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AUTOMATIC GENERATION OF STRANGE ATTRACTORS

J. C. SPrROTT
Department of Physics, University of Wisconsin, Madison, W1 53706

Abstract—A pair of coupled quadratic difference equations with randomly chosen coefficients is repeatedly
iterated by computer to produce a two-dimensional map. The map is tested for stability and sensitivity to
initial conditions. The process is repeated until a chaotic solution is found. In this way a computer can
generate a large collection of strange attractors that are all different, and most of which have considerable
aesthetic appeal. A simple computer program and examples of its output are provided. Many of the attractors
have been systematically evaluated for visual appeal, and a correlation is found with the Lyapunov exponent

and correlation dimension.

1. INTRODUCTION

Art and music derive much of their aesthetic appeal
from a juxtaposiiion of order and unpredictability. In
recent years it has come to be widely understood that
simple mathematical equations can have solutions that,
over the long term, are for all practical purposes un-
predictable. And yet the simplicity of the equations
ensures that the unpredictability is accompanied by a
degree of determinism and order. Such equations are
said to exhibit chaos[1], and their solutions usually
form a strange attractor[2]. A strange attractor is an
example of a fractal|{3], a geometrical object of non-
integer dimension and structure on all size scales, al-
though the structure in general is not self-similar.
Strange attractors are thus powerful generators of new
visual new art forms[4].

A single equation with different coefficients can pro-
duce an almost endless variety of strange attractors,
most of which have considerable beauty. Even simple
personal computers can easily generate these patterns.
The difhiculty is that no one knows how to predict the
conditions under which chaos will result, and thus the
same standard examples are generally exhibited.

Whereas most previous work in the production of
strange attractors starts with a system known to be
chaotic, this paper proposes a way for a computer to
search a large class of potentially chaotic equations for
visually interesting solutions. The visual appeal of the
resulting patterns is shown to correlate with mathe-
matical quantities that characterize the attractors, sug-
gesting that it might be possible to refine further the
automatic selection of patterns with strong visual ap-
peal.

2. TWO-DIMENSIONAL QUADRATIC MAPS

For a system to exhibit chaos, the governing equa-
tions must be nonlinear. A quadratic equation is per-
haps the simpliest such example. However, a single
equation in a single variable has solutions that lie along
segments of a curve and thus tend to be rather unin-
teresting. The graph of a quadratic equation is a pa-
rabola.

With a pair of equations involving two variables x
and y, the solutions are more interesting and are well
suited for display on a computer monitor or sheet of

paper. The simplest such example is the two-dimen-
sional quadratic map given in its most general form
by

— 2 2
Xn+1 = @1t Q2Xp + A3 X7+ QaXnYn + AsYs t Qe Vi

Y1 = Q7 + AgXn + Qo X7 + QioXnVu + A1 Yn + a123
The character of the solution is determined by the val-
ues of the twelve coefficients @, through a;, and the
initial values xp and y,.

With some initial value of xp and y, at n = 0, suc-
cessive values of x and y are determined by repeatedly
iterating the above equations. The iterates are plotted
as points on a two-dimensional surface. After a number
of iterations, the solution will do one of four things:
(a) It will converge to a single fixed point; (b) it will
take on a succession of values that eventually repeat,
producing a limit cycle; (¢) 1t will be unstable and di-
verge to infinity; (d) it will exhibit chaos and gradually
fill in some often complicated but bounded region of
the x-y plane.

The visually interesting solutions are the chaotic
ones. Most of these solutions are strange attractors in
that a range of starting values of x and y, within the
basin of attraction, yield the same eventual solution.
The first few iterates should be discarded, since they
almost certainly lie off the attractor. Occasionally so-
lutions are chaotic and visually appealing but are not
attractors since each pair of initial values produces a
different shape. The boundary of the basin of attraction
of a strange attractor may itself be a fractal.

3. SENSITIVITY TO INITIAL CONDITIONS

To search automatically for chaotic solutions, it is
necessary to have a criterion for detecting chaos. One
such criterion is the sensitivity to initial conditions.
Imagine iterating the two-dimensional quadratic map
described above with two initial conditions that differ
by a small amount. If successive iterates approach a
fixed point or limit cycle, the difference between the
two solutions will on average grow smaller with each
iteration. If the solution is unstable or chaotic, the dif-
ference will tend to grow larger with each iteration.
Unstable solutions can be eliminated by discarding
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Fig. 1. Examples of strange attractors produced by two-dimensional iterated quadratic maps.
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cases in which x or y grow beyond some arbitrary large
value such as 10°.

The difference between the two solutions initially
grows on average at an exponential rate for a chaotic
system. The rate of divergence is characterized by the
Lyapunov exponent[5], which can be thought of as
the power of 2 by which the separation increases on
average for each iteration. Thus, if the separation dou-
bles with each iteration, the Lyapunov exponent is 1
bit per iteration. The Lyapunov exponent can be
thought of as the rate at which information about the
initial condition is lost, or, equivalently, the rate at
which the accuracy of a prediction declines as one pro-
jects farther into the future.

A two-dimensional map actually has two Lyapunov
exponents, since a cluster of nearby initial points may
expand in one direction and contract in another,
stretching out like a cigar. The more positive one is
the one that signifies chaos, and it is the one that dom-
inates after a few iterations using the above proce-
dure[6]. It has been conjectured[7] that the fractal
dimension F is related to the two Lyapunov exponents
through the relation

F=1-1L1/L,
where L, is the more posiiive of the two exponents.

A further difficulty is that the two solutions even-
tually get far apart, on the order of the size of the at-
tractor, and the growth saturates. This problem can be
remedied if after each iteration the points are moved
back to their original separation along the direction of
the separation. The Lyapunov exponent is then deter-
mined by the average of the distance they must be
moved for each iteration in order to maintain a con-
stant separation. If the two cases are separated by a
distance d, afier the nth iteration and the separation
after the next iteration is d,., , the Lyapunov exponent
is determined from

L = X logy(dpsi/dy)/ N

where the sum is taken over all iterations from n = 0
to n = N — 1. After each iteration, the value of one of
the iterates is changed to make d,, ., = d,,. For the cases
here, d, is taken equal to 10 7%,

Calculation of the Lyapunov exponent is only one
possible way to identify chaotic attractors. One could
also visually inspect all the stable solutions or look for
cases with non-integer fractal dimension. Visual in-
spection is inefficient since only about 7% of the stable
solutions of the two-dimensional quadratic maps are
chaotic. Calculation of the fractal dimension is rela-
tively time-consuming, typically requiring several
thousand iterations. The Lyapunov dimension calcu-
lation is very fast and reliable. The exponential growth
of the separation ensures that for most cases only a
few iterations are required to determine the sign of the
largest exponent.
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4. COMPUTER SEARCH PROCEDURE

The procedure for implementing a computer search
for strange attractors is straightforward. Choose the 12
coefficients a, through a,;, randomly over some inter-
val, choose initial conditions x; and y,, iterate the
equations for the map while calculating the Lyapunov
exponent and checking for divergence, and keep only
those solutions that are bounded and have a positive
Lyapunov exponent.

A computer program* that repetitively performs
these operations is listed in the Appendix. It is written
in a primitive version of BASIC so as 1o be widely
accessible and easily understood. The program should
run without modification under Microsoft BASICA,
GW-BASIC, QBASIC, QuickBASIC, or Visual BASIC
for DOS, Borland International Turbo BASIC, and
Spectra Publishing PowerBASIC on IBM PC or com-
patibles. It assumes VGA (640 X 480 pixel ) graphics.
If the hardware or BASIC compiler do not support this
graphics mode, change the SCREEN 12 command line
130 to a lower number (ie., SCREEN 2 for CGA
mode). A compiled BASIC and a computer with a
math coprocessor are strongly recommended.

The coeflicients are chosen in increments of 0.1 over
the range —1.2 to 1.2 (25 possible values) in line 320
Smaller coefhicients result in missing many chaotic so-
lutions, and larger coeflicients produce mostly unstable
solutions. The increment was chosen so that each ar-
tractor is visibly different and coefficients can be coded
into letters of the alphabet 4 through Y (4 = - 1.2, B
= —1.1, erc.) for easy reference and replication. Thus
each attractor is uniquely identified by a 12-letter name.
The number of possible cases is thus 25'2 or about 6
X 10", Of these, approximately 1.6% are chaotic or
about 10" cases[8]. Viewing them all at a rate of one
per second would require over 30 million years! Thus
it is very unlikely that any patierns produced by the
program will ever have been seen before, and like
snowflakes, nearly ail of them are different.

Initial conditions are set arbitrarily to x = v = 0.05
in line 310. Other small initial values produce the same
result for most cases as expected for an attractor. The
Lyapunov exponent is calculated using an iniual con-
dition in which x is increased by 107 (line 310). The
program performs 100 iterations before considering,
the Lyapunov exponent (line 640). After 100 itera-
tions, the program begins keeping track of the mini-
mum and maximum values of x and y (lines 520-550)
so that after 1000 iterations the screen can be cleared
and resized to allow a 10% border around the attractor
(line 560). If 11,000 iterations are reached with a pos-
itive Lyapunov exponent and a bounded solution, the
result is assumed to be a strange attractor (line 620).
The search immediately resumes after each attractor

* An IBM DOS disk containing the BASIC source code in
the Appendix, an executable version of the code, and a more
versatile menu-driven strange attractor program with 3-D
glasses are available for $30 postpaid from the author. Specify
3.5 or 5.25-inch disk.
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is confirmed and continues until a key is pressed
(line 650).

The search procedure is surprisingly fast. On a 33
MHz 80486 computer running QuickBASIC 4.5, the
program finds about 1200 strange attractors per hour.
The listing in the Appendix only displays the attractors
on the screen. A more versatile program would call a
subroutine from line 620 to print the attractors, perhaps
after user confirmation or evaluation, or would save
the coded coefficients in a disk file for later analysis.

5. SAMPLE STRANGE ATTRACTORS

Figure 1 shows samples of the shapes that arise from
the iteration of such two-dimensional quadratic maps.
These cases are all strange attractors and were selected
for their beauty and diversity from a much larger col-
lection. However, they are by no means atypical, and
there are many others that would have served equally
well. It is remarkable that such a diversity of shapes
comes from the same simple set of equations with only
different numerical values of the coefficients.

The cases shown were produced on a laser printer
with 300 dots per inch resolution on an 8.5 X 11-inch
page after about 500,000 iterations. Of course, the pro-
gram needs modification to output the plots toa printer
at high resolution. However, satisfactory results can be
obtained by any of the various utilities that allow one
to print a screen image.

Also shown on each figure is the code name preceded
by the letter E to denote a two-dimensional quadratic
map, the Lyapunov exponent L (in bits per iteration)
and the fractal dimension F. F is actually the corre-
lation dimension[9] and is somewhat ill-defined be-
cause the dimension of a strange attractor varies some-
what with scale. The dimension is taken here at a scale
of about 1% of the largest diameter of the attractor.

Normalily, correlation dimension calculations are
very slow because they involve determining the spatial
separation between every pair of points that constitute
the attractor. A much faster technique that entails only
a slight loss in accuracy was used here. The method
requires that the coordinates of the last N iterates be
retained. A value of N = 500 is generally sufficient.
With each new iteration, one of the previous N points
is chosen randomly, and its separation from the new
point is calculated. A count is kept of those cases for
which the separation is less than each of two values,
which differ by a factor of 10, and whose geometric
mean is the size scale for which the dimension is to be
calculated. If the respective counts are N, (for the
smaller value) and N, (for the larger value), the cor-
relation dimension is given by

F = logjo(N2/Ny)

With little computational penalty, the value of F
can be updated whenever N, or N, is incremented.
The accuracy of the dimension estimate is of
order N7'/2,

6. AESTHETIC EVALUATION

A collection of about 7500 such attractors was sys-
tematically examined by the author and seven vol-
unteers, including two graduate art students, a former
art history major, three physics graduate students, and
a former mathematics major. All evaluators were born
and raised in the United States. The evaluations were
done by choosing attractors randomly from a collection
of about 18,000 and displaying them sequentially on
the computer screen without any indication of the
quantities that characterize them. The volunteers were
asked to evaluate each case on a scale of one to five
according to its aesthetic appeal. It only took a few
seconds for each evaluation.

At the end of the session a graph similar to Fig. 2
was produced in which the average rating is displayed
using a gray scale on a plot in which the largest Lya-
punov exponent (L) and correlation dimension (F)

- are the axes. The darkness of each box increases with

the average rating of those attractors whose values of
L and F fall within the box. Figure 2 shows a summary
of all the evaluations, although the cases examined by
the various individuals show a similar trend. In par-
ticular, all evaluators tended to prefer attractors with
a dimension between about 1.1 and 1.5 and a Lya-
punov exponent between zero and about 0.3. Some of
the most interesting cases have Lyapunov exponents
below about 0.1.

The dimension preference is perhaps not surprising
since many natural objects have dimensions in this
range. The Lyapunov exponent preference is harder
to understand, but it suggests that strongly chaotic sys-
tems are too unstructured to be appealing. For the 443
cases that were rated five (best) by the evaluators, the
average correlation dimension was F = 1.30 £+ 0.20,
and the average Lyapunov exponent was L = 0.21
+ 0.13 bits per iteration, where the errors represent
plus or minus one standard deviation. About 28% of
the cases evaluated fall within the error bars.

1 7588 Cases

F 2

Fig. 2. Results of evaluating 7500 strange attractors, showing

that the most visually appealing cases are those with small

Lyapunov exponents (L) and with correlation dimensions
( F) somewhat greater than one.
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Fig. 3. Examples of strange attractors produced by three-dimensional iterated quadratic maps in which the
color is determined by one of the variables.

7. SUGGESTIONS FOR FURTHER WORK

The method described above can be easily extended
in a number of ways[10]. There is nothing special about
two-dimensional quadratic maps, other than per-
haps simplicity and consequent computational speed.
There’s an infinity of other nonlinear maps and
flows. For example, Pickover has produced nice two-
dimensional sculptures using trigonometric maps[11].
It is straightforward to add cubic and higher order terms
to the equations. More complicated nonlinearities do
not significantly enhance the occurrence of chaotic so-
lutions, but they do somewhat increase the variety of

patterns. The number of coefficients increases rapidly
with the order of the polynomial, and the variety of
cases becomes even larger.

Having found a visually appealing attractor, one can
make small variations of the coefficients to optimize
even further its appearance. The attractors can be an-
imated by producing a succession of frames, each with
a slightly different value of one or more of the param-
eters.

Adding a third dimension (x, y, and z) increases
the number of coefficients to 30 for quadratic maps.
It also raises interesting possibilities for new display
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modes. The simplest case is to plot x and y, but to
ignore z, which is equivalent to viewing the projection
(or shadow) of the attracior on iiie X-y piane. Alter-
nately, the attractor can be projected onto the x-z or
y-z plane or rotated through an arbitrary angle. A gray
scale can be used 1o represent the nuinber of iterates
that fall within a given rectangle on the screen[12].

Another possibility is to code the third dimension
in color. Examples of three-dimensional quadratic
maps using 16 colors are shown in Fig. 3. These figures
were produced directly from: VGA screen images using
a color ink-jet printer. Some computer languages allow
one to cycle through a variety of color palettes to find
the most pleasing combination of colors or to produce
a kind of animated color display. Modern versions of
BASIC have such a PALETTE command.

It is also possible to produce an anaglyph[13] in
which each x-y value is plotted twice, once in red and
once in cyan, displaced horizontally by a distance pro-
portional to z so as to produce a three-dimensional
monochrome image when viewed through red/blue
glasses. Color three-dimensional images can be pro-
duced by plotting the two colored views side-by-side
and either viewing them cross-eyed or through an in-
expensive prism stereoscope.’

These techniques can also be applied to two- and
even_one-dimensional maps by using a previous value
of one of the variables as the third varable. The at-
tractors can be rotated to provide a view from the most
pleasing angle or animated wit: successively rotated
images.

Chaotic maps can also be used to produce a crude
kind of computer music. For a two-dimensional map,
x might be used to control the pitch and y the duration
of each note. The result is a not-displeasing though
alien-sounding form of music that might appeal to
those with exotic musical tastes.

The method described above can &lso be applied to
systems of nontinear ordinary differential equations
whose solutions are continuous flows rather than dis-
crete maps. In such a case, chaos requires at least three
equations and three variables. Differential equations
can be solved approximately on a digital computer by
reducing them to appropriate finite difference equa-
tions[14]. Long computing times are required for high
accuracy, which fortunately is not essential in this ap-
plication.

Plots of the basin of attraction for strange attractors
are sometimes very beautiful, especially when multiple
nearby attractors compete and produce a fractai
boundary. The popular Mandelbrot and Julia sets are
basins of attraction. It is traditional to plot in different
colors the number of iterations required for each un-
stable initial condition to reach some large value. Such
plots require a large amount of computer time, how-
ever,

1 Stereoscopes and other 3-D supplies are available from
Reel 3-D, P.O. Box 2368, Culver City, CA 90231.

Much more could be done with correlating the aes-
thetic appeal of the attractors with the various nu-
mericai quantiiies that characterize them. The Lya-
punov exponent and correlation dimension are oniy
two such quaniities; there are infinitely many oth-
ersi15]. One could determuing if There are Giscertivic
differences between the preferences of scientists and
artists. Preliminary indications soggest that complexity
might appeal more to artists than to scientists, whe
tend to see beauty in simplicity. There may be dis-
cernible cultural differences. One could deteraine
whether the results are the same for more complicated
systems of eqaations and for different methods of dis-
playing the results, such as color versus monochrome.

If such comelaiions exist, then ii shounld be passivie
to progyam the computer to bz even more SElective
and to become a critic of its own art[16]. Like the
infinite number of monkeys with an infinite number
of typewriters who will eventually reproduce ali the
works of Shakespeare, so tco the computer starting
with random numbers might evolve into something of
an artist with unparalieled stamina and productivity.
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APPENDIX

110 DEFDBL A-Z: DIM A (12)

120 RANDOMIZE TIMER

130 SCREEN 12

140 GOSUB 300

150 GOSUB 400

160 GOSUB 500

170 GOSUB 600

180 ON T% GOTO 130, 140, 150
190 END -

300 REM Set parameters
310 X = 05:Y =.05: XE = X +.000001: YE=Y

320 For1% = 1to 12: A(1%) = .1 # (INT(25 » RND) — 12): NEXT 1%

330 T% = 3: LSUM =0: N =0

340 XMIN = 1000000#: XMAX = ~XMIN: YMIN = XMIN: YMAX = XMAX

390 RETURN
400 REM Iterate equations

410 XNEW = A1)+ X *(A(2) + AB)* X + A4 *xY)+ Y * (A(5) + A(6) * Y)
420 YNEW = A(7) + X+ (AB) + A(9)* X + A(10) *x Y) + Y » (A(11) + A(12) * Y)

430 N=N+1
490 RETURN

500 REM Display results

510 IF N < 100 or N > 1000 THEN GOTO 560
520 IF X < XMIN THEN XMIN =X
530 IF X > XMAX THEN XMAX = X

540 IFY < YMIN THEN YMIN =Y

550 IFY > YMAX THEN YMAX =Y

560 IF N = 1000 THEN GOSUB 800

’Reseed random number generator
*Assume VGA graphics

’Set parameters

’Iterate equations

’Display results

*Test results

570 IF X > XL AND X < XH AND Y > YL AND Y‘< YH AND N > 1000 THEN PSET (X, Y)

590 RETURN

600 REM Test results

610 GOSUB 700

620 IF N > 11000 THEN T% = 2

630 IF ABS (XNEW) + ABS (YNEW) > 1000000# THEN T% = 2
640 1IF N > 100 AND L < .005 THEN T% = 2 '

650 1IF LEN(INKEYS$) THEN T% = 0

660 X = XNEW: Y = YNEW

690 RETURN

700 REM Calculate Lyapunov exponent

710 XSAVE = XNEW: YSAVE = YNEW: X = XE: Y =YE:N=N—1

720 GOSUB 400

*Calculate Lyapunov exponent
*Strange attractor found
*Unstable

*Limit cycle

*User key press

’Reiterate equations

730 DLX = XNEW — XSAVE: DLY = YNEW ~ YSAVE: DL2 = DLX * DLX + DLY » DLY

740 DF = 1000000000000% « DL2: RS = 1# / SQR (DF)

750 XE = XSAVE + RS * (XNEW — XSAVE) : YE = YSAVE + RS « (YNEW — YSAVE)

760 XNEW = XSAVE: YNEW = YSAVE
770 LSUM = LSUM + LOG(DF) : L = .721347 « LSUM / N
790 RETURN

800 REM Resize the screen (and discard the first thousand iterates)
810 DX =.1 * (XMAX — XMIN): DY = .1 * (YMAX — YMIN)

820 XL = XMIN — DX: XH = XMAX + DX: YL = YMIN ~ DY: YH = YMAX + DY

830 IF XH — XL < .00000! OR YH — YL < .000001 THEN GOTO 890

840 WINDOW (XL, YL) — (XH, YH): CLS
850 LINE(XL,YL)—-(XH, YH),,B
890 RETURN



