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Abstract—A set of affine mappings with randomly chosen coefficients is repeatedly iterated numerically
using the random iteration algorithm to produce an attractor with fractal characteristics. The attractor is
tested for boundedness, sensitivity to initial conditions, and correlation dimension. In this way, a computer
can generate a large collection of fractal patterns that are all different and most of which have considerable
aesthetic appeal. A simple computer program and examples of its output are provided. Many of the attractors
have been systematically evaluated for visual appeal, and a correlation is found with the Lyapunov exponent

and correlation dimension.

1. INTRODUCTION

In an earlier companion paper, “Automatic Generation
of Strange Attractors[1], a method was described in
which a system of coupled finite-difference equations
with randomly chosen coefficients was iterated nu-
merically and the solution tested for sensitivity to initial
conditions (chaos). This method provides a powerful
generator of new visual art forms and inspired a book
that includes over 350 examples of such computer
art[2]. This paper extends the technique to iterated
function systems[3]. Such systems were originally
studied by Hutchinson[4] and more recently applied
to data compression and transmission by Barnsley[5,
61, who also introduced much of the terminology and
the random iteration algorithm for their solution[7].

Whereas most previous work with iterated function
systems has involved producing patterns to match some
predetermined shape, this paper proposes a way for a
computer to search a large class of potentially inter-
esting mappings. The visual appeal of the patterns is
shown to correlate with mathematical quantities that
characterize them, such as the Lyapunov exponent[8]
and correlation dimension[9], suggesting that it might
be possible to refine further the automatic selection of
patterns with strong visual appeal.

2. TWO-DIMENSIONAL AFFINE MAPS
The simplest example of an iterated function system
is a set of two-dimensional affine maps:

Xpew = 41X + dpy + as

Vaew = A3X T aqy t+ ds

Such a mapping has a single fixed point (x*, y*) given
by

x* = [~as(as — 1) + aagl/l(a; — Waq — 1) — 23]
V¢ = [—aslay — 1) + asasi/[(ay — D aq — 1) — aqas]

This fixed point may either be stable (attracting) or
unstable (repelling). A stable fixed point attracts initial

conditions within its basin of attraction, which in this
case is the entire xy plane. With an unstable fixed point,
successive iterates grow ever larger, and the system is
unbounded. For simplicity, we consider saddle points
(attracting in one direction and repelling in another)
to be unstable, and we ignore periodic orbits, which
seldom occur.

With each iteration, such an affine map takes a set
of points in the xy plane and moves it to a new location
in the plane, generally with scaling, translation, rota-
tion, reflection, and shear. Stable solutions necessarily
scale in such a way that the area of the new set is less
than the area of the previous set, in which case we say
that the set has contracted. Continually contracting
mappings cause the set eventually to collapse into a
region of negligible area surrounding the fixed point,
and continually expanding mappings are unbounded.
The amount of area contraction is determined by the
magnitude of the determinant of the Jacobian matrix
(hereafter simply “Jacobian”) given by

J = |aas ~ azasl,

which is the ratio of the area after a contraction to the
area before. Thus the condition for contraction is J <
1. Note that area contraction does not guarantee
boundedness, since a set can continually contract in
one direction and expand in another, approaching a
thin filament of zero area and infinite length. We are
generalizing the usual contraction mapping in which
every pair of points is moved closer together by the
mapping.

Now suppose that there exists a second different af-
fine map,
= a7x + agy + a4y

Xnew

Yrew ™ oX + (4313 + a2

which is applied to the set after some finite number of
iterations of the first map. The result is to displace the
set of points away from the original fixed point toward
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which they were converging in the direction of a new
fixed point in discrete steps of ever smaller size. How-
ever, the progression toward the new fixed point need
not be along a straight line but rather can spiral around
it. Thus two attracting fixed points successively turned
on and off can compete for the set, producing a succes-
sion of points distributed over the xy plane in some
pattern. Each point in the pattern can be transformed
into another point in the pattern by some sequence of
the two affine mappings. The collection of all such
sequences is an iterated function system (IFS).

A practical method for producing iterated function
systems is the random iteration algorithm in which a
computer in essence repeatedly flips a coin and uses
one map if it comes up heads and the other if it comes
up tails. All possible sequences of heads and tails are
eventually obtained, and long sequences of all heads
or all tails, which would densely populate the regions
near the fixed points, are rare. The locations of the
fixed points are usually not obvious in such patterns.
The patterns evolve much more quickly and uniformly
if the coin is weighted so that the probability of applying
each mapping is proportional to its Jacobian. The
starting point can be chosen arbitrarily since the basin
of attraction is the entire xy plane. However, the first
few points should be discarded to ensure that the points
have collapsed onto the attractor.

The resulting pattern is usually a deterministic frac-
tal, despite being produced by a random algorithm.
Different sequences of random numbers will produce
the same eventual pattern. The pattern may have an
integer dimension, but in such cases the boundary
usually has a noninteger dimension. Although the at-
tractor is a fractal, it is not usually called a strange
attractor. That term is reserved for chaotic dynamical
systems. Affine mappings cannot exhibit chaos because
they lack the requisite nonlinearity.

3. SENSITIVITY TO INITIAL CONDITIONS

Like strange attractors, iterated function systems can
be categorized by their sensitivity to initial conditions.
Imagine two bounded iterated function systems pro-
duced by the same pair of affine maps but with initial
conditions that differ slightly. If the two are produced
by a different sequence of coin flips, the sequences of
(x, ) values would bear no relation to one another.
Indeed, this would be true even if they had the same
initial condition. Thus there is extreme sensitivity to
initial conditions resulting from the underlying ran-
domness used to produce the sequence. However, if
the same sequence of coin flips was used in the two
cases, successive iterates would approach one another,
implying insensitivity to initial conditions as expected
for a deterministic nonchaotic process.

The difference between the two solutions decreases
on average at an exponential rate. The rate of conver-
gence is characterized by the Lyapunov exponent[8],
which can be thought of as the power of 2 (or some-
times ¢) by which the separation increases on average
for each iteration. Thus if the separation halves with
each iteration, the Lyapunov exponent is —1 bit per
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iteration. The Lyapunov exponent can be thought of
as the rate at which information about the initial con-
dition is lost. A negative value means that information
is gained; with each iteration we are better able to pre-
dict the result.

A two-dimensional IFS has two Lyapunov exponents
since a cluster of nearby initial points may contract
more in one direction than in another[10]. The least
negative exponent is the one that dominates after a
few iterations using the above procedure. The sum of
the two Lyapunov exponents is related to the weighted
average Jacobian {J) of the maps by

Ly + L = logo(J)

One difficulty is that the two solutions eventually
get very close together, and the computer cannot re-
solve the difference. This problem can be remedied if
after each iteration the points are moved back to their
original separation along the direction of the separa-
tion[11]. The Lyapunov exponent is then determined
by the average of the distance they must be moved for
each iteration to maintain a constant separation. If the
two cases are separated by a distance d, after the n’th
iteration and the separation after the next iteration is
d,+1, the Lyapunov exponent is determined from

N~-1

L=~3 logdui/dy)

]\ n=0

where N is the number of iterations. After each itera-
tion, the value of one of the iterates is changed to make
d,., = d,. For the cases here, d, is arbitrarily taken
equal to 1072,

4. CORRELATION DIMENSION

The fractal patterns produced by iterated function
systems arise from repeated affine mappings that make
distorted copies of the pattern at successively smaller
scales. Because the copies are generally sheared, they
are not self-similar, but rather are self-affine. Further-
more, the mappings may overlap one another. There-
fore, calculation of the fractal dimension directly from
the equations is generally not straightforward.

1t is relatively easy to calculate from the series of (x,
y) values a related quantity, the correlation dimen-
sion[9]. It is defined. as the logarithmic slope of the
correlation integral C(r), which is the probability that
two randomly chosen points from the series are sep-
arated by a distance less than r, where

r=Vox, —x)? + i -y’

The correlation dimension is a lower bound on the
fractal dimension, but in practice it closely approxi-
mates it. The two are identical if the points are uni-
formly distributed over the attractor.

The correlation dimension can be calculated in real
time as the pattern develops by taking each new point
and calculating its separation from one or more ran-
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domly chosen previous points[12]. A counter N is in-
cremented if the separation is less than r;, and N, is
incremented if it is less than r,, where r; and r; are
chosen arbitrarily except that they should be much
smaller than the size of the attractor, but large enough
that N, and N, are statistically significant and r; < r,.
In this case the correlation dimension is

F = log(No/Np)/log(ra/r1)

with a statistical uncertainty of order Ny

5, COMPUTER SEARCH PROCEDURE

The procedure for implementing a computer search
for interesting iterated function systems is straightfor-
ward. Choose the 12 coeflicients a, through a,, ran-
domly over some interval, choose initial conditions
for x and y, and iterate the equations for the maps
(choosing randomly which mapping to use at each it-
eration) while calculating the Lyapunov exponent and
correlation dimension.

A computer program’ that repetitively performs
these operations is listed in the Appendix. It is written
in a primitive version of BASIC so as to be widely
accessible and easily understood. The program should
run without modification under Microsoft BASICA,
GW-BASIC, QBASIC, QuickBASIC, VisualBASIC for
MS-DOS, and PowerBASIC, Inc., PowerBASIC on
IBM PC or compatibles. It assumes VGA (640 X 480
pixel) graphics. If the hardware or BASIC compiler
does not support this graphics mode, change the
SCREEN 12 command in line 130 to a lower number
(i.e., SCREEN 2 for CGA mode). A compiled BASIC
and a computer with a math coprocessor are strongly
recommended.

The coefficients are chosen in increments of 0.1 over
the range —1.2 to 1.2 (25 possible values) in line 320.
Smaller coefficients produce too much contraction, and
larger coeflicients produce mostly unbounded solu-
tions. The increment was chosen so that each pattern
is visibly different and so that the coefficients can be
coded into letters of the alphabet A through Y (A =
—1.2, B = —1.1, etc.) for easy reference and replication.
Thus each pattern is uniquely identified by a 12-letter
name. The number of possible cases is thus 252 or
about 6 X 10'°. Viewing them all at a rate of one per
second would require about 2 billion years! Thus it is
very unlikely that any patterns produced by the pro-
gram will ever have been seen before, and like snow-
flakes, nearly all of them are different.

Initial conditions are set arbitrarily to x = y = 0.05
in line 310. Other nitial values produce the same result
as expected for an attractor. Some computation time
could be saved by choosing initial conditions at one
of the fixed points. The Lyapunov exponent is calcu-
lated using an initial condition in which x is increased

T An IBM DOS disk containing the BASIC source code in
the Appendix, an executable version of the code, and a more
versatile menu-driven strange attractor program with 3-D
glasses are available for $30 from the author. Specify 3.5 or
5.25-inch disk.
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by 107> (line 310). The correlation dimension calcu-
lation begins after 200 iterations (line 910) and com-
pares each new point with a randomly chosen previous
reference point that is updated on average every 50
iterations (line 930). The correlation dimension is cal-
culated at a scale of about 1% the largest dimension
of the attractor with r, = 10r; (line 960 and 970). After
100 iterations, the program begins keeping track of the
minimum and maximum values of x and y (lines 520~
550) so that after 1000 iterations the screen can be
cleared and resized to allow a 10% border around the
attractor (line 560). After 1000 iterations the program
begins testing the Lyapunov exponent and correlation
dimension for a user-supplied criterion (line 650) for
the case to be interesting. More will be said about such
criteria in Section 7. If 21,000 iterations are reached
with a bounded solution (line 630) and an acceptable
combination of L and F, the result is assumed to be
an interesting candidate IFS. The search immediately
resumes after each case is confirmed and continues
until a key is pressed (line 660).

The search procedure is surprisingly fast. On a 33-
MHz, 80486DX-computer running PowerBASIC 3.0,
the program finds about 600 interesting cases per hour.
The listing in the Appendix only displays the patterns
on the screen. A more versatile program would call a
subroutine from line 630 to print the patterns, perhaps
after user-confirmation or evaluation, or would save
the coded coefficients in a disk file for later analysis.

6. SAMPLE ITERATED FUNCTION SYSTEMS

Figure 1 shows samples of the shapes that arise from
the solution of such two-dimensional iterated function
systems. These cases were selected for their beauty and
diversity from a much larger collection. However, they
are not atypical, and there are many others that would
have served equally well. It is remarkable that such a
diversity of shapes comes from the same simple set of
linear equations with only different numerical values
of the coefficients.

The cases shown were produced on a laser printer
with 300 dots per inch resolution on an 8.5 X 11-inch
page after about 500,000 iterations. Of course, the pro-
gram needs modification to output the plots to a printer
at high resolution. However, satisfactory results can be
obtained by any of the various utilities that allow one
to print a screen image.

Also shown on each figure is the code name pre-
ceded by the letter a to denote a two-dimensional
IFS with two affine maps, the Lyapunov exponent
L (in bits per iteration), and the approximate cor-
relation dimension F.

7. AESTHETIC EVALUATION

A collection of 7500 such patterns was systematically
examined by the author. The evaluations were done
by displaying previously stored but unseen cases se-
quentially on the computer screen without any indi-
cation of the quantities that characterize them. Each
case was evaluated on a scale of one to five according
1o its aesthetic appeal. It only took a few seconds for
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AGNGUVETDSNWK ¥ = 1.95 L =-0.44 ACOHRHRNVFLNO F = 1.48 L =-0.47

aIFEROWOSTRQL F = 1.57 L =~0.37 21IDQIKFMHUSK F = 1.83 L ==0.4%

aTPUDITHVELQY Fo=1.13 L =-9.10 AKPOWQHMY ENWE

aRIPSVEHDYINR F=1.70 L ==0.07 AKWMRVRUCOWND F o= 1,10 L =~0.09

Fig. 1. Examples of iterated function systems produced by pairs of two-dimensional affine maps.
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ALGHRYBSCSSOR F=1.83 L --0.10 AMCGMGGIQORXH F = 1.08 L =-0.54

aNYDEQPKLOOKY F=1.73 L =-0.05 ARFUSTENLIVEN F~1.50 L =~0.16

aRIGIEDMIBONR Fo= 1,76 L =-0.54 aTLPVELMQEIFC Fo= 1.87 L ==0.47

ATTOUINMRLWBR Fe1.81 L =-6.05 aUIPUDROEPLEM F o= 1.74 L =-0.38

Fig. 1. (Cont’d.)
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each evaluation. Tests with other individuals show that
the relative ratings are reasonably consistent.

Figure 2 shows the results using a gray scale on a
plot in which the largest Lyapunov exponent (L) and
correlation dimension (F) are the axes. The darkness
of each box increases with the average rating of those
attractors whose values of L and F fall within the box.
There is a clear preference for patterns with correlation
dimensions greater than 1 and large negative Lyapunov
exponents. A similar result was found for strange at-
tractors[ 1, 2], except that they are most appealing when
their positive Lyapunov exponents are small.

The dimension preference is perhaps not surprising
since many natural objects have dimensions in this
range. The Lyapunov exponent preference is harder
to understand. For a given dimension, the largest neg-
ative values of Lyapunov exponent correspond to cases
in which the two exponents are equal, implying the
same contraction in all directions and perfect self-sim-
ilarity. The largest negative Lyapunov exponent and
fractal dimension are bounded by a curve

—FL < log O/log D

where O is the number of mappings (2 in this case)
and D is the dimension of the system of equations (2
in this case). Points on the boundary correspond to
exact self-similarity. For the 76 cases that were rated
five (best), the average correlation dimension was I' =
1.51 + 0.43, and the average Lyapunov exponent was
L = —0.24 + 0.15 bits per iteration, where the errors
represent plus or minus one standard deviation. About
31% of the cases evaluated fall within the error bars.
These results suggest that the computer can be taught
to select cases that have a high probability of aesthetic
appeal. Various criteria have been used for this purpose.
One such example is given in line 650 of the program

listing in the Appendix. Another criterion that has been
effective is

[(2 — F)/1.2]* + [(2 + Ljlog 0Y/1.6)* < 1,

which eliminates about 98% of the two-dimensional
cases. The 2% that remain are nearly all visually in-
teresting.

8. SUGGESTIONS FOR FURTHER WORK

The method described above can be easily extended
in a number of ways. There is nothing special about
two-dimensional pairs of affine maps other than per-
haps simplicity. This simplest case was chosen to em-
phasize the enormous diversity of patterns that can be
produced. It is straightforward to apply the technique
to cases with O > 2 and D > 2. The fraction of visually
interesting cases decreases with both O and D unless
some appropriate selection criterion is used. One could
also examine the infinite variety of nonlinear mappings.

The probabilities of the mappings can be altered to
change the density of points on various regions of the
attractor. The probabilities could be included among
the search parameters. Different probabilities do not
alter the final appearance of the pattern, but they can
significantly affect the early stages of its development.
The maximum number of iterations is another param-
eter that can be adjusted. The development of the pat-
tern is sensitive to the quality of the random numbers
used to produce itf13], suggesting a possible test to
distinguish chaos from randomness. Such tests have
been applied to the analysis of DNA sequences[14].

Having found a visually appealing IFS, one can make
small variations of the coefficients to optimize even
further its appearance. The attractors can be animated
by producing a succession of frames, each with a slightly
different value of one or more of the parameters.

-Z

T5HAA Cases

F =

Fig. 2. Results of evaluating 7500 iterated function systems, showing that the most visually appealing cases
are those with large negative Lyapunov exponents (L) and with correlation dimensions (F) greater than one.
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Three-dimensional iterated function systems can be

explored using mappings of the form

Xpew = 1X + @y + asz + ayp
Voew = aX + asy + asz + ay
= a7x + agy + asz + ap

Znew

with a Jacobian

J = |aasas + arasar + azauag

~ A3dsQ7 — Axdslo — dydelg |

eQMNPXNGDRRHGPHJOHNTBIHTL

Adding a third dimension raises interesting possi-
bilities for new display modes. The simplest case is to
plot x and y, but to ignore z, which is equivalent to
viewing the projection (or shadow) of the attractor on
the xy plane. Alternately, the attractor can be projected
onto the yz or zx plane or rotated through an arbitrary
angle. A gray scale can be used to represent the number
of iterates that fall on a given screen pixel[15], thereby
restoring some of the resolution lost by the finite res-
olution of the screen.

Another possibility is to code the third dimension
in color. Examples of three-dimensional iterated func-
tion systems using 16 colors are shown in Fig. 3. These

F=86.7 L =8.14

eSHHSSHGATHITRIMTBMNVGRIF

Fig. 3. Examples of iterated function systems produced by pairs of three-dimensional affine maps in which
the color is determined by one of the variables.
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figures were produced directly from VGA screen im-
ages using a color ink-jet printer. Some computer lan-
guages allow one to cycle through a variety of color
palettes to find the most pleasing combination of colors
or to produce an animated color display. Modern ver-
sions of BASIC have such a PALETTE command. In
Fig. 3 the palette was adjusted to provide a rainbow
sequence of colors.

It is also possible to produce an anaglyph[16] in
which each (x, ¥) value is plotted twice, once in red
and once in cyan, displaced horizontally by a distance
proportional to z to produce a three-dimensional
monochrome image when viewed through red/blue
glasses. Color three-dimensional images can be pro-
duced by plotting the two colored views side-by-side
and either viewing them cross-eyed or through an in-
expensive prism stereoscope.” The attractors can be
rotated to provide a view from the most pleasing angle
or animated with successively rotated images.

Three-dimensional attractors can also be displayed
using shadows to convey depth or contour bands as
with topographic maps. One can slice the attractor like
a loaf of bread and display the slices in an array or as
an animated sequence. Combinations of these tech-
niques permit visualization in dimensions higher than
three. The attractors can be projected onto spheres,
cylinders, tori, or other surfaces.

Iterated function systems can also be used to produce
a crude kind of computer music. For a two-dimensional
map, x might be used to control the pitch and p the
duration of each note. The result is a not-displeasing,
though alien-sounding, form of music that might ap-
peal to those with exotic musical tastes.

Much more could be done with correlating the aes-
thetic appeal of the attractors with the various nu-
merical quantities that characterize them. The Lya-
punov exponent and correlation dimension are only
two such quantities; there are infinitely many oth-
ers[17]. One could determine if there are discernible
differences between the preferences of scientists and
artists. Preliminary indications suggest that complexity
might appeal more to artists than to scientists, who
tend to see beauty in simplicity. There may be dis-
cernible cultural differences. One could determine
whether the results are the same for more complicated
systems of equations and for different methods of dis-
playing the results, such as color versus monochrome.

* Stereoscopes and other 3-D supplies are available from
Reel 3-D, P.O. Box 2368, Culver City, CA 90231.
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If quantifiable measures of aesthetics can be deduced
for patterns produced by a computer[ 18], then perhaps
the same could be done for patterns produced by hu-
mans. Fractal compression schemes attempt to rep-
resent arbitrary images by their IFS parameters. From
these parameters, many quantities such as the spectrum
of contractions can be easily deduced. It would make
an interesting study to determine whether there are
correlations between these quantities and the artistic
quality of the original image. Perhaps such schemes
could be used to detect forgeries if there are discernible
differences in the fractal characteristics of works by
various artists.
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APPENDIX

110 DEFDBL A-Z: DIM A(12)
120 RANDOMIZE TIMER

130 SCREEN 12

140 GOSUB 300

150 GOSUB 400

160 GOSUB 500

170 GOSUB 600

180 ON T% GOTO 130, 140, 150
190 END

'Assume VGA graphics
‘Set parameters

Tterate equations
Display results

"Test results

‘Reseed random number generator




300
310
320
330
340
350
360
370
380
390

400
410
420
430
490

500
510

530
540
550

570
590

600
610
620
630
640
650
660
670
690

700
710
720
730
740
750
760
770
790

800
810
820
830
840
850
890

* 900
910
920
930
940
950
960
970
990
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REM Set parameters
X =.05Y=.05XE=X+.000001:YE=Y
FOR 1% = 1 TO 12: A(I1%) = .1 * (INT(25 * RND) — 12): NEXT 1%
JO = ABS(A(1) * A(4) — A(2) * A(3))
J1 = ABS(A(7) * A(10) — A(B) * A(9))
IFJO+J1 =0O0RJ0O>10RIJI>1THEN GOTO 320 'Not contracting
P=J0/(J0+1
T% = 3:1SUM =0 N=1LNI=0N2=0
XMIN = 1000000#: XMAX = —XMIN: YMIN = XMIN: YMAX = XMAX
RETURN

REM lterate equations

IFX < > XETHEN IFRND > P THEN R% = 6 ELSER% =0
XNEW = A(l + R%)* X + A2+ R%)* Y + A(5 + R%)
YNEW = A3 + R%) * X + A(4 + R%) * Y + A(6 + R%)
RETURN

REM Display results
IF N < 100 OR N > 1000 THEN GOTO 560
IF X < XMIN THEN XMIN = X
IF X > XMAX THEN XMAX = X
IFY < YMIN THEN YMIN = Y
IFY > YMAX THEN YMAX =Y
IF N = 1000 THEN GOSUB 800

IFX>XLAND X <« XHANDY > YL AND Y < YH AND N > 1000 THEN PSET (X, Y)
RETURN

REM Test results

GOSUB 700 ‘Calculate Lyapunov exponent

GOSUB 900 ‘Calculate correlation dimension

IF N > 21000 THEN T% = 2 ’Candidate IFS found

IF ABS(XNEW) + ABS(YNEW) > 1000000# THEN T% = 2 'Unbounded
IFN>98 AND(F<1ORL> —-2)THENT% = 2 ‘Uninteresting
IF LEN(INKEY$) THEN T% = 0 'User key press

X = XNEW:Y = YNEW: N =N+ |

RETURN

REM Calculate Lyapunov exponent

XSAVE = XNEW: YSAVE = YNEW: X = XE: Y = YE

GOSUB 400 ‘Reiterate equations

DLX = XNEW — XSAVE: DLY = YNEW — YSAVE: DL2 = DLX * DLX + DLY * DLY
DF = 10000000000# * DL2: RS = 1# / SQR(DF)

XE = XSAVE + RS * (XNEW — XSAVE): YE = YSAVE + RS * (YNEW — YSAVE)
XNEW = XSAVE: YNEW = YSAVE

LSUM = LSUM + LOG(DF): L = .721347 * LSUM / N

RETURN

REM Resize the screen (and discard the first thousand iterates)
DX = .1 ¥ (XMAX — XMIN): DY = .1 * (YMAX — YMIN)
XL = XMIN — DX: XH = XMAX + DX: YL = YMIN — DY: YH = YMAX + DY
IF XH — XL < .000001 OR YH — YL < .000001 THEN GOTO 890
WINDOW (XL, YL)—(XH, YH): CLS
LINE (XL, YL)~(XH, YH),, B
RETURN

REM Calculate fractal dimension

IF N < 200 THEN GOTO 990 'Wait for transient to settle

IF N = 200 THEN D2MAX = (XMAX — XMIN) A 2 + (YMAX — YMIN) A 2
IF N = 200 OR RND < .02 THEN XS = X: YS = Y 'New reference point

DX = XNEW — XS: DY = YNEW — YS§

D2 = DX * DX + DY * DY

IF D2 < .001 * D2MAX THEN N2 = N2 + |

IF D2 < .00001 * D2MAX THEN N1 = NI + I F = 434294 * LOG(N2 / N1)
RETURN





