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Abstract 

The correlation dimension was calculated for a collection of 6080 strange attractors obtained numerically from low-degree 
polynomial, low-dimensional maps and flows. It was found that the average correlation dimension scales approximately as the 
square root of the dimension of the system with a surprisingly small variation. This result provides an estimate of the number of 
dynamical variables required to characterize an experiment in which a strange attractor has been found as well as an estimate of 
the dimension of attractors produced by chaotic systems in which the dimension of the state space is known. 

It has become fashionable to search for simple de- 
terminism (chaos) in fluctuating, non-periodic, ex- 
perimental data. This is often done by calculating the 
correlation dimension [ 1 ] from a time-series record 
using the method of time-delay reconstruction [ 2,3 ]. 
This method has been applied to systems as diverse 
as the stock market [ 4 ], sunspots [ 5 ], rainfall [ 6 ], 
electrocardiograms [ 7 ], electroencephalograms [ 8 ], 
and childhood epidemics [9]. Such studies are mo- 
tivated by the hope that a strange attractor with low 
fractional dimension will be found, in which case it 
might be possible to model the dynamics using a 
number of  variables as small as the next higher 
integer. 

It is useful to consider whether the dimension of 
an attractor provides any additional information 
about the dimension of the system that produced it. 
This paper addresses this question by calculating the 
distribution of correlation dimensions of  strange at- 
tractors produced by various systems of equations. 
This novel statistical approach should provide guid- 
ance in modeling chaotic data and in searching for 

low-dimensional attractors in systems whose state- 
space dimension is known. 

Consider first the case of general iterated N-th de- 
gree polynomial/)-dimensional maps given by 

D 

i = l  

D D 

+ ~.. Y" aa,,aX,,.Xj, .+ .... (1) 
i = i j = i  

The real coefficients ad, id,.., constitute a high-dimen- 
sional control space, some portion of which contains 
bounded solutions for initial conditions near the or- 
igin (X~,o = 0 for 1 ~< i ~< D). This subspace of bounded 
solutions contains candidate models for a wide vari- 
ety of physical processes. It has been shown [ 10 ] that 
the bounded solutions are clustered within a distance 
of order unity from the origin of  the control space, 
and that within this region, the fraction of chaotic so- 
lutions approaches an asymptotic value that depends 
weakly on N and more strongly on D. Furthermore, 
the chaotic solutions obtained by random choices of  
control parameters are nearly always visually distinct 
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strange attractors [ 11 ]. This technique thus provides 
a way of sampling the attractors that can arise from 
iterated polynomial maps and determining the distri- 
bution of their dimensions and other characteristics. 
To the extent that arbitrary rational functions can be 
Taylor expanded, polynomials model a wide range of 
physical phenomena. Furthermore, it will be shown 
that the results are not sensitive to the degree of the 
polynomial and that selected nonpolynomial forms 
give similar results. 

The numerical procedure consists of choosing val- 
ues of each control parameter randomly and uni- 
formly over the interval ( - a,~,, am~) and iterating 
Eq. ( 1 ) while testing the solution for boundedness 
( I X l < 1 0 6 )  and sensitivity to initial conditions 
(positive Lyapunov exponent [12,13]). Thus the 
control space is a hypercube with linear dimension 
2a,,,x centered on the origin and sampled uniformly 
over its hypervolume. The value of a~.~ was adjusted 
for each combination of D and N so that about 99% 
of the cases were unbounded. This criterion reduces 
the chance that the chaotic cases are somehow atypi- 
cal. For example, it has been shown [ 10] that this 
criterion is sufficient for a statistically valid measure 
of the fraction of bounded cases that exhibits chaos. 
Values ofamax ranged from about 13 at D =  1 to about 
0.5 at D=9.  

For those cases that were chaotic, the correlation 
dimension was calculated from the slope of the cor- 
relation integral using 105 points, each correlated with 
50 randomly chosen points from the previous 900 
[ 14 ]. The resulting 5 × 106 correlations are expected 
to provide an accurate measure of attractor dimen- 
sions up to about 3.4, which encompasses nearly all 
of the cases studied [ 15 ]. The slope was calculated at 
a scale on the order of 1% of the size of  the attractor 
(the two most distant points). The calculated corre- 
lation dimension is accurate to a few percent when 
applied to standard cases such as the Logistic [ 16 ], 
Hrnon [ 17 ], Lorenz [ 18 ], and RGssler [ 19 ] attrac- 
tors, and to data from a generator of  high-quality uni- 
form pseudorandom numbers. 

For a collection of 3840 chaotic maps equally dis- 
tributed over 24 combinations of l ~<D~< 5, 2~<N~ 5 
and 6 ~< D~< 9, N=  2, the average correlation dimen- 
sion was determined by multiple linear regression to 
fit approximately the function F ~  0.84D°'45N °°3. The 
dependence on N is weak and not statistically signif- 

icant. The dependence on D is consistent with the 
square root. 

The procedure described above was extended to 
systems of ordinary differential equations (ODEs) 
with dimension D and polynomial terms of degree N 
of the form 

D 

dXd/dt  = aa -b ~. aa, iXi 
i = 1  

D D 

+ '~. Y. aa,,jX, Xj+ .... (2) 
I = l j = l  

The equations were solved using a second-order 
Runge-Kutta technique [20] with a step size of  
~t = 0.1, and initial conditions X~= 0.05 for 1 ~ i ~ D. 
The statistical results are insensitive to initial condi- 
tions, although values too far from the origin de- 
crease the fraction of bounded solutions. A collection 
of 2240 chaotic flows equally distributed over 14 
combinations of  3~D~<5, 2~<N~<5 and 6~<D~<7, 
N = 2  were examined. Chaotic flows with D~<2 are 
precluded by the Poincarr-Bendixon theorem, which 
states that in two dimensions, the most complicated 
bounded trajectory is a limit cycle. The absence of 
chaotic solutions in a search of two-dimensional flows 
is a confirmation of the numerical criterion used to 
identify chaos. 

The correlation dimension fits the function 
F =  I. 13D °'3° N -o.o5. Again, the dependence on N is 
weak and not statistically significant, and the depen- 
dence on D is only slightly weaker than in the case of  
maps. The results for both maps and ODEs are sum- 
marized in Fig. 1 in which the N-dependence has been 
ignored and the error bars indicate _+ one standard 
deviation for each of the 3840 cases. Although the er- 
ror bars are large, they are sufficient to preclude, for 
example, a linear dependence of F on D at about a 
95% confidence level. Also note that the error bars 
represent a spread of dimensions about the average 
rather than an uncertainty in the determination of the 
average dimension, whose scaling is the subject of  this 
paper. 

A histogram was constructed of the relative prob- 
ability of  the correlation dimension normalized to the 
square root of the system dimension for all 6080 cha- 
otic cases, including both maps and flows. The result 
as shown in Fig. 2 is strongly peaked with a mean of 
about 0.81 and a standard deviation of 0.21. Perhaps 
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Fig. i. The averase correlation dimension of 6080 chaotic attractors scales approximately as the square root of the dimension of the 
system for low-order polynomial maps (O)  and flows ( × ). The error bars represent the spread in dimensions, not an uncertainty in the 
average values. 
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Fig. 2. The correlation dimension has a high pmhabLlity of a value about 0.81 times the square root of the dimension of the system. 
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even more remarkable is the almost total absence of 
attractors with correlation dimensions greater than 
about 1.3x/~. 

The probability distribution is so strongly peaked 
as to suggest that these attractors might in some sense 
all be the same attractor, perhaps transformed in some 
trivial way. This possibility seems unlikely since the 
various cases bear little visual resemblance to one an- 
other [21 ]. Furthermore, the Lyapunov exponents 
are much more uniformly distributed. The average 
value of the largest Lyapunov exponent for the maps 
scales as L ~  0.60D-~.24 N -o.o3 bits/iteration and for 
the flows scales as L=0.55D -°'s '  N L°~ bits/s. The 
dependence of Lyapunov exponent on N is weak for 
the maps, but not for the flows. Fig. 3 shows the Lya- 
punov exponent plotted versus D for the maps and 
ODEs with the N-dependence ignored. 

The spread in Lyapunov exponents is best illus- 
trated by plotting the probability of various combi- 
nations of L times D for the maps only. Such a plot is 
shown in Fig. 4. It is very weakly peaked with a mean 
of 0.45 bits/iteration and a standard deviation of 0.27 
bits/iteration. Contrast this result with the much 
more sharply peaked correlation dimension in Fig. 2. 
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It is interesting to ask whether these results apply 
to systems that are not polynomials or that have much 
higher dimensions. A selection of 480 three-dimen- 
sional systems involving absolute values, non-integer 
powers, and sine functions was examined, and the re- 
sults as shown in Table 1 are similar to the polynom- 
ial cases. 

Also shown in Table l are the values of  F / x / ~  for 
some standard chaotic systems. In addition to those 
previously mentioned, the list includes the Zaslov- 
skii map [22], the Kaplan-Yorke map [23] and the 
ODE systems of Rabinovich-Fabrikant [ 24 ] and of 
R6ssler hyperchaos [25]. The value of F for several 
of these cases is the Lyapunov dimension [26 ], which 
is technically an upper bound of the correlation di- 
mension [27] but for our purposes is indistinguish- 
able from it. 

High-dimensional numerical examples in which the 
attractor dimension has been accurately calculated are 
relatively rare. One particularly interesting case [ 28 ] 
is a heroic solution of the Navier Stokes equation for 
turbulent Poiseuille flow at a Reynolds number of 
3200, requiring 400 h of Cray 2 time. The infinite 
dimensional partial differential equation was ap- 
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Fig. 3. The average largest Lyapunov exponent of  6080 chaotic attractors scales approximately inversely with the dimension of the system 
for low-order polynomial maps ( O )  and flows ( × ). The error bars represent the spread in exponents, not an uncertainty in the average 
values. 
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Fig. 4. The average value of the largest Lyapunov exponent for chaotic maps has a relatively uniform probability when multiplied by the 
system dimension. 

Table 1 
Average correlation dimensions (F) of various D-dimensional chaotic systems 

System D F F / ~/-D 

polynomials I-9 0.81 + 0.21 
absolute values 3 I. I 0 0.64 + 0.24 
non-integer powers 3 1.40 0.80 + 0.24 
sines 3 1.43 0.83 + 0.27 
losistic map [ 16] 1 0.5-1 0.50-1.00 
H~'non map [ 17] 2 1.21 0.85 
Zaslovskii map [22] 2 1.38 0.98 
Kaplan-Yorke map 123 ] 2 1.43 1.0 i 
Lorenz attractor [ 18 ] 3 2.05 I. 18 
R6ssler attractor [ 19 ] 3 2.05 1.18 
Rabinovich-Fabrikant [24] 3 2.19 1.26 
R0ssler hyperchaos [25] 4 3.01 1.50 
Navier--Stokes equation [28] 6930 360 4.32 
earth's atmosphere [29] 1977 20-100 0.45-2.25 

p rox imated  by a system of  6930 ODEs, and the Lya- 
punov d imens ion  was es t imated to be about  360. 

High-dimensional  experimental  examples in which 
the a t t rac tor  d imens ion  has been accurately mea- 
sured are even more  rare. P ie r rehumber t  [29]  at- 
t empted  to es t imate  the correlat ion d imens ion  o f  the 

a tmospher ic  tempera ture  at the 500 mba r  level over  
a grid o f  1977 points  in the northern hemisphere  us- 
ing winter monthly averaged data  from the years 1950 
to 1980. He es t imated the correlat ion d imension  in 
this 1977-D embedding  to be in the range o f  20 to 
100. 
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It is remarkable  that  all of  these examples  have val- 
ues of  F/v/D of  order  unity. However,  it is certainly 
possible to construct  examples  in which F/v/D dif- 
fers significantly from unity. One can imagine a one- 
d imensional  chaotic system such as the logistic map 
coupled very weakly to a high-dimensional  non-cha- 
otic system, in which case F/x /~  could be made ar- 
bitrari ly small. At the other  extreme, a large collec- 
t ion of  chaotic at t ractors  can be weakly coupled to 
produce a system in which F/D is of  order  unity. Lor- 
enz has proposed and examined such a system [ 30 ]. 
Coupled lattice maps [ 31,32 ] consist ing of  logistic 
maps or  tent maps  as well as neural networks [ 33 ] 
are generally assumed to have fractal dimensions that 
scale linearly with the system dimension,  although 
recent calculations [ 34 ] using a modif ied  version of  
the Grassberger -Procacc ia  algori thm produce results 
that are equally consistent  with a square root 
dependence.  

Although the results presented here suggest that  a 
chaotic system with d imension  D will likely produce 
an a t t ractor  of  d imension  near  v/D, it does not logi- 
cally follow that an a t t ractor  o f  d imension  F most 
probably came from a system with d imension near 
F 2. A given system can produce many different at- 
t ractors as the control  parameters  are varied,  and the 
same at t ractor  can presumably be produced by more 
than one system of  equations.  However,  the est imate 
of  F 2 provides a reasonable start ing point  for mod-  
eling a natural  system whose dynamics  exhibit  a 
strange at t ractor  of  d imension  F. 

I am grateful to Wil l iam A. Brock for his interest  
in this topic and for many useful discussions. 

References 

[ ! ] P. Grassberger and I. Procaccia, Phys. Rev. Left. 50 ( ! 983 ) 
346. 

[2] N.H. Packard, J.P. Crutchfield, J.D. Farmer and R.S. Shaw, 
Phys. Rev. Left. 45 (1980) 712. 

[3] F. Takens, in: Lecture notes in mathematics, Vol. 898, eds. 
D.A. Rand and L.-S. Young (Springer, Berlin, 1981 ) p. 366. 

[4] W. Brock, D. Hsieh and B. LeBaron, Nonlinear dynamics, 
chaos, and instability: statistical theory and economic 
evidence (MIT Press, Cambridge, MA, 1991 ). 

[5] M.D. Mundt, W.B. Maguire and R.R.P. Chase, J. Geophys. 
Res. 96 (1991) 1705. 

[6] M.B. Sharifi, K.P. Georgakakos and I. Rodriguez-Iturbe, J. 
Atmos. Sci. 47 (1990) 888. 

[7 ] H. Zhang, A.V. Holden, M. Lab and M. Moutoussis, Physica 
D58 (1992) 489. 

[8] P.E. Rapp, 1.D. Zimmerman, A.M. Albano, G.C. Deguzman 
and N.N. Greenbaum, Phys. Left. A I l0 (1985) 335. 

[9 ] W.M. Schaffer, L.F. Olsen, G.L. Truty and S.L. Fulmer, in: 
The ubiquity of chaos, ed. S. Krasner (American Association 
for the Advancement of Science, Washington, DC, 1990) 
p. 138. 

[ 10] J.C. Sprott, Phys. Lett. A 173 (1993) 21. 
[ 11 ] J.C. Sprott, Comput. Graphics 17 (1993) 325. 
[ 12] A.M. Lyapunov, Ann. Math. Studies 17 (Princeton Univ. 

Press, Princeton, NJ, 1949). 
[13l G. Benettin, L. Galgani, A. Giorgilli and J. Strelcyn, 

Meccanica 15 ( 1980 ) 9. 
[ 14] W. Lauterborn and J. Holzfuss, Phys. Lett. A 115 (1986) 

369. 
[ 15] A.A. Tsonis, Chaos: from theory to applications (Plenum, 

New York, 1992 ). 
[ 16l R.N. May, Nature 261 (1976) 459. 
[ 17 ] M. H(~non, Commun. Math. Phys. 50 (1976) 69. 
[ 18] E.N. Lorenz, J. Atmos. Sci. 20 (1963) 130. 
[ 19] O.E. R6ssler, Phys. Lett. A 57 (1976) 397. 
[20] C.W. Gear, Numerical initial value problems in ordinary 

differential equations (Prentice-Hall, Englewood Cliffs, N J, 
1971). 

[21 ] J.C. Spron, Strange attractors: creating patterns in chaos 
(M&T Books, New York, 1993). 

[22l G.M. Zaslavskii, Phys. Len. A 69 (1978) 145. 
[23]J.L. Kaplan and J.A. Yorke, in: Functional differential 

equations and approximations of fixed points, eds. H.O. 
Pietgen and H.O. Walther (Springer, Berlin, 1979) p. 228. 

[24] M.I. Rabinovich and A.L. Fabrikant, Soy. Phys. JETP 50 
(1979) 311. 

[25] O.E. R6ssler, Phys. Left. A 71 (1979) 155. 
[26] D.A. Russell, J.D. Hanson and E. Ott, Phys. Rev. Lett. 45 

(1980) 1175. 
[27] P. Grassberger and I. Procaccia, Physica D 9 (1983) 189. 
[28 ] L. Keefe, P. Moin and J. Kim, in: The ubiquity of chaos, ed. 

S. Krasner (American Association for the Advancement of 
Science, Washington, DC, 1990) p. 56. 

[29] R.T. Pierrehumbert, in: Beyond belief: randomness and 
explanation in science, eds. J.L. Casti and A. Karlqvist (CRC 
Press, Boca Raton, FL, 1991 ) p. 110. 

[30] E.N. Lorenz, Nature 353 ( 1991 ) 241. 
[31 ] K. Kaneko, Physica D 34 (1989) I. 
[32] K. Kaneko, Prog. Theor. Phys. 72 (1984) 480. 
[33] M. Bauer and W. Martienssen, Europhys. Lett. 10 (1989) 

427. 
[ 34 ] M. Bauer, H. Heng and W. Martienssen, Phys. Rev. Lett. 71 

(1993) 521. 


