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Simplest dissipative chaotic flow
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Abstract

Numerical examination of third-order, autonomous ODEs with one dependent variable and quadratic nonlinearities has
uncovered what appears to be the algebraically simplest example of a dissipative chaotic flow, ¥ + A¥ — &2 + x = 0. This
system exhibits a period-doubling route to chaos for 2.017 < A < 2.082 and is approximately described by a one-dimen-
sional quadratic map. © 1997 Published by Elsevier Science B.V.

PACS: 05.45.+ b; 02.30.Hg; 02.60.Cb; 47.52.+ j
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Many of the general features of chaotic systems
have been understood through study of the quadratic
map

nel x 3 —A ( l)
and its variants such as the logistic map [1}, x,,, =
Ax,(1 - x,). The quadratic map is the algebraically
simplest example of a chaotic map in the sense that
it contains the smallest number of terms (2) and the
simplest differentiable nonlinearity (x?). Eq. (1) is
chaotic over the range 1.4011... <A < 2 except for
an infinite number of periodic windows with small
but finite measure (~ 10%).

With chaotic flows, governed by differential equa-
tions, there is no single correspondingly simple pro-
totypical chaotic system. The Poincaré—Bendixson
theorem [2] requires that autonomous first-order or-
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dinary differential equations with continuous func-
tions be at least three-dimensional to have bounded
chaotic solutions. Standard examples include the au-
tonomous Lorenz [3] and Réssler [4] attractors and
various periodically driven systems such as the Ueda
[5] oscillator which can be recast into autonomous
form. Here we propose what appears to be the
algebraically simplest example of a dissipative
chaotic flow and demonstrate that it exhibits continu-
ous dynamics analogous to the quadratic map. This
work follows Lorenz [3] who showed that his attrac-
tor is governed approximately by a tent map and
Hénon [6] whose 2-D dissipative map was con-
structed to model the features of the Lorenz attractor.
Olsen and Degn [7] also did a similar calculation for
the Rossler attractor.

An earlier paper [8] described a computer search
that revealed nineteen examples of chaotic flows that
are algebraically simpler than the Lorenz and Rossler
systems. Recently, Gottlieb [9] suggested examining
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a subclass of such systems given by ¥= {x, %, %),
where j is a jerk function (time derivative of acceler-
ation). We report here the result of such a search in
which j contains a minimum number of terms and is
at most a quadratic function of X, x and x. The most

eneral such expression is

ac

ji={a +a2x+a35c+a452)52+(a5 +agx+a,x)x
+(ag +agx)x+ay, (2)

corresponding to a force F per unit mass that satis-
fiesdF/dt=

Since functions of the form of Eq. (2) would not
represent a simplification of cases previously found
18] unless fewer than four of the terms are non-zero,
the numerical procedure [10] was to search all cubic
subsets of the ten-dimensional control space of coef-
ficients (a, through a,,) for bounded chaotic solu-
tions as evidenced by a positive Lyapunov exponent
[11]. The calculations were performed using a
fourth-order Runge—Kutta integrator with a step size
of Ar=0.05 and initial conditions of x=xk=X%=
0.05. The three non-zero coefficients were chosen
randomly and assigned uniform random values in the
range — 5 to 5 in increments of 0.1, giving the order
of 1(19 cases. of which about 107 were randnmlv

chosen for examination. Even so, the calculation
took several months of 66 MHz CPU time.

By this method, a chaotic case was found with all
coefficients equal to zero except for a,, a,, and a;.
It is generally possible to normalize two of the

coefficients by rescaling the variables x and ¢. Thus

there remains only one parameter, which was arbi-
trarily taken as a, = — A, leading to the equation

¥+ A% — 22 +x=0. (3)

It is unlikely that any algebraically simpler form of
an autonomous chaotic flow exists because the above
equation has the minimum number of terms that
allows an adjustable parameter and it has only a
single quadratic nonlinearity. It can be equivalently
written as three, first-order, ordinary differential
equations with a total of five terms. This is one
fewer term or nonlinearit i
teen cases previously fou
the Rossler equations.

An alternate form of Eq. (3) was found in which
the x? term was replaced with xi, but this case is
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Fig. 1. Bifurcation diagram. Note that the scales have been
reversed to emphasize the similarity to the familiar Feigenbaum
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diagram.

equivalent to Eq. (3) to within a constant as can be
seen by differentiating Eq. (3) with respect to time
and defining a new variable v = x. No other dissipa-
tive forms were found with three terms and a single
quadratic nonlinearity, although several other slightly
more complicated examples were found [12] as well
as a conservative case of the form ¥+ % —x* +B=
0 with 0<B < 0.05. These cases were apparently

Ain th 14 T
missed in the earlier search [8] because of the narrow

range of parameters over which chaos occurs.

With the above normalization, the parameter A
was scanned over the range 0 to 10 in increments of
0.01 to identify the chaotic regions, which were
found to fall in the range 2.0168... <A<
2.0577.... Throughout most of the remainder of the
range, the solutions are unbounded. A more carefui
scan of the chaotic region, recording the successive

1 1 £ £t tranci
local maxima of x, after transients have decayed,

resulted in the bifurcation diagram shown in Fig. 1.
Note that the scales have been reversed to emphasize
the similarity to the familiar Feigenbaum diagram for
the logistic equation in which a period-doubling
route to chaos is observed.

The similarity of Fig. 1 to a Feigenbaum diagram
suggests that the sequence of local maxima should
approximately follow a quadratic map. Fig. 2 shows

such a map in which each maximum is plotted

versus the previous maximum for A = 2.017, Wthh
is in the region of greatest chaos (largest Lyapunov
exponent). At low resolution, the return map appears
to be one-dimensional, and it resembles a slightly
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Fig. 2. Return map showing each value of x,,, versus the
previous value of x_, . The insert shows fractal structure at a
magnification of 10°,

skewed parabola. The curve is inverted with respect
to the usual logistic map, but it has the same sense as
the quadratic map in Eq. (1).

The insert in Fig. 2, showing a short segment of
the curve magnified by a factor of 10*, reveals that
what appeared to be a simple curve at low resolution
is actually a two-dimensional map with fractal struc-
ture as expected for a strange attractor. A dissipative
chaotic flow in three dimensions must have an attrac-
tor with dimension greater than 2 but less than 3.
Hence the corresponding map must have dimension
greater than 1, although only slightly so in this case.
What looks like a single line at low resolution is
actually a pair of lines, the upper one of which (at
least) consists of multiple lines in what is presum-
ably an infinite self-similar structure.

Eq. (3) has a single fixed point at the origin with
eigenvalues A that satisfy the characteristic equation
A+ AA*+1=0. For the range of A over which
solutions are bounded, A is given to within about 1%
by A= —224,0.10 + 0.66i. Thus the origin is an
unstable saddle-focus with an instability index of 2;
the stable manifold is a line, and the unstable mani-
fold is a surface. For A =2.017, the Lyapunov
exponents (base-e) as determined numerically are
L = 0.0550, 0, —2.0720, and the corresponding Ka-
plan—Yorke dimension [13] is Dyy =2—L, /L, =
2.0265. Note that the sum of the Lyapunov expo-
nents is the rate of volume contraction and is given
by LL=3j/3%= —A. Thus A is a measure of the
damping, as is evident from 9F /dx = —A.
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Fig. 3. Chaotic time variation of x, v, g, and j for A= 2017,

Fig. 3 shows the time history of x and its first
three time-derivatives after the trajectory has settled
onto the attractor for A =2.017. The behavior is
nearly periodic but with an apparent chaotic compo-
nent. The period over the entire bounded region is
within about 1% of T = 11.8, corresponding to a
dominant angular frequency of w = 0.53, which is
about 20% lower than the linear frequency for rota-
tion about the fixed point at the origin (w, = 0.66).
The contraction per cycle is given by e*37 = 2.5 X
107", which helps to explain why the return map is
so nearly one-dimensional. Note that whereas x is
approximately sinusoidal, the higher derivatives are
successively less so, with the jerk function consisting
mostly of recurrent spikes.

Fig. 4 shows a stereoscopic view of the trajectory
for A =2.017. In this plot, you are looking down on
the x—x plane from the +X direction. As is most

Fig. 4. Stereoscopic view of the attractor, which is approximately
a Mobius strip. Also shown is the fixed point at the origin with its
stable and unstable manifold.
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evident from animated rotational views of the attrac-
tor [14], the trajectory lies approximately on a Mébius
strip, which accounts for the lack of period-1 solu-
tions. The fixed point at the origin is shown toward
the left center of the figure with a line and spiral
signifying the stable and unstable manifolds, respec-
tively.

To ensure that the results are not numerical arti-
facts, the calculation was done in various precisions
up to 80-bit, and it was verified that the result is not
sensitive to the precision, iteration step size, initial
conditions (within the basin of attraction), or the
number of iterations. Note that with a step size of
0.05, there are over 200 iterations per cycle, and the
trajectory was followed for times as long as 10’
cycles. Thus the solution is apparently stable and not
a chaotic transient.

The basin of attraction for the three-dimensional
flow has been examined in some detail. Far from the
attractor, the flow is in the +3% direction and is
highly sheared. The basin of attraction intersects the
X axis in the range 4.9046... <x<8.2571... and
in an infinite number of segments in the range
—-1.0311... <x<12490.... A 2-D slice of the
basin with X=0 shows a spiral structure near the
origin. Animated 3-D views [14] show that the basin
is shaped like a tadpole with a tail that apparently
extends to infinity along the —X axis. When time is
run backwards beginning with an initial condition on
the attractor, the trajectory typically escapes to infin-
ity within a few thousand iterations, while remaining
close to the —X axis.

This particularly simple example of a dissipative
chaotic flow illustrates the minimum requirements
for chaos in such systems and invites further detailed
study.

1 am grateful to Paul Terry and Dee Dechert for
useful discussions.
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