the V’s are linear
combinations of the ¢, ’s. Also, features that are
masked in the V phase space due to noise may be
revealed in the ¢ space since some of the noisy
component has been removed. The more subtle
point of whether a time series of a single variable
known just at discrete time intervals can capture
the full solution of the underlying problem which
exists in continuous time and involves many
independent variables has been considered by
Takens [14].

Using the d distinct ¢,,’s we construct a model
equation of the form

v = F.(0]) 4)

where ¢ =4 _(t=n7) and the F,’s are as yet
general functions of the ¢’s. Guided by the fact
that simple forms for the model functions F, are
sufficient to produce chaotic solutions we assume
that

d d
Fm(d’[) =y + 2 ampwp + qu bmpq(r[lpljlq

p=1
d

+ 2 iy, (5)
P.g.r
where the coefficients a, b, and ¢ are determined
by minimizing the variational function

1 < n+1 nyy12
In=§ Z W = F,0) (6)

for each value of m. If examination of the phase-
space portraits reveals any symmetry then this
should be incorporated into the structure of F,,.
Of course in some cases a simple polynomial
may not be the appropriate form for F,,. For
example if the phase-space plots reveal periodic
structure then the model functions F,, should be
chosen to capture such a structure. A suitable
choice of polynomial has been shown [15] to
model data arising from the presence of a limit

cycle. An F, expressed as the ratio of twc
polynomials may have a significantly wider range
of application than a simple polynomial since
one is then using the power of a Padé approxi-
mant [16].

The use of such rational functions has been
studied by Casdagli [5] and Gouesbet [10]. How-
ever, it is important to note that there is prob-
ably no universal panacea, and the form for the
model functions F,, should be chosen taking intc
account all available information about the sys-
tem. Computer software that carries out the
procedure described above as well as many other
tests for chaotic time series is available [17].

Singular value decomposition methods o1
equivalents have been used previously to obtair
model equations [18-20], but in those cases the
exact equations describing the system are as-
sumed known. The exact equations are ther
used to generate the model equations. Here we
only use the restricted information given by the
time series.

Experimental time series 7(¢f) can often bg
obtained for various values of some control par:
ameter u. Thus the ¢,.’s and F,’s are alsc
functions of u. Numerical simulations of equa:
tions such as those of Lorenz [21] and Rossler
[22] and the study of phase transformations using
phenomenological models such as the Landau-
Ginsburg equation give good reason to believe
that the dependence of the coefficients a, b, anc
c on u is simple.

3. Numerical examples

To illustrate some of the above techniques we
have studied a few selected model situations.

3.1. Logistic equation

First the logistic equation x,., = Ax, (1 —x,
has been iterated and x, identified with 7,. Fo
A =4 the solution is illustrated in fig. la. The
data have been analyzed using M =2, and the
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Fig. 1. Phase-space plots of the logistic equation (a) from
original data and (b) after singular value decomposition.

phase plane in fig. 1b constructed from the
model equations shows a single loop which is a
simple distortion of fig. la. This simple loop
structure still remains if larger values of M are
used and the number of model equations is taken
equal to M. Even without knowledge of the
original equations that generated the data the
method shows that a two-dimensional phase
plane is sufficient to model the data, and the
resulting equations can be linearly combined to
recover the logistic equation exactly.

3.2. Hénon equations

The Hénon map, x,.,=1-1.4x}+03y,,

¥,.; = X, has been treated in a similar manner.
The results in fig. 2 using M = 2 again show that
the model equations capture the essential fea-
tures of the solution, in this case a strange
attractor.

A time series of 2300 values was generated by
adding normally distributed deviates with zero
mean and standard deviation of 0.1. These data
for M =2 are shown in fig. 3a. Using these data,
two coupled model equations were obtained,
solved, and a new time series X, = | + ¢ gen-
erated. This is shown in fig. 3b and is indisting-
uishable from the Hénon map as given in fig. 2a.

In this case the reduction in noise is solely a

X(',‘
(a)
-2
-2 X(t-1) 2
: ]
PSig
(b)
-2
-2 PSit 2

Fig. 2. Phase-space plots of the Hénon map (a) from original
data and (b) after singular value decomposition.
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Fig. 3. Phase-space plots of the Hénon map (a) with noise
added and (b) from a solution of the model equations fit to
the noisy data. A comparison of (b) with fig. 2a shows that
the method has completely removed the noise and restored
the original data.

result of forcing the data to fit a relatively simple
set of equations since only a 2 X2 correlation
matrix was used and thus all the noise survives
the singular value decomposition. Such a method
should be used with caution since it tends to
simplify the dynamics of the system.

3.3. Lorenz equations

The Lorenz equations
dx/dt=o(y—x),
dy/dt=rx—y—xz,
dz/dt=xy — bz, )

with 0 =10, r=28, and b=8/3 were solved
numerically and 1000 values of x(¢) at r =0.05n
taken as the input time series. These data are
shown in fig. 4a. The neglect of the information
contained in the variables y(¢) and z(¢) mirrors
the experimental situation where only a limited
amount of information is available. The corre-
sponding phase space constructed using three

(@) X(t-1)

Xx(t)

X(t-2)

(b) PsI2 l

(c) iz |

I

3

PSI3

Fig. 4. Three-dimensional phase-space plots of the Lorenz
attractor showing that the topology of the attractor is pre-
served. (a) Original input data, (b) result of singular value
decomposition, and (c) solution of the model equations.
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eigenfunctions corresponding to the three largest
eigenvalues is shown in fig. 4b. This phase-space
plot is insensitive to the value of M. A model set
of three equations was then constructed using
the full cubic form of F given in eq. (5). Their
solution is shown in fig. 4c and is seen to capture
the essentials of the time behavior. The plots
obtained using the model equations are for a

(a) Xtt-1)

X(t)

X(t-2)

(b} 1z

) Fsiz

|

3

Fig. 5. Three-dimensional phase-space plots of the Rdssler
attractor showing that the topology of the attractor is pre-
served. (a) Original input data, (b) result of singular value
decomposition, and (c) solution of the model equations.

much longer time than the original data were
given.

The correlation dimension calculated using the
method of Grassberger and Proccacia [1] with
the original data set of 1000 points is 1.97 = 0.18,
and the value calculated from 13 000 values gen-
erated by solving the model equations is 2.10 =
0.10. This is to be compared with the accepted
value [1] of 2.05 = 0.01. It has been pointed out
by Ott et al. [23] that correlation dimensions are
not necessarily under coordinate
changes. However, in the present case, since the
s are just linear combinations of the T(n7)’s,
the correlation dimension must be invariant.

invariant

3.4. Rossler equations

A similar treatment has been applied to the
Rossler equations

dx/dt= —(y+ z),
dy/dt=x+ ay,
dz/dt=p+ z2(x —v), (8)

witha = 8 =1/5, y=5.7, and t = 0.2n. The cor-
responding results are shown in fig. 5. The corre-
lation dimension for this case calculated from the
original data set of 1000 points is 1.92 +0.08,
and the value calculated from 15000 values gen-
erated by solving the model equations is 1.94 *
0.08. The expected value is slightly greater than
2.0.

4. Sensitivity to parameters

This whole procedure has been carried out for
the Lorenz equations for a range of r values
between 25 and 90, and in particular the co-
efficients @, b, and ¢ appearing in eq. (5) were
evaluated as a function of r. The variation with s
of the coefficients of the largest nine terms i
shown in fig. 6a from which it is seen that the
variation is reasonably smooth. From the sym-
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Fig. 6. (a) Variation of the nine largest coefficients of the
model equations with the parameter r in the Lorenz equa-
tions, (b) along with a least squares fit of each coefficient to a
cubic polynomial in r.

metry of the Lorenz equations, the terms involv-
ing even powers of ¢ (a,,, and b, ) are neglig-
ibly small. Using the least squares method, the
cocfficients are readily fitted to simple polyno-
mials in r. A cubic fit as shown in fig. 6b is
sufficient.

One now has a set of dynamical equations of
the form given by egs. (4) and (5) where the
coefficients a, b, and ¢ are known in the form of
simple polynomials in the parameter r. It is on
this set of equations that one can base an inter-
polation or extrapolation procedure. By taking r
values other than those measured, and solving
the model equations, the behavior of the system

(a) P12

Fig. 7. Phase-space portraits for the Lorenz attractor with
r =57 (a) obtained directly from singular value decomposi-
tion, and (b) resulting from solution of the model equations
with coefficients calculated from least squares fits to cubic
polynomials in r.

can be predicted. This can be in the form of the
relevant phase-space plot or by using eq. (2) to
form x(t).

The phase-space portrait for » =57 obtained di-
rectly from the values of the ¢’s is shown in fig.
7a, while the form predicted using the above
procedure is shown in fig. 7b. The agreement is
good. Extrapolation outside the range of mea-
sured values should be applied with caution,
however, since the least squares method of fit-
ting curves to polynomials is not ideal.

5. Discussion
In the above method there are two quantities,

namely M, the order of the correlation matrix
and d, the number of significant eigenfunctions
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retained. These are to be considered as parame-
ters of the method which can be adjusted to
obtain the best fit between the real system under
investigation through the data 7(¢) and the solu-
tion of the model, eq. (4). Since we envisage
applying the method to situations where the
auto-correlation function shows little structure,
we hope the complicated time variation can be
attributed to the presence of a strange attractor.
Then the parameters M and d are chosen to
represent best the topological features of the
attractor.

An alternative approach would be to introduce
constraints into the quantity that is to be minim-
ized. For example, if it is apparent from the
phase-space plots that the phase portrait has
certain symmetry properties, then a term

A2 {,[(s + 1) Al — OF, [y,(s AN} (9)

could be added to eq. (6). Here O is the sym-
metry operator, and A is a Lagrangian multiplier.
Furthermore, one may impose a smoothness
condition on the fit by adding a term which
minimizes the average second derivative,

2 {F,[0(s AD] + F, (s —2) At
—2F, (s — 1) Ar]}. (10)

The Lagrangian multipliers can then be used to
get the best fit to the coefficients a, b, and c.
However, the results given here are optimized
only by changing M.

The results for the Lorenz and Rossler equa-
tions have been obtained using the value of x, at
only 1000 points. The phase-space portraits for
the model equations are shown for times longer
than a thousand time intervals, illustrating the
stability of the equations.

However, the coefficients in the model equa-
tions and hence the solution of these equations
depend sensitively on the order of the correla-
tion matrix M. Though the value of T(r) (that is
x) generated using eq. (2) with d =3 is in good

agreement (over the time where x(7) is given)
with the original data, the associated model
equations do not reconstruct the strange attrac-
tor. Usually after a short interval of time the
solutions tend to become infinite or attract to a
fixed point or limit cycle. There is an optimal
choice of M for the reconstruction of the attrac-
tor. It is reasonable to expect this value to be
associated with (a) the maximum difference be-
tween A; and the higher eigenvalues and (b) that
the elements C(n) used in the correlation mat-
rices span the region where the major variation
of C occurs. For the results presented in the case
of the Lorenz equation, a value of 9 has bcen
found to be appropriate, while for the Rossler
equation, because of the longer correlation time,
it was found optimal to make M = 16.

The relative ditficulty of finding chaotic solu-
tions to the model equations raises the more
general question of how common is chaos. A
numerical experiment was carried out in which
about 10° three-dimensional cubic maps of the
form given by eqs. (4) and (5) were iterated with
the 60 coefficients chosen randomly over a 60-
dimensional hypercube with cach side extending
from —1.2 to 1.2. Initial conditions were choscn
near the origin, and the Lyapunov exponent was
calculated for each case. About 99% of the
solutions were unstable. (This number increases
rapidly with the size of the hypercube.) Of the
roughly 10 000 stable solutions, which are candi-
dates for modeling bounded physical processcs,
about two-thirds attract to a fixed point and
about one-third are either limit cycles or two-
toruses. A small subset of about 4% are strange
attractors with positive Lyapunov exponents.

Thus we conclude that for the subset of phe-
nomena that can be represented by three-dimen-
sional cubic maps, nature is chaotic about 4% of
the time. There is some evidence to suggest that
the regions of parameter space corresponding to
chaotic motion are elongated. This means that as
long as the parameter change is along the direc-
tion of elongation the system has a degree of
robustness. The imposition of a symmetry re-
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quirement tends to elongate the chaotic region.
A by-product of this calculation was the genera-
tion of several hundred new examples of strange
attractors, no two of which look the same.

6. Conclusion

A method has been described for determining
a set of model equations from limited data whose
global solutions resemble those of the original
data. However, the method is not robust, and
the existence of a strange attractor depends sen-
sitively on the value of M. This sensitivity might
be reduced by a better choice of the variational
function.

Acknowledgements

One of us (G.R.) would like to acknowledge
fruitful discussion with J. Alex Thomson at an
early stage of this work and the hospitality of the
University of Wisconsin — Madison Physics De-
partment. This work was supported in part by
the US Department of Energy.

References

[1] P. Grassberger and I. Procaccia, Physica D 9 (1983) 189.

[2] A:M. Lyapunov, Ann. Math. Studies 17 (Princeton
Univ. Press, Princeton, NJ, 1949).

[3] G. Benettin, L. Galgani, A. Girogilli and J.-M. Strel-
cyn, Meccanica 15 (1980) 9.

[4] 1. Shimada and T. Nagashima, Prog. Theor. Phys. 61
(1979) 1605.

[5] M. Casdagli, Physica D 35 (1989) 335.

[6] J.D. Farmer and J.J. Sidorowich, Phys. Rev. Lett. 59
(1987) 845.

{7] J.P. Crutchfield and B.S. McNamara, Complex Systems
1 (1987) 417.

[8] N.H. Packard et al., Phys. Rev. Lett. 45 (1980) 712.

[9] J. Cremers and A. Hibler, Z. Naturforsch A 42 (1986)
797.

{10] G. Gouesbet. Phys. Rev. A 43 (1991) 5321.

{11} D.S. Broomhead and G.P. King, Physica D 20 (1986)
217.

{12] R. Vautard and M. Ghil, Physica D 35 (1989) 395.

{13] T. Hediger., A. Passamante and M.E. Farrell, Phys.
Rev. A 41 (1990) 5325.

{14} F. Takens, Detecting Strange Attractors in Turbulence,
Lecture Notes in Mathematics, D.A. Rand and L.-S.
Young, eds. (Springer, Berlin, 1981) p. 366.

[15] J.R. Rice, The Approximation of Functions, Vol. 1 and
2 (Addison—Wesley, Reading, MA, 1969).

[16] P.R. Graves-Morris, Padé Approximants and their Ap-
plication (Academic, New York, 1973).

[17] J.C. Sprott and G. Rowlands, Chaos Data Analyzer,
Physics Academic Software, Box 8202, North Carolina
State University. Raleigh, NC 27695.

[18] N. Aubry, P. Holmes, J.L. Lumley and E. Stone, J.
Fluid Mech. 192 (1988) 115.

[19] L. Sirovich and J.D. Rodriguez, Phys. Lett. A 120
(1987) 211.

[20] K.S. Ball, L. Sirovich and L.R. Keefe, Int. J. Num.
Methods Fluids 12 (1991) 585.

[21}] E.N. Lorenz, J. Atmos. Sci. 20 (1963) 130.

[22] O.E. Rossler, Phys. Lett. A 57 (1976) 397.

[23] E. Ott. W.D. Withers and J.A. Yorke, J. Stat. Phys. 36
(1984) 687.



