Some simple chaotic jerk functions
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A numerical examination of third-order, one-dimensional, autonomous, ordinary differential
equations with quadratic and cubic nonlinearities has uncovered a number of algebraically simple
equations involving time-dependent acceleratigagks) that have chaotic solutions. Properties of
some of these systems are described, and suggestions are given for further studgz A®erican
Association of Physics Teachers.

[. INTRODUCTION ponents and two velocity components since the orbit lies in a
plane. The equation of motion is nonlinear because the force

One of the most remarkable recent developments in clags proportional to the inverse square of the separation. How-
sical physics has been the realization that simple nonlineasver, this system does not exhibit chaos because there are
deterministic equations can have unpredictattbaotio  two constants of the motion—mechanical energy and angular
long-term solutions. Chaos is now thought to be rather commomentum—which reduce the phase-space dimension from
mon in nature, and the study of nonlinear dynamics hasour to two. With a third object, such as a second star, the
brought new excitement to one of the oldest fields of scienceplanet’s motion can be chaotic, even when the motions are
The widespread availability of inexpensive personal computeoplanar, because the force on the planet is no longer central,
ers has brought many new investigators to the subject, anghd its angular momentum is thus not conserved. The three-
important research problems are now readily accessible tbody problem was known 100 years ago to have chaotic
undergraduates. An interesting and yet unsolved problem isolutions and has never been solved in the sense of deriving
to determine the minimum conditions necessary for chaosan analytic expression for the position of the bodies as a
This paper will describe several examples of chaotic flowSunction of time.
that are algebraically simpler than any previously reported A one-dimensional system can exhibit chaos if the force
and will suggest further lines of promising investigation.  has an explicit time dependence. For example, a sinusoidally

The chaotic system to which one is usually first introduceddriven mass on a nonlinear spring with a cubic restoring
is the logistic equation, force (—kx® and linear damping—bx) obeys an equation

Xn+1=AX(1=Xp), @) X+ bx+kx®=A sin wt, 2

which is remarkably simple and yet exhibits many of the , o . .
common features of chaos. For most valued df the range Where x=dx/dt. This is a special case of Duffing’s
3.5699... to 4, it produces a sequenceoblues that exhibit ~€quatiod whose chaotic behavior has been studied by Ueda.
sensitive dependence on initial conditions and long-term unlt is a useful model for any symmetric oscillator such as a
predictability. Its behavior can be studied with a simple com-mass on a spring driven to a sufficiently large amplitude that
puter program or even a pocket calculator. the restorlng force is nQ Ipnger linear. Note tiaiindt can

Equation(1) is a one-dimensional iterated map in which be rescaled so as to eliminate two of the four paraméters
the variablex advances in discrete time steps or jumps. Most: A, andw). For example, we can take=w»=1 without loss
of the equations of physics, and science in general, are mofd generality. Thus the behavior of the system is determined
naturally expressed in the form of differential equations inentirely by two parameter® andA in this cas¢ and by the
which the variables evolve continuously in time. Newton'sinitial conditions,x(0) and x(0). Equation(2) is known to
second law is the prototypical example of such a continuou§ave chaotic solutiofigor b=0.05 andA=7.5, among other
dynamical process. values. _ o

Whereas chaos can arise in discrete-time systems with Systems such as E) with an explicit time dependence
only a single variable, at least three variables are required fg¥an be rewritten in autonomous forfhdoes not appear ex-
chaos in continuous-time systefidhe reason is that the Plicitly) by defining a new variablé=wt, leading to a sys-
trajectory has to be nonperiodic and bounded to some finiteem of three, first-order, ordinary differential equations
region, and yet it cannot intersect itself because every poirﬁODE3 such as
has a unigue direction of flow. Newton’s second law in one ,
dimension(1D) inherently contains two variables because it  x=v, v=—bv—kx+Asin¢, ¢=o. 3
involves a second derivative. It is really two equations, a
kinematic one defining the velocityx/dt=v, and a dy- The new variablep is a periodic phase, and thus the global
namic one describing the rate of change of this velocitytopology of the system is a torus. Other standard examples of
dv/dt=F/m. Thus Newton’s second law in 1D with a force chaotic autonomous ODEs with three variables include the
that depends only on position and velocity cannot producéoren? and Raslef attractors, which have only quadratic
chaos since there are only two phase-space varigblaad nonlinearities, but each of which has a total of seven terms
v). on its right-hand side.

In two spatial dimensions, there are four phase-space vari- An earlier papét described a computer search that re-
ables, and thus chaos is possible. For example, a planet orealed 19 examples of chaotic flows that are algebraically
biting a single massive star is described by two spatial comsimpler than the Lorenz and Bsler systems. These autono-

537 Am. J. Phys65 (6), June 1997 © 1997 American Association of Physics Teachers 537



mous equations all have three variables y, andz) and Egq. (3). The initial conditions must satisfy the constraint
either six terms and one quadratic nonlinearity or five termsA=X(0)+bx(0)+3x?(0)x(0) for Eq. (7) to be equivalent
and two quadratic nonlinearities. to Eq. (3).

In one sense, equations involving the jer @nd its de-
rivatives are unremarkable. Newton’s second law=F/m)
leads necessarily to a jerk whenever the fdfcia the frame

Recently GottlieB pointed out that the simplest ODE in a ©f reference of the mass has a time dependence, either
single variable that can exhibit chaos is third order, and h&Plicitly [F(t)] or implicitly [F(x,x)]. Except in a few

suggested searching for chaotic systems of the fom§p¢cial cases s.uch as a projectile .moving _without drag in a
X=](x,x,X), wherej is a jerk function(time derivative of uniform gravitational field, nonzero jerks exist. For example,

acceleration’®* He showed that case A in Ref. 8, amass on a linear spring has a smusm_dally varying jerk, as
well as all higher derivatives. However, in such a case, only

X=y, y=-x+yz, z=1-Yy? (4)  two phase-space variablés andx) are required to describe
can be recast into the form the motion. In the cases co_ns_jde_red here, not only is the jerk

w ig o nonzero, but the acceleratiow)(is an independent phase-
X= = X7+ X(X+X)/X, (5)  space variable necessary to describe the motion. Such an

and he wondered whether yet simpler forms of the jerk func€duation might arise naturally in a case like a planet orbiting

tion exist that lead to chaos. Equati6d) is a special case of & Pair of fixed massive stars where there are two spatial

the Nose-Hoover thermostated dynamic syst&#m®which ~ dimensions(and thus four phase-space variablest with

exhibits time-reversible Hamiltonian chalfs. the trajectory constrained to a three-dimensional subset of
Careful examination of the other 18 equations in Ref. gthe pPhase space by the conservation of energy.

shows that most if not all of them can be reformulated into a

third-order ODE in a single variable. This exercise is welllll. NUMERICAL SEARCH PROCEDURE

suited for a student with an elementary knowledge of differ- ) o
ential calculus. For example, case | in Ref. 8 can be written Since Eq.(6) demonstrates the existence of chaotic jerk

[I. JERK FUNCTIONS

as functions with only quadratic nonlinearities, it is interesting
L ) ) to identify the simplest such function. The most general
X+X+0.2+5%?+0.4x=0, (6)  second-degree polynomial jerk function is

which in some ways is more appealing than E).since it j=(a,+a,X+azx+a,X) X+ (as+agx+a X)X

has only polynomial terms and a single quadratic nonlinear-

ity. +(ag+agX)x+ayo, (8

Itis interesting to ask under what conditions a systemof ¢, \yhich the goal is to find chaotic solutions with the fewest

first-order ODEs inm variables can be written as anth  ,on,6r0 coefficients and with the fewest nonlinearities.
order ODE in a single variable. A theorem by TakEres- Equation(6) ensures us that chaotic jerk functions with four
sures us that almost any variable from amdimensional  yormg and one nonlinearity exist. Thus we seek cases with
system can be used to reconstruct the dynamics providedg,,- or fewer terms and one nonlinearity or fewer than four
sufficient number of additional variables are constructedsms and two nonlinearities. Such cases would be at least as
from the original variable by sugcessive time delay(s),x(t simple as the 19 cases in Ref. 8.

— 7). X(t=27) x(t—=37),..., but it may require as many as  The numerical procedure was to choose randomly three or
2m+1 such time laggcalled the “embedding dimension”” ¢, of the coefficients(a, througha,), set them to uni-
This condition was subsequently relaxed w.? It is rea- formly random values in the range5 to 5, and then calcu-

sonable to assume that a differential equation of order 2 | 4q the trajectory for randomly chosen initial conditics
would also suffice. However, if we are free to choose the)-( andX) in the range—5 to 5. The range-5 to 5 is arbitrary

variable optimally, there is reason to hope that an embedding, poses no significant restriction becausandt can be

of m might suffice in most cases. rescaled. A fourth-order Runge—Kutta integrator with a step
X . . - Qize of At=0.05 was used. The process was repeated the
ones with periodic forcing such as E@). The reason is that  rqer of 13 times. The most common dynamic was for the
one of the variablesg, lies on a circle that requires a Eu- aieciory to escape to infinity, and this was detected by stop-
phdean d|mgn5|0n of 2 to _embed it. If we replace thefstn ping the calculation whenevex|+ ||+ |X| exceeded 10
in Eq. (2) with a new variabley that obeys the harmonic ggcayse of the quadratic nonlinearity, unbounded cases are
oscillator equationy=—y, Eq. (3) with k=w=1 can be usually identified within a few dozen iterations. The remain-
written as a fourth-order ODE, ing solutions most often settled to a fixed point or limit
K4 DX+ X+ 3x2X+ b X+ 6xX+X3=0. (7)  cycle. Rare caseghe order of one in 19 exhibited chaotic

o ) ) _ ) _solutions. Thus, in some sense, it is reasonable to conclude
It is interesting to note that the trigonometric nonlinearity that chaos is relatively rare in algebraically simple systems
(sin ¢) in EQ. (3) has been replaced exactly by a small num-qf opgs8
ber of polynomial terms, suggesting that equations such as The simplest way to detect chaos is to use its characteristic
Eq. (7) are rather more general than would at first appear. sensitive dependence on initial conditions. The calculation

The term x=d*x/dt* is the time derivative of the jerk, could be done twice in parallel with initial conditions that
which might be called a “spasm.” It has also been called adiffer by a smalle;. The quantitye, can be chosen ifal-
“jounce,” a “sprite,” a “surge,” or a “snap,” with its suc-  mos) any direction and assigned a valgg<l but several
cessive derivatives, “crackle” and “pop?’ Note that the orders of magnitude greater than the computational preci-
parameteA does not appear in E¢7), but it does appear in sion. This is best done after a few thousand iterations to let
the initial conditions, whose number is one greater than irthe orbit converge to the attractor and to avoid unnecessary
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calculations for unbounded cases. The signature of chaos is g
that the separation of the orbits usually reaches a value of
order unity(e;=0.1) quickly.

A more careful procedure and the one used here is to
calculate the Lyapunov exponefitThis was done in a man-
ner similar to that described above, except that after each
iteration, the new orbit separatiepwas determined, and the ]
separation was readjusteddgpalong the direction o¢;. The
largest Lyapunov exponent was then determined by averag-
ing the natural logarithm of;/e, along the orbit. A decidedly
positive Lyapunov exponent is a signature of chaos. Since
there is always a zero Lyapunov exponent for a periodic
flow, corresponding to a direction parallel to the flow, the
search condition was for a Lyapunov exponent that remains
in excess of 0.01 for fterations. Typically about one cha- -2 X 9
otic solution emerged per hour of computing on a 66-MHz
486 personal computer. All the candidate chaotic cases found
in this way were then tested with a smaller iteration step size Fig. 1. Strange attractor for E¢9), with A=2.017.
(At=0.0)) for at least 18 iterations.

IV. SEARCH RESULTS of these coefficients can be set to unity without loss of gen-
erality, and the remaining coefficient was arbitrarily taken as

Chaotic flows in three dimensiorf8D) can be character- 2= Z'A, leading to the equation,

ized as either dissipative or conservative, according t o
whether the trajectory is attracted to a region of space with X+ AX—x?+x=0. 9)

fractal dimension less than 3, a so-called strange attré‘?:tor._It is unlikely that any algebraically simpler form of an au-

Dissipative systems have this property, and the attractor iy 05 chaotic flow exists because the above equation has
independent of the initial conditions provided they lie in thethe minimum number of terms that allows an adjustable pa-
basin of attraction. By contrast, a conservative system has fAmeter and it has only a single quadratic nonlinearity. It can

trajectory whose dimension depends on initial conditionsy,o oo ivalently written as three, first-order, ordinary differ-
and is three for a chaotic trajectory, two for a quasiperiodic

X . . .~ “ential equations with a total of five terms,
trajectory(two incommensurate frequencjesne for a peri- _ _ _
odic trajectory, and zero for an equilibrium point. X=v, v=a, a=-Aatvi-x. (10

®This is one fewer term or nonlinearity than in any of the 19

Lyapunov exponent, one zero exponent, and one negative,ses previously found and two fewer than in thes&er
exponent. The sum of the exponents is the rate of volume - ns ‘This case has been described in detail elsedhere.
expansion for a cluster of initial conditions. This sum cannot; o 5 special case of EG6) with the X term absent. It was

be _positive.fqr. bound(_—:'q trajectories. If it is negatieissi- presumably not discovered previously because the range of
pative), the initial conditions are drawn to an attractor WhoseA for which chaos occurs is very narrow.

volume is zero because its dimension is less than tfuse Equation (9) has bounded solutions for 2.01%A
as a 2-D surface has zero volumé the sum of the expo- 5 5g5 3" period-doubling route to chaos, and a nearly

nents is zerdconservativg there is no contraction, and the parabolic return map that strongly resembles the logistic

f;at?éﬁnté?ri’/cmry fills some 3-D region, perhaps with afrac'equation. The positive Lyapunov exponent is largest for

. ) . A=2.017, and the exponentbasee) at that value are
It is relatively easy to calculate numerically the rate ofl_EO 0550, 0,—2.0720, corresponding to a Kaplan—Yorke
v?(lur?]encz_\);p?nsmhn, ?ind. :Lo?ntq?th trlltei neig\jlat:‘v?en It‘yfngun?ﬁimension of 2.0265. The attractor is approximately & Mo
'?heposuem 0? tﬁec L?/zp%:ﬁ)v gxpcor?eﬁts l;ygl SV/dtzeE LS 0 bi_us strip_, and the basin of attraction is_ s_ha_lped like a tadpole
= 313k =a,+ ax+azk+2a,%. Since this expression de- with a tail that apparently extends to infinity along th@&

: A ) ; xis?3 Figure 1 shows a projection of the attractor onto the
pends orx and its derivatives, in general it must be averagecg

: ; . ; —v plane including a portion of the trajectory as it spirals
along the trajectory. The dimension can then be estimate v p I e
using the Kaplan—Yorke conject#e, Dyy=2—L,/Ls, utward to the attractor from an initial condition neéut

where L, is the positive exponent ands is the negative not at) the unstable saddle-focus at the origin. The eigenval-

exponent. The exponeit, is zero. Dissipative systems are "o’ given by the characteristic equatiai A\*+1=0, are
usEaII eésier to i%entify2 becausé the pare Ies)s/ sensitive Within about 1% o= =2.24, 0.1-0.68 over the range ok
y y Stl%r which bounded solutions exist.

Lg'tglrgfsnﬂ:t't%?hzﬁlgrilgger;g{rr?: dns$hné ag?ea;?sr:%%rrgbrg A similar example of a chaotic flow was found in which
; . - INey « 0 MOTe TePR, 0 %2 term is replaced withxX,

resentative of real physical systems since dissipation is =~ T

nearly always present in some degree. These systems will be X+ AX—xx+x=0, (11

discussed first. but this case is equivalent to E(R) to within a constant as

can be seen by differentiating E(R) with respect to time
and defining a new variable=x. It is chaotic over the same

The simplest chaotic dissipative system that was found hasange of A as is Eq.(9). Figure 2 shows its attractor for
all its coefficients equal to zero excepf, a;, andag. Two  A=2.017 projected onto the—v plane including a portion

A. Dissipative systems
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Fig. 3. Strange attractor for E¢L5), with A=0.5 andB=0.25.

Fig. 2. Strange attractor for E¢L1), with A=2.017.

. L B. Conservative systems
of the trajectory as it spirals outward to the attractor from an

initial condition near(but not at) the unstable saddle focus In contrast to the cases above, conservative systems are
at the origin. These appear to be the only two examples ofnes in which the phase-space volume is conserved. A suf-
dissipative chaotic jerk equations with three terms and ondicient but not necessary condition & =a,=az=a,=0.

guadratic nonlinearity. The only such cases found were of this type and had the
Two cases were found with three terms and two quadratiform of Eq. (14) with A=0. Since chaos requires a nonlin-
nonlinearities, a form analogous to E§): earity, the functionf(x), must contain a quadratic or other

S TR nonlinearity. No chaotic solutions were found for

XFAXX= X"+ X=0; (12 f(x)==x2, but with an added linear or constant tefor

and one analogous to E€lL1): both), many such solutions were found. However, in each
o v case, the trajectories eventually escaped, although the chaotic
XFAXX=XXHFX=0. 13 transient can persist for hundreds of cycles. Unbounded tra-

Equation(12) has an attractor that strongly resembles Fig. ljectories in a conservativezolume-conservingsystem may

for A=0.645, and Eq(13) has an attractor that resembles seem paradoxical, but an example is a spacecraft launched

Fig. 2 forA=—0.113, although the initial conditions must be from the earth with an initial velocity just sufficient for it to

chosen carefully since their basins of attraction are relativelyescape from the solar system.

small. An example of a conservative system that exhibits chaos is

Eight functionally distinct cases were found of jerk func- Eq. (15) with A=0,

tions with four terms and one quadratic nonlinearity that T

have strange attractors. These a?re mostly generaliza){ions of XTX=X +B=0. (16

the simpler chaotic cases previously described with an addPositive values oB less than about 0.05 produce chaotic

tional linear term. Most if not all of them are functionally solutions for selected initial conditions. Large valuesBof

equivalent to cases in Ref. 8. For example, one can add @0.05 are chaotic for most initial conditions, but the tra-

term proportional tox or a constant term in either E(L1) or  jectory quickly escapes. AB approaches zero, the range of

(13) and find chaotic solutions. These cases are characterizaditial conditions that produce chaos shrinks to zero, and the

by a pair of parameters, and hence it is more tedious tescape time approaches infinity. An appropriate intermediate

explore their properties. value isB=0.01. As with Eq.(15) this system has two equi-
Other examples of dissipative chaotic flows were found oflibrium points atx= +B2, x=0, X=0. They are both un-
the form, stable saddle foci, with the trajectory spiraling out from the

o B one at—B*2 and into the one atB? producing a toroidal
X+AX+EXF1(X)=0, (14 structure. The eigenvalues are given by the characteristic
wheref(x) is a second-degre@r highe) polynomial given  equation \*>+x=2BY2=0. Equation(16) may represent the
in the notation of Eq(8) by f(x)=agx’>+agx+a,;, One algebraically simplest example of a conservative chaotic
such case is flow, analogous to Eq(9) for dissipative chaotic flows. It
T may also be the simplest formulation of a torus for suitable
X+TAXFX=x"+B=0, (19 initial conditions.
which has chaotic solutions for parameters in the neighbor- The behavior of such a system is best exhibited in a Poin-
hood of A=0.5 andB=0.25 and a period-doubling route to caresection, where, for example, the location of the trajec-
chaos asA is decreased oB is increased. Its attractor is tory as it punctures th&=0 plane is plotted for various
shown in Fig. 3 including a portion of the trajectory as it initial conditions. Figure 4 shows such a plot for E46)
spirals outward from an initial condition neélput not aty  with B=0.01. Twenty-one initial conditions are shown, uni-
one of the unstable saddle-focixat — B2 x=0, Xx=0 (with form over the intervalx(0)=0, —0.011<x(0)<0, Xx(0)=0.
eigenvalues\=-0.8, 0.152-1.105. Equation(15) is func-  The global topology is a set of nested tori produced by in-
tionally equivalent to cas8 in Ref. 8. commensurate periodic oscillations xn(vertical in Fig. 4
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-.2 u .25 -2 X 2

Fig. 4. Poincaresection atk=0 for Eq. (16), with B=0.01. Fig. 5. Strange attractor for ER1), with A=0.25.

andx (horizontal in Fig. 4. However, there are an infinite  An extensive search for chaotic solutions of quadratic
number of surfaces where the frequency ratio is rationalNewtonian jerk equations did not produce any such ex-
producing chains of islands in the Poincasection. The amples, even with all six coefficients not zero. This result is
period-8, -9, -10, and -11 islands are evident in Fig. 4. Eaclieasonable since the force must have an explicit time depen-
of these islands is surrounded by a separatrix in the vicinitydence (unlessa;,=0), and this dependence consists of an
of which chaos occurs. Most of these regions are invisiblyadditive term of the forntt, which is unbounded ak ap-
small in Fig. 4. However, the period-10 and higher islandsproaches infinity. However, the total force must be bounded
overlap, producing a large connected stochastic region thatnce it is proportional tx, which is bounded.
extends to infinity in thetx direction. The islands with pe-
riod less than 10 are apparently enclosed by KAM toriy, cuBIC NONLINEARITIES
(Kolomorogov—ArnoId—Moséf‘) and are thus bounded.

Equation (16) can be transformed into a form that re- The procedure outlined above can be extended to other
sembles the logistic equation in EgL) by defining a new types of nonlinearities. For example, consider jerk functions
variabley=x/A+1/2, whereA=2B"~. The resulting equa- with only cubic nonlinearities. To impose symmetry, set the

tion, constant and quadrati@ver) terms to zero. The most gen-
e eral such jerk function is
y+y+Ay(1-y)=0, 17) e o o o e

has properties identical to E¢L6) except for a scaling fac- = (b1 + DX+ bax"+ gk 4 bsxx+ bexx+ byxx)x

tor. A value of A=0.2 gives results analogous B>=0.01 in + (bg+bgx?+ by X2+ by xX) X+ (byo+ byx?)x.

Fig. 4.

One usual characteristic of conservative flows, not shared (20)
by dissipative flows is time-reversal invariance. EquationNote that Eq.(20) is not a Newtonian jerk because it con-
(16) has this property as can be verified by repladingith  tains terms higher than linear in
—t and defining a new variablg= —x. The resulting equa- A search was carried out for chaotic solutions using this
tion for y is identical to Eq(16). Similarly, Eq.(17) is time-  jerk form. The search was less extensive than the one with
reversal invariant as can be verified by replacingith —t quadratic jerks(about 16 cases vs 10. However, chaotic

and defining a new variable=1-y. solutions were found about ten times more ofabout 0.1%
of the cases examined vs 0.0L%nd so many examples
V. NEWTONIAN JERKS were found. Eight functionally distinct forms were found

with three terms and two cubic nonlinearities, and four were
The jerk function in Eq(8) is the most general quadratic found with four terms and one cubic nonlinearity. Interest-
polynomial form, but it is not in general derivable by differ- ingly, no cases as simple as E®) or (16) were found,
entiating Newton’s second law with a force that dependsalthough it's difficult to rule out their existence.
explicitly on the instantaneous position, velocity, and time. An example of a cubic dissipative chaotic flow that oc-
For such a case, we require tifagx,x,t) satisfy curred often and that has a different structure than the cases

dF/dt=XaF/dx+XdF/ox+ dF/at=mj, (19  Previously described is

_ - g o _
which in turn implies that= (and hencg) must be of the XXX Ax=0. (21)
form F=XU+xV+c, whereU=gF/dx andV=gF/ox. If | It is governed by a single paramet&y which over the range

is of the formj = j(x,x,X), thenc is a constant. Ik andx are  0<A<1 produces limit cycles of many periodicities inter-
independent, theaU/dx=dV/dx, and Eq.(8) reduces to spersed within broad regions of chaos. Figure 5 shows its
attractor forA=0.25, projected onto the-v plane including

a portion of the trajectory as it spirals outward from an initial
Equation (19) is the most general quadratic form of what condition near(but not at) the unstable saddle focus at the
might be called a Newtonian jerk function. origin, with eigenvalues.=(—A). Similar appearing cha-

j=(a1+a2X+a3)'()5'(+(a5+a6X+a25()5(+a10. (19)
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7 VII. SIMPLE NUMERICAL METHOD

It is worth noting that all the results in this paper can be
replicated using an extremely simple numerical algorithm.
The difficulty in obtaining reliable solutions of coupled dif-
ferential equations has inhibited teachers and students from
devoting the same attention to chaotic flows as has been
given to chaotic maps such as the logistic map. Inappropriate
numerical methods can produce spurious results, including
false indications of chaos, and the temptation is to rely on
pedagogically undesirable canned algorithms.

Consider a linear harmonic oscillatok=—x, whose
phase-space trajectory is a circle with a radius determined by
-? the initial conditions and proportional to the square root of

-6 X 6 the energy. The most straightforward way to solve such an
equation is the Euler method,

Fig. 6. Strange attractor for E€R2), with A=3.6. _ _
. . ®2 Xn+1=Xa+hvn,  Uns1=0,—hX,, (24)

otic solutions can be found by replacing theterm in Eq. Wwhereh is a small increment of time. However, it is easy to

(21) by x?% or by xx2 show that each iteration causes the radius to increase by a
Another dissipative cubic jerk function that has chaoticfactor of 1:+h%2 and the energy by a factor of-h?® Since
solutions is 2x/h iterations are required to complete one cycle, the cu-
w oan i3 mulative error is linear ih, and hence the method is called
X+ AX=XX"+x"=0. (22 first order. The trajectory spirals outward to infinity for any

Its strange attractor foA=3.6 as shown in Fig. 6 projected choice ofh.

onto thex—v plane resembles two back-to-back elongated This problem is not as serious as it appears for dissipative
Rossler attractors. The origin is a saddle focus with eigensystems since it merely reduces the dissipation by an amount
values\=0, 0, —A. It is linearly neutrally stable, but weakly that can be made negligible by choosimgufficiently small.

unstable because of higher-order nonlinearities. However, for a conservative system, the Euler method is
A cubic system was found that is conservative and chagssentially useless if the trajectory is followed for many
otic. It has three terms and two cubic nonlinearities, cycles. A small change in Eq24) suggested by Cro
w o o leads to a system that conserves energy exactly when aver-
X+ XX=A(1=x)x=0. (23 aged over half a cycle:
It consists of two sets of nested tori, one at positivand the
other at negative, coupled in such a way that trajectories  y . =x +hy. . v,.;=0,—hXyeq. (25

near their intersection are chaotic and encircle both tori. The

trajectories are bounded, in contrast to the case in Fig. 4. Its ) )
Poincaresection in thex=0 plane forA=0.01 is shown in  This form also is very easy to program because it allows the
Fig. 7. Twenty-one initial conditions are shown, uniform variables to be advanced sequentially rather than simulta-
over the interval-0.769<x(0)=0.65(0)<0.769,%(0)=0.  Nneously. It generalizes to higher dimensions and performs

Island structure is just barely discernible near the last close#ell with jerk systems since two of the derivatives involve
toroidal surface. only a single variable. A simpléDOS) BAsIC program that

solves Eq.(9) by this method is
SCREEN 12
x=.02
v=0
a=0
h=.01
WHILE INKEY$=" "
x=x+h »v
v=v+h *a
j==2.017 xa+v*v-x
a=a+h xj
PSET (320+40 *x, 240-40 *V)
WEND
This program produces the attractor in Fig. 1. Although all
the chaotic systems described in this paper were verified with
a fourth-order Runge—Kutta integrator, the figures were pro-
duced with minor variations of the code abo{smetimes
with a much smaller value df) to emphasize the usefulness
of this simple algorithm and to encourage experimentation.
For long calculations, double-precisi¢or highe) is recom-
Fig. 7. Poincaresection atx=0 for Eq. (23), with A=0.01. mended to control round-off errors.
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known chaotic systems that involve a third-order ODE in a (1994.
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nonlinearities and either one or two control parameters. Nonegives chaos?” Am. J. Phy$4, 525(1996.
of the cases have been examined in great detail, offering th8S. H. Schot, “Jerk: The time rate of change of acceleration,” Am. J. Phys.
opportunity for additional exploration. One could search for_ 46, 1090-10941978.
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FACULTY SALARIES

There is also too small a compensation allowed to the Professors to make it an object far men
of talents to settle down in this business. The professor in a college is obliged to see [much
company—the parents and guardians of the students expect some attention when they \isit the
place. Also the price of all articles of living in the vicinity of a college is greater than that in|the
country around while the salary is generally so small that with the strictest economy the| ends
cannot be made to meet at the close of the year. We have too many colleges. The endowments are
too much scattered to produce the best effect or to allow of salaries which shall secure competent
instructors and the necessary implements of education. The salaries at Yale are but 12 Hundred
dollars and those at Schenectady were the same until lately they have been cut down. |In our
college none of the Professors are able to live on their salaries. Such is the expense of living|in this
place that since | have been in Princeton | have been obliged to expend from 250 to 300 dlollars
per year more than | receive from the college. The trustees however are desposed to be as liberal
as the state of the funds will allow but they cannot exceed their means.

Joseph Henry, letter to Peter Bulliofis846, in The Papers of Joseph Henmgdited by Marc Rothenber@mithsonian
Institution Press, Washington, 199%/ol. 6, pp. 461—-462.
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