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ABSTRACT 

 

This paper proposes a novel technique for exhibiting and 

quantifying the determinism in music.  A written score of music is 

modeled as a dynamical system employing an iterated function 

system to generate a picture from the music.  This picture is then 

analyzed using methods of chaos theory and time-series analysis to 

quantify the determinism.  Comparisons with random and chaotic 

control data and with some algorithmic compositions are made.  

The method might be useful for cataloging different musical styles 

or perhaps even testing authenticity of musical compositions. 
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INTRODUCTION 
 

 This paper investigates the use of a novel technique to search for 

determinism in written music and to quantify its extent.  We assume that such 

determinism will exist since composers use rules, both consciously and 

subconsciously, when composing.  Our approach works from the original score, 

instead of with an aural representation, as previous such approaches have taken.  

To illustrate the method, we have limited our scope to a subset of Baroque and 

Classical compositions, primarily because of the easy availability of appropriate, 

machine-readable, musical data. 

 

 

METHOD 
 

Step 1:  Initial Simplifications 

 

  To model a piece of music such as the one shown in Fig. 1 as a dynamical 

system, we need to make three simplifications. 

 

>>> INSERT FIGURE 1 ABOUT HERE <<<  

 

 First, we need to separate the voices.  Since our method requires a single 

temporal sequence of numerical values, we split the music into individual melody 



 3 

lines, called voices.  This limits the pieces we can simply analyze to those which 

can be logically split into such voices. 

 

 Second, we ignore all octave information; we reduce the notes to their 

pitch class, a letter from A to G-sharp, representing the twelve notes in an octave.  

We have made no attempt to distinguish between enharmonic pitch classes.  This 

is done to make our approach independent of the pitch range for a given piece.  By 

reducing to pitch classes, we can compare different pieces using the same 

approach.  Furthermore, this method compresses the data range, thus providing 

reliable results with less data. 

 

 Third, we ignore duration information.  This is done to simplify the 

analysis.  The method could be easily extended to work with durations by 

simultaneously analyzing pitch and duration in a higher dimensional space.  This 

approach would undoubtedly give more interesting results, since rhythmic 

structure is very important in music. 

 

 Applying these simplifications to the piece in Fig. 1 provides the following 

data streams: 

 

 voice 1: A  G  A  B-flat  G  G  A  B-flat 

 voice 2: A  A  A  A  G  G  G  G 

 voice 3: F  F  F  F  E  E  E  E   

 voice 4: D 
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 voice 5: D  D 

 

This is the form of the score we shall use for illustrative purposes.  However, we 

must do a further step before the analysis, since the data is still in discrete form. 

 

Step 2:  The Iterated Function System 

 

 We shall use an iterated function system (IFS) [1] to produce a picture 

from data in the form above.  Our idea is an extension of one used by Jeffrey [2] 

to generate a picture from the sequence of base pairs in the DNA molecule. 

 

 Since the IFS is the most conceptually difficult step, we shall illustrate 

with a simple example.  A more thorough treatment can be found in Jeffrey [3] or 

Barnsley [1].  For discrete data, which can take on only the values of 1,2,3, or 4 

(corresponding, say, to the four bases, ACGT, of the DNA molecule), we would 

define an iterated function system by choosing a "world" (a simple example is the 

unit square with each of the four values corresponding to a different corner of the 

square) and an arbitrary starting point in that world, and making the following 

rules: 

 

 If the next value is a 1, move halfway toward (0,0); 

 If the next value is a 2, move halfway toward (1,0); 

 If the next value is a 3, move halfway toward (1,1); 

 If the next value is a 4, move halfway toward (0,1). 
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 We start at the initial point, and then read in the data, plotting a succession 

of points.  The result is a scattering of points in the plane.  The plot represents a 

trajectory, since the position of each point is determined by all the previous points.  

The crosses in Fig. 2(a) are meant to show what the successive iterations of this 

process do to an initial pattern in the plane defined by the large cross that bisects 

the square horizontally and vertically, with the data sequence 1, 3, 4, 2.  Notice 

that with each iteration the cross moves and becomes smaller.  What we are doing 

is combining the discrete data points to spread the data more uniformly over the 

plane.  

 

>>> INSERT FIGURE 2 ABOUT HERE <<< 

 

 In generalizing this idea to data with more than four discrete values, as is 

necessary for musical scores, we need more complicated rules.  For each data 

value, we need to write explicit mathematical formulas that map the whole world 

into non-overlapping subsections of the world.  For the simple example above, the 

rules are: 

 

 If input value is 1: {xnew = xold / 2,  ynew = yold / 2} 

 If input value is 2: {xnew = xold / 2 + 1 / 2,  ynew = yold / 2} 

 If input value is 3: {xnew = xold / 2 + 1 / 2,  ynew = yold / 2 + 1 / 2} 

 If input value is 4: {xnew = xold / 2,  ynew = yold / 2 + 1 / 2} 
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 If we use the subscript i to denote an arbitrary one of the data values, we 

can denote all four rules using the following compact mathematical notation: 

 
H x

y
 = x / 2

y / 2
 + Γi 

 

 

where Γi is the ith column of Γ, where Γ is a matrix given by 

 

Γ =  
0     1

2
     1

2
     0

0     0     1
2

     1
2 . 

 

 We can generalize this notion to our 12-valued discrete musical data.  We 

begin with a rectangle of width four, and height three, and partition it into 12 

squares of unit length, in a four-by-three arrangement (figure 2(b)).  This 

partitioning was chosen so that the pieces of the partition are as similar in shape to 

the original rectangle as possible, to avoid building inherent structure into the 

plots our process will create.  This partition also has the desirable property that the 

pieces intersect only at their boundaries.  Next, we mathematically formulate the 

transformations used for this system to map the whole rectangle into the smaller 

pieces.  Finally, we associate each square with one of the possible musical notes, 

making no distinction between enharmonic pitch classes.  How we do this is 

arbitrary, since different associations will yield similar results. 

 

 For our IFS, if we assign i = 1 for the note A, i = 2 for the note A-sharp, 

and so forth, the transformations are: 
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H x

y
 = x / 4

y / 3
 + Γi 

 

 

with 

 
Γ = 0    1    2    3    3    2    1    0    0    1    2    3

0    0    0    0    1    1    1    1    2    2    2    2 . 

 

 The IFS process is creating a trajectory through the plane for each voice.  

Since the interiors of our tiling do not overlap, given an initial starting position on 

the boundary of the rectangle (we used the point (0, 0), which is the lower left 

corner), each point to which the IFS can map is sufficient, in principle, to 

characterize the voice completely.  That is, each point represents all the notes that 

have been played and preserves the order in which they were played.  In a sense, 

we are reverse-ordering the notes, since if we wish to recover the notes from a 

given point, we start by finding out which note was last played, and working 

backwards through the sequence of points. 

 

 Since computers only have finite accuracy, we cannot expect each point on 

the plot to reflect the entire previous history of the piece.  Each point only gives a 

short-term history of the voice because the influence of previous notes diminishes 

as time goes on.  This history should be about 35 notes, since we are contracting 

the rectangles by factors of four and three in the x and y directions, respectively.  It 

is for this reason that an arbitrary point on the border can be chosen as the starting 
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point.  Except for the first few points, the pattern is essentially the same for any 

starting point. 

 

 Using the method described above, the IFS can be used to make plots for 

each voice which are then superimposed into a single plot.  Two examples of such 

plots are shown in Fig. 3.  Figure 3(b) is a piece of real music, Mozart's "Sonata in 

C."  There are approximately 2000 points on this plot.  For comparison, Fig. 3(a) 

shows 2000 randomly chosen notes.  As one can see, Fig. 3(a) is much more 

uniformly filled than Fig. 3(b).  Any departure from a uniform distribution of 

points is evidence for determinism. 

 

>>> INSERT FIGURE 3 ABOUT HERE <<< 

 

 The first thing to notice about the output of the IFS process is that we can 

immediately gain some useful information from it.  Each time a given note is 

played, a dot is placed somewhere in the square corresponding to that note.  

Therefore, if we know the original IFS scheme, we get an indication of the 

number of times each pitch class was played, and perhaps identify the main scale 

that was used in the piece.  This is the same information that is contained in a 

histogram of the pitch classes.  The IFS plot in Fig. 3(b) clearly shows a higher 

density of points in the squares corresponding to A, B, C, D, E, F, and G, which 

make up a C major scale.  The plot is a two-dimensional visual representation of 

the piece, and it is unique to that piece. 
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Step 3:  Correlation Dimension 

 

 To quantify the determinism, we need to measure some property of the IFS 

pattern such as its dimension.  If the points were uniformly spread across the plane 

and if there were an infinite number of them, they would constitute a two-

dimensional object (a surface).  More generally, the plots are expected to be 

fractals with self-similar structure and fractional dimension.  There are many 

different ways to define and calculate the fractional dimension of an object, but 

one that is commonly used because of its ease of implementation is the correlation 

dimension  proposed by Grassberger and Procaccia [4].  

 

 For a data set of size N, with points X1, ... , XN, we define the correlation 

sum as a function of scale size r by: 

 

C r
N N

r
j i

N

i
i

N

jX X( )
( )

( || || )=
−

− −
= +=
��

2
1 11

Θ  

 

where Θ is the Heaviside step function defined such that Θ(x) is zero for x < 0, 

and one for x ≥ 0, and each Xi  is a point in the plane representing the ith data 

point in the IFS pattern.  The second summation is taken over only the data points 

that follow each point in the first sum (j > i) to avoid double-counting.  The 

notation ||Xi - Xj|| means the distance between points Xi and Xj.  In other words, 

the correlation sum is the number of pointwise distances less than r divided by the 

total number of distances, or, equivalently, the probability that two randomly 

chosen points will be within a distance r of one another. 
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 This discussion suggests what different scales (values of r) in the 

correlation sum mean.  On the large scale, we are measuring the overall 

distribution of the notes in pitch classes.  At smaller scales, we are looking at 

longer-term information, the relative frequency of motifs recurring.  On the order 

of r = 10-4, we are looking at motifs of approximately eight or nine notes. 

 

 The correlation dimension is given by the slope of the correlation sum, 

dC(r) / dr.  For a precisely self-similar fractal this slope is independent of the 

scale size parameter, r.  However, for real data, the slope is seldom independent of 

r, and a single dimension thus cannot be defined.  For this reason, we plot the 

dimension versus scale size.  If the plot has a plateau, the object is a self-similar 

fractal over that scale range and has a well-defined fractional dimension.   

 

 
RESULTS  

 

Real Music  

 

 A dimension plot obtained as described above for Mozart's "Sonata in C" 

as shown in Fig. 4 is typical of the curves generated by real music.  The curves for 

Pachelbel's "Canon", Beethoven's "Moonlight Sonata", and Bach's "Fugue in C 

Major", "Fugue in B Major", and "Well Tempered Clavier, Book1, Prelude 1" are 

similar.  Thus these composers employ a similar degree of determinism in their 
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compositions.  Note that the dimension plot has no obvious plateau, and thus there 

is no unique numerical value that can be associated with these composers. 

 

>>> INSERT FIGURE 4 ABOUT HERE <<< 

 

Artificial Music 

 

 While the dimension provides a quantitative measure of the determinism 

in a musical piece, we still need control data to establish its statistical 

significance.  On way to do this is to create artificial music, using the same notes 

as the original piece, but shuffling the order in a random or deterministic way.  

This allows us to remove the determinism originally present in the music or to 

replace it with a different kind of determinism.  In this way, we can compare 

different types and degrees of determinism.  We need to preserve the number of 

times each note is played, since the distribution of  notes will generally affect the 

dimension curve. 

 

 We chose three main methods for creating artificial music.  First, we 

created a non-deterministic, unpredictable piece by randomly shuffling the notes 

in each voice.  Second, we created a deterministic and highly predictable piece by 

making a histogram of the notes in each voice, and removing them one by one, 

taking an A if there was one, then taking an A-sharp if there was one, then taking 

a B if there was one, and so forth.  This method produced a strongly deterministic 

composition akin to simply playing scales.  Third, we created a deterministic but 
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unpredictable piece using the shift map.  The shift map is h(x) = 2x (mod 1).  This 

map is chaotic on the unit interval [5], and its iterates fill the interval uniformly. 

 

 We first made a histogram of each voice, and divided the unit interval into 

twelve pieces, each having a length proportional to the probability of playing a 

given note.  Then, using an arbitrary starting value, we iterated the shift map and 

chose the note corresponding to the interval dictated by the map.  When we had 

the same number of notes as the original voice, we stopped.  It should be noted 

that although the first two methods created music with exactly the same notes as 

the original, the third method created only a statistically similar distribution.  

Comparisons of the histograms for music created with the third method and the 

real music from which it was derived showed that the two were very close to 

having the same distribution. 

 

>>> INSERT FIGURE 5 ABOUT HERE <<< 

 

 The results of dimension plots for the control data again for the Mozart 

piece are shown in Fig. 5.  Notice that the real music is closer to completely 

predictable at small scales but that it is more nearly random at larger scales.  This 

result suggests that the determinism in music is stronger over long time scales 

than over short time scales.  That is to say, a short sequence of notes does not 

dictate the succeeding note, but a long series of notes does.  Also, as mentioned 

earlier, there is no distinct plateau for the real music, whereas all three control 

types tend to have plateaus.  The oscillations in the dimension curves appear to be 
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an artifact of the non-uniform distribution of notes in each pitch class; they 

disappear when the distribution of notes in each pitch class is close to uniform.  

These oscillations are statistically significant, and their amplitude does not 

decrease with larger amounts of data. 

 

L-system Music 

 

 Another type of control data was produced using algorithmic music, 

created with Lindenmayer systems (L-systems) by Stephanie Mason [6].  L-

systems are recursive string rewriting systems, which were originally used to 

describe the patterns in plants and flowers [7].  Later, they were used to create 

graphical images and music [8].  This music is completely deterministic, but only 

partially predictable.  When the dimension plot for such an L-system piece was 

compared to the dimension plot for a piece of real music (again the Mozart piece), 

the two were virtually indistinguishable, as seen in Fig. 6. 

 

>>> INSERT FIGURE 6 ABOUT HERE <<< 

 

 Thus the proposed method as outlined cannot absolutely distinguish 

between music composed by a human and music composed by a computer.  

However, L-system music, while tonally similar to real music (although somewhat 

repetitive), is rhythmically very simple.  A simultaneous analysis of duration and 

pitches might be able to differentiate between the two. 
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CONCLUSIONS AND FURTHER STUDY 
 

 We have described a first step in a novel technique for quantifying 

determinism in music.  Preliminary results are enticing, especially given the 

numerous simplifications that were made. 

 

 Many avenues are open to further investigation.  It would be desirable to 

have a better way to treat simultaneous voices.  Not only would this allow more 

accuracy, by recognizing the harmonic components of music, but it would greatly 

expand the types of music that can be analyzed in this way.  Incorporating octave 

information might be helpful in certain cases as well, especially if one can narrow 

the field of comparisons and set the pitch range appropriately.  One example is to 

set the pitch range to 88 for comparison of piano compositions.  As mentioned 

before, analysis of durations or simultaneous analysis of durations and pitches 

would also be helpful.  Finally, since this is a general method for handling discrete 

data types, any discrete data can be analyzed.  Examples include stock market 

prices, pieces of literature, sequences of DNA base pairs [2], and decimal or other 

base representations of numbers. 
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FIGURE CAPTIONS 

 

Figure 1:  A written score of music cannot be modeled as a dynamical system 

without certain simplifications 

 

Figure 2:  Two examples of Iterated Function Systems; (a) with 4 possible input 

values; (b) using pitch classes as input values 

 

Figure 3:  Examples of the output of the IFS process; (a) with uniformly random 

notes; (b) Mozart's "Sonata in C" 

 

Figure 4:  The dimension curve for Mozart's "Sonata in C", typical of the 

dimension curves that are generated from real music 

 

Figure 5:  The dimension curves for Mozart's "Sonata in C" and three types of 

control music derived from it 

 

Figure 6:  The dimension curves for Mozart's "Sonata in C" and a piece of music 

created algorithmically from L-systems 


