
Computers in Physics 
 
Simple Programs Create 3D Images
J. C. Sprott 
 
Citation: Computers in Physics 6, 132 (1992); doi: 10.1063/1.4823057 
View online: http://dx.doi.org/10.1063/1.4823057 
View Table of Contents: http://scitation.aip.org/content/aip/journal/cip/6/2?ver=pdfcov 
Published by the AIP Publishing 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

128.104.165.254 On: Tue, 25 Mar 2014 19:57:12

http://scitation.aip.org/content/aip/journal/cip?ver=pdfcov
http://scitation.aip.org/search?value1=J.+C.+Sprott&option1=author
http://scitation.aip.org/content/aip/journal/cip?ver=pdfcov
http://dx.doi.org/10.1063/1.4823057
http://scitation.aip.org/content/aip/journal/cip/6/2?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov


Simple Programs 
Create 3-D Images 
J. C. Sprott 

Static or animated two-color computer graphics provide a three­
dimensional effect when viewed through red/cyan glasses 

odern computers produce output in such 
abundance that for many problems the 
bottleneck in understanding lies in the 
graphical limitations of the computer 
screen, which is inherently two-dimension­
al. Most interesting calculations involve 

more than two variables, and the loss of information that 
results when only two of these are exhibited is enormous. 

A number of visualization techniques for capturing 
additional information are in widespread use. Color is 
commonly used to repesent an additional dimension. 
Animation is an especially appropriate method when one 
of the variables is time. Much progress has recently been 
made in improved rendering techniques to provide the 
illusion of depth through the use of ray tracing to produce 
realistic reflections and shadows. Objects can be displayed 
in perspective and rotated. In some cases, sound can be 
used to convey additional information. Many of these 
techniques can be used in combination. Most tax the 
memory and computation speed of desktop computers, 
and some are difficult to program. 

An alternative approach is the binocular stereogram, 
in which the parallax produced by separate images in each 
eye creates the illusion of depth. The concept dates back to 
Socrates in the 4th century BC, and the earliest 
stereograms were produced in the mid-1800s by Charles 
Wheatstone (with the mirror stereoscope) and David 
Brewster) (with the lenticular stereoscope), using spatial­
ly non-overlapping images viewed through appropriate 
optics. The inception of motion pictures in the early 1900s 
was accompanied by 3-D movies using overlapping red­
green images, which were viewed through red-green 
glasses to produce a black-and-white image in what is 
called the anaglyphic process.2

-4 Anaglyphs have also 
been widely used in comic books. Color 3-D movies using 

1. C. Sprott (sprott@juno.physics.wisc.edu) is a Professor of Physics at the 
University of Wisconsin - Madison and a specialist in plasma physics and 
nonlinear dynamics. His Chaos Demonstrations program was a winner in 
the first annual Computers in Physics software contest. 
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cross-polaroids were briefly popular in the 1950s. There 
has been a recent resurgence of interest in 3-D images 
using the alternating-field television process, in which left 
and right images flash alternately while viewed through 
synchronously-driven liquid-crystal shutter glasses. A 
number of other techniques, such as holography or the 
Pulfrich effect, offer promise for 3-D imaging in special 
applications. 

Of the various techniques, the anaglyphic process 
offers distinct advantages in computer visualization.5 The 
hardware requirements are minimal (a color monitor and 
a pair of 50¢ glasses6

), the programming is surprisingly 
simple, and the results can be impressive. The technique 
can be combined with animation, which greatly enhances 
its effectiveness. The main drawback is that the images 
produced are usually monochromatic, although a gray 
scale and some limited coloration is possible. What 
follows is a discussion of binocular stereopsis, an 
appropriate algorithm for adaptation to computer graph­
ics, and some examples. 

Binocular Stereopsis 
Our perception of depth arises from a number of 
psychological and physiological processes. 7 Many of these 
processes are induced by visual cues that do not depend on 
binocular vision, such as the relative size and motion of 
objects, interposition, illumination, shadows, and focal 
accommodation. Others require the parallax attendant on 
stereoscopic vision. When some of the usual visual cues 
are absent or contradictory, a conflict arises that demands 
time and effort for our brain to resolve. It is remarkable 
that with the single cue of binocular stereopsis, most 
people can quickly perceive a vivid three-dimensional 
image. This is fortunate, because it leads to a relatively 
straightforward computer implementation. 

Consider a point at a distance D from the midpoint of 
our eyes, which themselves are separated by the distance e 
(typically 6.5 cm), as shown in Fig. la. The point might 
be a single illuminated pixel on a computer screen. Each 
eye must swivel inward through an angle e in order for 
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the two images to fuse into a single point, where e is given 
by: 

e = tan -I (eI2D) . (1) 

It is this muscular response of the eyes that provides the 
brain with the relevant depth information. Normal eyes 
can comfortably accommodate values of e in the range of 
zero (an object at infinity) to about 10° (slightly cross­
eyed). 

Now suppose the observer is to perceive the point to 
be at a distance D - z (i.e., a distance z in front of the 
computer screen) as shown in Fig. lb. We must then plot 
two points on the computer screen separated horizontally 
by tu. From the similarity of the two triangles, we 
calculate 

ll.x=ezl (D-z). (2) 

The formula also works for negative z. This choice for the 
sign of z yields a right-handed coordinate system when x 
and yare in the plane of the screen with + y upward and 
+ x to the right. 

To achieve the proper perspective, we also need to 
arrange for the nearby (positive-z) points to be separated 
more than the far (negative-z) points. Fig. 1c shows that a 
point with coordinates (0, y, z) should actually be plotted 
on the computer screen at (0, y'), where it is assumed that 
the origin (x = y = 0) is at the center of the screen. From 
the similarity of triangles, we see that 

y' =Dyl (D-z). (3) 

For the x-coordinate, the transformation is similar: 

x' = (Dx ± ez/2) I (D - z) (4) 

where the ± refers to the different colors. 
Note that in the limit z«D the transformation 

reduces to 

y'=y 

x' = x ± ez/2D . 

(5) 
(6) 

This approximation introduces some expansion of the 
image for negative z (behind the screen) and compression 
of the image for positive z (in front of the screen). The 
compression is sometimes desirable so as to keep the 
image always in front of the viewer's face rather than to let 
it pass behind the head. Note that in this limit, the only 
relevant scaling parameter is the distance to the screen 
divided by the distance between the eyes (D Ie). For a 
computer screen viewed at arm's length, this parameter is, 
for most individuals, within a few percent of 10.0. In prac­
tice, the viewing distance is not very critica1. The 
perceived depth of the image is increased by viewing from 
a greater distance, but it usually takes longer for the brain 
to accommodate, and so it is often best to view first from 
close up. It sometimes speeds the adjustment to move the 
head from side to side. 

A computer display optimized for viewing at arm's 
length is actually very effective when projected on a large 

screen and viewed in an auditorium. Were this not the 
case, 3-D movies could not be shown to theater audiences. 
This result seems to contradict the unique dependence on 
the parameter Die. In such a case, the brain perceives a 
scaled version of the image at a shorter distance. The same 
effect occurs when viewing 2-D movies. The actors are not 
perceived as giants at a large distance from the viewer. 
Similarly, the brain is able to compensate almost without 
limit for other distortions if the objects are familiar. A 
movie viewed from the right-most seat in the front row ap­
pears normal after a brief period of adjustment. 

(a) 

e 

(b) 

e 

D (c) 

Fig. 1: (a) When viewing a point on a computer screen a distance D away, 
each eye toes-in by an angle 9; (b) in order for a point to appear to be at a 
distance z in front of the computer screen, the eyes must see two points 
on the screen separated by a distance 4x; (c) objects that are to appear a 
distance z closer than the distance D to the computer screen are plotted 
not at their position y, but at position y'. 
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Box 1. BASIC code draws the anaglyph of two parallel lines 
shown in Fig. 2. 

10 lID! PARAILEL LINES 
20 scm:EN 12 
30 WINlXM (-1, -1)-(1, 1) 
40 0 - 5 
50 E m .5 
60WH - 15 
70 IlK = 8 
80RD = 12 
90 C'l = 11 
100 PAINI' (0, 0), WH 
110 'i - -1: Z - 0 
120 or = .01 
130 WHIIE INKE'i$ = no, 
140 X = -1: a:>sUB 200 
150 X = 1: a:>sUB 200 
160 'i = 'i + or I 10 
170 Z = Z - or 
180 WEND 
190 END 

'assume VG7\ grapuCS JOOde 
'define screen coordinates 
'distance fran screen 
'ete separatioo 
'white color 
'black color 
'red color 
'cyan color 
'paint the screen white 
'Wtial values 
'step size 
'test keyboard 
'left line 
'right line 
'in:::rement positioo 

'l~ while ro key is pressed 

200 lID! RlUl'INE mAT PlDl'S RID AND CYAN roINTS 'ro FUSE AT (X, 'i, Z) 
210 'iF = 0 * 'i I (0 - Z) 
220 XP = (0 * X - E * Z I 2) I (0 - Z) 
230 P = roIm'(XP, 'iF) 
240 IF P = WH 'llIDI PSEI' (XP, 'iF), RD ELSE IF P = C'l 'llIDI 

250 XP = (0 * X + E * Z I 2) I (0 - Z) 
260 P = POIm'(XP, 'iF) 

PSEI' (XP, 'iF), IlK 

270 IF P = WH 'llIDI PSEI' (XP, 'iF), C'l ELSE IF P = RD 1HEN 
PSEI' (XP, 'iF), IlK 

280 REruRN 

It is important to maintain a somewhat limited depth 
and field of view. Leonardo da Vinci recommended that a 
painting be viewed from an optimal distance equal to three 
times its width. Most computer screens satisfy this 
criterion, approximately at least, when viewed at arm's 
length. An object as deep as it is wide will thus require that 
the two images be separated by up to ± 1 cm, causing the 
eyes to toe-in by about 3 ± 0.5 degrees. 

The computational task, therefore, is to plot each 
point that makes up the object twice, with a horizontal 

f 

f 

separation related to the distance at which that point is to 
appear in front of or behind the screen, and to arrange that 
one set of points be visible only to the left eye and the other 
only to the right eye. In the anaglyphic process, this is 
done by plotting one set of points in red and the other in 
the complementary cyan (blue-green), and viewing them 
through appropriate color-filtered glasses. By convention, 
the left eye should respond only to red and the right eye 
only to cyan. Note that individuals who are color blind 
should encounter no difficulty since it is unnecessary (and 
indeed undesirable) to perceive the individual colors; it is 
only necessary that the eyes be sensitive to them. Certain 
other eye defects, particularly those resulting in ocular 
asymmetry, are more problematic. 

One has the choice of plotting the points on either a 
black or a white background. With a black background, 
the images fuse into white (additive process); with a white 
background, the images fuse into black (subtractive 
process). The sense of z is reversed with the choice of 
background. With a black background, the red is seen 
through the red filter on the left eye, while for a white 
background, red is seen through the cyan filter on the 
right eye. In practice, the white background is usually 
more satisfactory. Wherever a red and cyan point overlap, 
they should be plotted as a single black point if the 
background is white, or as a single white point if the 
background is black. 

Because of the large variation of computer monitor 
colors and spectacle filters, ghost images are common. 
Manipulation of the computer color palette is of limited 
use, because the monitor ultimately constructs its colors 
from three distinct phosphors (red, green, and blue) . The 
usual problem is inadequate rejection of the green by the 
red filter, resulting in a red ghost image when viewed 
against a white background. Suppression of the green by 
using only red and blue on a magenta background 

'. 

\. 

Fig. 2: Two parallel lines stretch to infinity in anaglyphic representation. 
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eliminates this problem, but yields poor contrast of the 
resulting image. The more expensive plastic frame glasses 
tend to have better filters than the cheaper cardboard 
frame types. In some cases, the ghost images can be 
suppressed by viewing through multiple pairs of glasses. 

Some individuals experience inordinate difficulty 
acclimating to stereograms. A number of things can be 
done to ease the adjustment. One should first practice 

separated by a distance equal to the eye separation. This 
will of course depend on the size of the monitor in use. It 
may be necessary to alter E in line 50 to obtain the correct 
separation at infinity, and then to change D in line 40 so 
that the ratio D / E is equal to the viewing distance divided 
by the eye separation. 

With EGA graphics, it is necessary to change 
SCREEN 12 in line 10 to SCREEN 9. Users with CGA 

Fig. 3: An object executes a random walk on a sphere in anaglyphic representation. 

looking at familiar objects such as cubes and spheres. The 
objects should be relatively small and of limited depth, 
and they should initially be viewed close-up. Animated 
rotation helps immensely. It also helps to frame the 
picture with lines perceived to be in the plane of the 
screen, or to draw axes which bisect the picture vertically 
and/or horizontally. With some images which use only 
binocular cues, it is helpful to reverse the glasses (red over 
right eye), which reverses the sense of the z-axis. 

Computer Algorithm 
A simple computer code that implements the above ideas 
is given in Box 1. It is written in BASIC, and assumes an 
MS-DOS machine with VGA graphics. It should run 
without modification under TurboBASIC, PowerBASIC, 
QuickBASIC, or the QBASIC interpreter included with 
MS-DOS 5.0. BASIC was chosen to make the code widely 
accessible and to facilitate translation to other languages. 
The program draws two parallel lines that vanish in the 
distance like a pair of railroad tracks. The result of the cal­
culation is shown in Fig. 2. This case is visually 
demanding because of its extreme depth. It is especially 
important in this case that the eyes be accurately 
horizontal. 

Without the glasses, one should confirm that the red 
and cyan lines converge on points that are horizontally 

graphics, or who have only the primitive BASIC 
interpreter provided with earlier versions of MS-DOS 
(BASICA or GW-BASIC), will need to use SCREEN I 
and change the colors to WH = 3, BK = 0, RD = 2, and 
CY = 1. The CGA color palette is rather limited, and the 
resolution is poor, but a vivid 3-D image should be 
observable. 

Box 2. Change in the code of Box 1 plots a random walk on a 
sphere as shown in Fig. 3. 

10 REM RANI:lCM WAIl< ON A SPIIERE 
20 SCREEN 12 'assume ~ graIirics I1Dde 
30 WINIXM (-2, -1.5) -(2, 1.5) 'define screen cooxdinates 
40 0 - 10 'distance fran screen 
50 E - 1 'eye separation 
60 WI{ - 15 'white oolor 
70 BK = 8 'black oolor 
80 RD = 12 'red color 
90 C'i = 11 'cyan color 
100 PADfl' (0, 0), WI{ 'paint the screen white 
110 PH = 1: TIl = 0 'initial values 
120 or - .01 'step size 
130 WHILE INKE'i$ = .... 'test keyboard 
140 PH = PH + (RNO - .5) * or 
150 TIl = TIl + (RNO - .5) * or / SIN(PH) 
160 X = SIN(PH) * ms(TIl): Y = SIN (PH) * SIN(TIl): Z - CXlS(PH) 
170 ClOSUB 200 
180 WEND 'locp while no key is pressed 
190 rno 
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Fig. 4: Windings with an irrational winding number cover a toroidal surface in anaglyphic representation. 

Macintosh users should note that the red and cyan in­
cluded in the eight default QuickDraw colors are not pure 
(they don't add to white). The colors were adjusted to 
match the colors produced on the ImageWriter II printer, 
and thus they produce objectionable ghost images. 
However, a table of color values is located at an address, 
the pointer for which is stored in the global variable 
QDColors at $8BO. The red and cyan can be made pure 
with the BASIC statement 

Q& = PEEKL(&H8BO): POKEL Q& + 26,&HFFFF: POKEL Q& 

+ 28,0: POKEL Q& + 30,0: 

POKEL Q& + 34,0: POKEL Q& + 36,&HFFFF: 

POKEL Q& + 38,&HFFFF 

Examples 
The techniques outlined above can be extended to a 
number of more interesting and visually attractive 
examples. Four such cases are described below. 

Random Walk on a Sphere 
To test the accuracy of the method as a visualization tool, 
it is best to use a familiar example so that any distortions 
introduced by the process are readily apparent. For this 
purpose a sphere is appropriate, and a random walk on its 
surface is chosen for programming simplicity. The 
position on a unity-radius sphere is specified in spherical 
coordinates by two angles 9 and <p for which the cartesian 
coordinates are 

x = sin rp cos 9 

y = sin rp sin 9 

z=cosrp. 
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(7) 

(8) 

(9) 

Box 3. Change in the code of Box 1 plots the torus windings 
shown in Fig. 4. 

10 REM 'IORUS WINDINGS 
20 SCREEN 12 'assume VGA graprics D<Jde 
30 WINllCM (-2, - 1.5)-(2, 1.5) 'define screen coordinates 
40 D ~ 10 'distance fran screen 
50 E ~ 1 'eye separation 
60 WH ~ 15 'white Ollar 
70 BK ~ 8 'black Ollar 
80 RD ~ 12 'red Oller 
90 C'{ ~ 11 'cyan Ollar 
100 PAIN!' (0, 0), WH 'paint the screen white 
110 A ~ .618034: T ; 0 'initial values 
120 or = .005 'step size 
130 WHILE INl<EI!$ = "" 'test keyboard 
140 X ~ (1 + .5 * CXlS(T» * CXlS(A * T) 
150 Y ~ (1 + .5 * CXlS(T» * SIN(A * T) 
160 Z ; .5 * Srn(T): T ; T + or 
170 GOSIJB 200 
180 W<ND 'loop ;,hlle no key is pressEd 
190 DID 

The angles are iteratively advanced in steps given by 

6.rp = 6.t(r - 0.5) 

6.9 = 6.t(r - 0.5) / sin rp 

(10) 

(11 ) 

where r is a random deviate uniform over the range 0 to 1 
and 6.t is the iteration step size, which should be much less 
than 1 rad but not so small that the random walk is unac­
ceptably slow. The sin rp factor in Eq. (11) ensures that 
the east-west step size is on the average the same as the 
north-south step size. Code that implements this calcula­
tion is given in Box 2. A portion of the output is shown in 
Fig. 3. However, it is much more effective to see the 
trajectory evolve in real time than to view a still picture of 
the result. In either case, the object appears very nearly 
spherical, although a slight distortion results when the line 
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of sight is not perpendicular to the plane of the screen, in 
which case the sphere appears to be slightly ellipsoidal, 
elongated horizontally. 

Torul Windings 
A wire or magnetic field line that winds around the 
surface of a circular torus follows a trajectory given by 

x = (1 + € cos t) cos (at) 

y = (1 + € cos t) sin (at) 

z = €sin t 

(12) 

(13) 

(14) 

where € is the inverse aspect ratio of the torus and a is the 
winding number (the number oftimes the winding goes 
the long way around the torus for each time around the 
short way). Rational values of a cause the winding to close 

Box 4. Change in the code of Box 1 plots the Lorenz. attractor 
shown in Fig. 5. 

10 REM LORENZ ATl'RACltIR 
20 SCllEEN 12 'assume VGI\. graotIics mode 
30 WINIXM (-40, -30)-(40, 30) 'define screen OOOl.'tlinates 
40 D = 200 'd:istan:lE! frau screen 
50 E ~ 20 'eye separation 
60 WH = 15 '1Ohite oolor 
70 BK = 8 'black oolor 
80 RD = 12 're:l oolor 
90 Ci. - 11 'cyan oolor 
100 PAINI' (0, 0), WH 'paint the screen 10hite 
110 X = -2: Y = .3: Z = 24 'initial values 
120 or m .OOOS 'step size 
130 WHILE INKE'{$ = 1111 'test keyboard 
140 X = X - 10 • (X - Y) • or 
150 Y = Y + (28 * X - Y - X • Z) * or 
160 Z = Z + (X • Y - 8 * Z / 3) * or 
170 ~ 200 
180 WEND 'loq:> 10hile no key is pressed 
190 END 

Fig. 5: The Lorenz attractor provides a good example of the use of anaglyphic representation. 

on itself after a finite number of transits, and irrational 
values cause the winding to cover the surface of the torus 
densely. Code for calculating such a trajectory with 
a = ('\15 - 1) /2 (the inverse of the golden mean) is 
given in Box 3, and a portion of the output is illustrated in 
Fig. 4. 

Loranz AHractor 
A particularly useful application of the anaglyphic process 
is to view strange attractors and other chaotic trajectories. 
Strange attractors arising from differential equations 
always have dimension greater than two, and thus some 
enhanced visualization technique is required. One com­
mon method is to take a Poincare section in which some 
appropriate cross section of the attractor is plotted, 
reducing the dimension by one, but with significant loss of 

information. In a periodically driven system, successive 
Poincare sections can be taken at different phases of the 
drive and played back to produce an animation. However, 
considerable mental gymnastics are required to visualize 
the attractor, and the method fails when there is no 
periodic drive function. 

A prototypical example of a strange attractor results 
from a solution of the Lorenz equations8 

x' = a (y-x) 

y' = rx- y-xz 

z' =xy- bz 

(15) 

(16) 

(17) 

where the canonical values of a = 10, b = 8/3, and r = 28 
are taken to ensure chaotic behavior. The Lorenz 
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Fig. 6: The Rossler attractor provides another example of the usefulness of 
anaglyphic representation. 

Box 5. Change in the code of Box 1 plots the Rossler attractor 
shown in Fig. 6. 

10 REM R:JSSLER ATffiACIDR 
20 5alEElI 12 
30 WINIlCM (-16, -12) -(16, 12) 
40 0 = 80 
50 E = 8 
60WH =15 
70 8K = 8 
80 RD = 12 
90 C'f a 11 
100 PAINI' (0, 0), WH 
110 X = -9: Y = -.6: Z = 0 
120 or - .002 
130 WHILE INl<E'i$ = .... 
140 X = X - (Y + Z) * or 
150 Y = Y + IX + .2 * YJ * or 

'asstmle VGI'. gralirics mode 
'define screen ooordinates 
'cli.st.an:le fran screen 
'eye separation 
'white color 
'black color 
'red color 
'cyan color 
'pa.int the screen white 
'initial values 
'step size 
'test keyboard 

160 Z = Z + (.2 + Z * (X - 5.7» * or 
170 GOSUB 200 
180 WEND 
190 END 

'loop while no key is pressed 

equations were originally proposed as a crude model of 
atmospheric convection. The Lorenz attractor is a fractal 
with a Hausdorff dimension9 of 2.06 ± 0.01 embedded in 
a three-dimensional phase-space. The code for solving the 
above equations using a leap-frog scheme is shown in Box 
4. The leap-frog method is not particularly accurate for 
this problem, but it is simple to program, and it preserves 
the topological character of the solution provided the step 
size DT is sufficiently small. A plot of a portion of the so­
lution is shown in Fig. 5, but it is more effectively 
displayed in real time by choosing a value for DT that al­
lows the trajectory to evolve slowly for the particular 
computer used. 

Rassler Attractor 
A final example of a strange attractor is the Rossler 
attractor,1O which results from the solution of the 
following equations: 

x' = - (y+z) (18) 
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y'=x+ay (19) 

z' = b + z (x - c) . (20) 

The Rossler equations were proposed for pedagogical 
purposes in order to study the minimal requirements for 
chaotic behavior without any attempt to associate them 
with real physical systems. The equations are solved in 
Box 5 using the canonical values of a = b = 0.2 and 
c = 5.7, and a portion of the trajectory is shown in Fig. 6. 
Software that includes anaglyphic displays of the Lorenz 
and Rossler attractors and many other chaotic systems, as 
well as Poincare movies and other displays, is available. II 
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