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A numerical examination of third-order, one-dimensional, autonomous, ordinary differential
equations with quadratic and cubic nonlinearities has uncovered a number of algebraically simple
equations involving time-dependent accelerations~jerks! that have chaotic solutions. Properties of
some of these systems are described, and suggestions are given for further study. ©1997 American

Association of Physics Teachers.
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I. INTRODUCTION

One of the most remarkable recent developments in c
sical physics has been the realization that simple nonlin
deterministic equations can have unpredictable~chaotic!
long-term solutions. Chaos is now thought to be rather co
mon in nature, and the study of nonlinear dynamics
brought new excitement to one of the oldest fields of scien
The widespread availability of inexpensive personal comp
ers has brought many new investigators to the subject,
important research problems are now readily accessibl
undergraduates. An interesting and yet unsolved problem
to determine the minimum conditions necessary for cha
This paper will describe several examples of chaotic flo
that are algebraically simpler than any previously repor
and will suggest further lines of promising investigation.
The chaotic system to which one is usually first introduc

is the logistic equation,1

xn115Axn~12xn!, ~1!

which is remarkably simple and yet exhibits many of t
common features of chaos. For most values ofA in the range
3.5699... to 4, it produces a sequence ofx values that exhibit
sensitive dependence on initial conditions and long-term
predictability. Its behavior can be studied with a simple co
puter program or even a pocket calculator.
Equation~1! is a one-dimensional iterated map in whic

the variablex advances in discrete time steps or jumps. M
of the equations of physics, and science in general, are m
naturally expressed in the form of differential equations
which the variables evolve continuously in time. Newton
second law is the prototypical example of such a continu
dynamical process.
Whereas chaos can arise in discrete-time systems

only a single variable, at least three variables are required
chaos in continuous-time systems.2 The reason is that the
trajectory has to be nonperiodic and bounded to some fi
region, and yet it cannot intersect itself because every p
has a unique direction of flow. Newton’s second law in o
dimension~1D! inherently contains two variables because
involves a second derivative. It is really two equations
kinematic one defining the velocity,dx/dt5v, and a dy-
namic one describing the rate of change of this veloc
dv/dt5F/m. Thus Newton’s second law in 1D with a forc
that depends only on position and velocity cannot prod
chaos since there are only two phase-space variables~x and
v!.
In two spatial dimensions, there are four phase-space v

ables, and thus chaos is possible. For example, a plane
biting a single massive star is described by two spatial co
537 Am. J. Phys.65 ~6!, June 1997
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ponents and two velocity components since the orbit lies
plane. The equation of motion is nonlinear because the fo
is proportional to the inverse square of the separation. H
ever, this system does not exhibit chaos because there
two constants of the motion—mechanical energy and ang
momentum—which reduce the phase-space dimension f
four to two. With a third object, such as a second star,
planet’s motion can be chaotic, even when the motions
coplanar, because the force on the planet is no longer cen
and its angular momentum is thus not conserved. The th
body problem was known 100 years ago to have cha
solutions and has never been solved in the sense of deri
an analytic expression for the position of the bodies a
function of time.
A one-dimensional system can exhibit chaos if the fo

has an explicit time dependence. For example, a sinusoid
driven mass on a nonlinear spring with a cubic restor
force ~2kx3! and linear damping~2bẋ! obeys an equation

ẍ1bẋ1kx35A sin vt, ~2!

where ẋ[dx/dt. This is a special case of Duffing’
equation3 whose chaotic behavior has been studied by Ued4

It is a useful model for any symmetric oscillator such as
mass on a spring driven to a sufficiently large amplitude t
the restoring force is no longer linear. Note thatx and t can
be rescaled so as to eliminate two of the four parameters~b,
k, A, andv!. For example, we can takek5v51 without loss
of generality. Thus the behavior of the system is determin
entirely by two parameters~b andA in this case!, and by the
initial conditions,x~0! and ẋ~0!. Equation~2! is known to
have chaotic solutions5 for b50.05 andA57.5, among other
values.
Systems such as Eq.~2! with an explicit time dependenc

can be rewritten in autonomous form~t does not appear ex
plicitly ! by defining a new variablef5vt, leading to a sys-
tem of three, first-order, ordinary differential equatio
~ODEs! such as

ẋ5v, v̇52bv2kx31A sin f, ḟ5v. ~3!

The new variablef is a periodic phase, and thus the glob
topology of the system is a torus. Other standard example
chaotic autonomous ODEs with three variables include
Lorenz6 and Rössler7 attractors, which have only quadrat
nonlinearities, but each of which has a total of seven ter
on its right-hand side.
An earlier paper8 described a computer search that r

vealed 19 examples of chaotic flows that are algebraic
simpler than the Lorenz and Ro¨ssler systems. These auton
537© 1997 American Association of Physics Teachers
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mous equations all have three variables~x, y, and z! and
either six terms and one quadratic nonlinearity or five ter
and two quadratic nonlinearities.

II. JERK FUNCTIONS

Recently Gottlieb9 pointed out that the simplest ODE in
single variable that can exhibit chaos is third order, and
suggested searching for chaotic systems of the fo
x̂5 j (x,ẋ,ẍ), where j is a jerk function~time derivative of
acceleration!.10,11He showed that case A in Ref. 8,

ẋ5y, ẏ52x1yz, ż512y2, ~4!

can be recast into the form

x̂52 ẋ31 ẍ~x1 ẍ!/ ẋ, ~5!

and he wondered whether yet simpler forms of the jerk fu
tion exist that lead to chaos. Equation~4! is a special case o
the Nose´–Hoover thermostated dynamic system,12,13 which
exhibits time-reversible Hamiltonian chaos.14

Careful examination of the other 18 equations in Ref
shows that most if not all of them can be reformulated int
third-order ODE in a single variable. This exercise is w
suited for a student with an elementary knowledge of diff
ential calculus. For example, case I in Ref. 8 can be writ
as

x̂1 ẍ10.2ẋ15ẋ210.4x50, ~6!

which in some ways is more appealing than Eq.~5! since it
has only polynomial terms and a single quadratic nonline
ity.
It is interesting to ask under what conditions a system om

first-order ODEs inm variables can be written as anmth
order ODE in a single variable. A theorem by Takens15 as-
sures us that almost any variable from anm-dimensional
system can be used to reconstruct the dynamics provid
sufficient number of additional variables are construc
from the original variable by successive time delays,x(t),x(t
2t),x(t22t),x(t23t),..., but it may require as many a
2m11 such time lags~called the ‘‘embedding dimension’’!.
This condition was subsequently relaxed to 2m.16 It is rea-
sonable to assume that a differential equation of orderm
would also suffice. However, if we are free to choose
variable optimally, there is reason to hope that an embedd
of m might suffice in most cases.
Systems for which this is apparently not the case inclu

ones with periodic forcing such as Eq.~3!. The reason is tha
one of the variables,f, lies on a circle that requires a Eu
clidean dimension of 2 to embed it. If we replace the sinvt
in Eq. ~2! with a new variabley that obeys the harmoni
oscillator equation,ÿ52y, Eq. ~3! with k5v51 can be
written as a fourth-order ODE,

ẍ̈1bx̂1 ẍ13x2ẍ1bẋ16xẋ1x350. ~7!

It is interesting to note that the trigonometric nonlinear
~sinf! in Eq. ~3! has been replaced exactly by a small nu
ber of polynomial terms, suggesting that equations such
Eq. ~7! are rather more general than would at first appea
The term ẍ̈[d4x/dt4 is the time derivative of the jerk

which might be called a ‘‘spasm.’’ It has also been called
‘‘jounce,’’ a ‘‘sprite,’’ a ‘‘surge,’’ or a ‘‘snap,’’ with its suc-
cessive derivatives, ‘‘crackle’’ and ‘‘pop.’’17 Note that the
parameterA does not appear in Eq.~7!, but it does appear in
the initial conditions, whose number is one greater than
538 Am. J. Phys., Vol. 65, No. 6, June 1997
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Eq. ~3!. The initial conditions must satisfy the constrai
A5 x̂(0)1bẍ(0)13x2(0)ẋ(0) for Eq. ~7! to be equivalent
to Eq. ~3!.
In one sense, equations involving the jerk (x̂) and its de-

rivatives are unremarkable. Newton’s second law (ẍ5F/m)
leads necessarily to a jerk whenever the forceF in the frame
of reference of the massm has a time dependence, eith
explicitly [F(t)] or implicitly [ F(x,ẋ)]. Except in a few
special cases such as a projectile moving without drag
uniform gravitational field, nonzero jerks exist. For examp
a mass on a linear spring has a sinusoidally varying jerk
well as all higher derivatives. However, in such a case, o
two phase-space variables~x and ẋ! are required to describe
the motion. In the cases considered here, not only is the
nonzero, but the acceleration (ẍ) is an independent phase
space variable necessary to describe the motion. Such
equation might arise naturally in a case like a planet orbit
a pair of fixed massive stars where there are two spa
dimensions~and thus four phase-space variables! but with
the trajectory constrained to a three-dimensional subse
the phase space by the conservation of energy.

III. NUMERICAL SEARCH PROCEDURE

Since Eq.~6! demonstrates the existence of chaotic je
functions with only quadratic nonlinearities, it is interestin
to identify the simplest such function. The most gene
second-degree polynomial jerk function is

j5~a11a2x1a3ẋ1a4ẍ!ẍ1~a51a6x1a7ẋ!ẋ

1~a81a9x!x1a10, ~8!

for which the goal is to find chaotic solutions with the fewe
nonzero coefficients and with the fewest nonlineariti
Equation~6! ensures us that chaotic jerk functions with fo
terms and one nonlinearity exist. Thus we seek cases
four or fewer terms and one nonlinearity or fewer than fo
terms and two nonlinearities. Such cases would be at lea
simple as the 19 cases in Ref. 8.
The numerical procedure was to choose randomly thre

four of the coefficients~a1 through a10!, set them to uni-
formly random values in the range25 to 5, and then calcu-
late the trajectory for randomly chosen initial conditions~x,
ẋ, andẍ! in the range25 to 5. The range25 to 5 is arbitrary
and poses no significant restriction becausex and t can be
rescaled. A fourth-order Runge–Kutta integrator with a s
size of Dt50.05 was used. The process was repeated
order of 107 times. The most common dynamic was for th
trajectory to escape to infinity, and this was detected by st
ping the calculation wheneveruxu1uẋu1uẍu exceeded 104.
Because of the quadratic nonlinearity, unbounded cases
usually identified within a few dozen iterations. The rema
ing solutions most often settled to a fixed point or lim
cycle. Rare cases~the order of one in 104! exhibited chaotic
solutions. Thus, in some sense, it is reasonable to conc
that chaos is relatively rare in algebraically simple syste
of ODEs.18

The simplest way to detect chaos is to use its character
sensitive dependence on initial conditions. The calculat
could be done twice in parallel with initial conditions th
differ by a smalle0. The quantitye0 can be chosen in~al-
most! any direction and assigned a valuee0!1 but several
orders of magnitude greater than the computational pr
sion. This is best done after a few thousand iterations to
the orbit converge to the attractor and to avoid unneces
538J. C. Sprott
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calculations for unbounded cases. The signature of chao
that the separation of the orbits usually reaches a valu
order unity~e0*0.1! quickly.
A more careful procedure and the one used here is

calculate the Lyapunov exponent.19 This was done in a man
ner similar to that described above, except that after e
iteration, the new orbit separatione1 was determined, and th
separation was readjusted toe0 along the direction ofe1. The
largest Lyapunov exponent was then determined by ave
ing the natural logarithm ofe1/e0 along the orbit. A decidedly
positive Lyapunov exponent is a signature of chaos. Si
there is always a zero Lyapunov exponent for a perio
flow, corresponding to a direction parallel to the flow, t
search condition was for a Lyapunov exponent that rema
in excess of 0.01 for 105 iterations. Typically about one cha
otic solution emerged per hour of computing on a 66-M
486 personal computer. All the candidate chaotic cases fo
in this way were then tested with a smaller iteration step s
~Dt50.01! for at least 106 iterations.

IV. SEARCH RESULTS

Chaotic flows in three dimensions~3D! can be character
ized as either dissipative or conservative, according
whether the trajectory is attracted to a region of space w
fractal dimension less than 3, a so-called strange attract20

Dissipative systems have this property, and the attracto
independent of the initial conditions provided they lie in t
basin of attraction. By contrast, a conservative system h
trajectory whose dimension depends on initial conditio
and is three for a chaotic trajectory, two for a quasiperio
trajectory~two incommensurate frequencies!, one for a peri-
odic trajectory, and zero for an equilibrium point.
Three-dimensional chaotic flows must have one posi

Lyapunov exponent, one zero exponent, and one nega
exponent. The sum of the exponents is the rate of volu
expansion for a cluster of initial conditions. This sum cann
be positive for bounded trajectories. If it is negative~dissi-
pative!, the initial conditions are drawn to an attractor who
volume is zero because its dimension is less than three~just
as a 2-D surface has zero volume!. If the sum of the expo-
nents is zero~conservative!, there is no contraction, and th
chaotic trajectory fills some 3-D region, perhaps with a fra
tal boundary.
It is relatively easy to calculate numerically the rate

volume expansion, and from that, the negative Lyapun
exponent for a chaotic jerk function. It is given in terms
the sum of the Lyapunov exponents byV21 dV/dt5(L
5] j /] ẍ5a11a2x1a3ẋ12a4ẍ. Since this expression de
pends onx and its derivatives, in general it must be averag
along the trajectory. The dimension can then be estima
using the Kaplan–Yorke conjecture,21 DKY522L1/L3 ,
where L1 is the positive exponent andL3 is the negative
exponent. The exponentL2 is zero. Dissipative systems ar
usually easier to identify because they are less sensitiv
initial conditions, have lower dimension, and are more rob
to errors in the numerical method. They are also more r
resentative of real physical systems since dissipation
nearly always present in some degree. These systems w
discussed first.

A. Dissipative systems

The simplest chaotic dissipative system that was found
all its coefficients equal to zero excepta1, a7, anda8. Two
539 Am. J. Phys., Vol. 65, No. 6, June 1997
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of these coefficients can be set to unity without loss of g
erality, and the remaining coefficient was arbitrarily taken
a1[2A, leading to the equation,

x̂1Aẍ2 ẋ21x50. ~9!

It is unlikely that any algebraically simpler form of an au
tonomous chaotic flow exists because the above equation
the minimum number of terms that allows an adjustable
rameter and it has only a single quadratic nonlinearity. It c
be equivalently written as three, first-order, ordinary diffe
ential equations with a total of five terms,

ẋ5v, v̇5a, ȧ52Aa1v22x. ~10!

This is one fewer term or nonlinearity than in any of the
cases previously found and two fewer than in the Ro¨ssler
equations. This case has been described in detail elsewhe22

It is a special case of Eq.~6! with the ẋ term absent. It was
presumably not discovered previously because the rang
A for which chaos occurs is very narrow.
Equation ~9! has bounded solutions for 2.017...,A

,2.082..., a period-doubling route to chaos, and a ne
parabolic return map that strongly resembles the logi
equation. The positive Lyapunov exponent is largest
A>2.017, and the exponents~base-e! at that value are
L>0.0550, 0,22.0720, corresponding to a Kaplan–York
dimension of 2.0265. The attractor is approximately a M¨-
bius strip, and the basin of attraction is shaped like a tadp
with a tail that apparently extends to infinity along the2a
axis.23 Figure 1 shows a projection of the attractor onto t
x–v plane including a portion of the trajectory as it spira
outward to the attractor from an initial condition near~but
not at!! the unstable saddle-focus at the origin. The eigenv
ues, given by the characteristic equation,l31Al21150, are
within about 1% ofl>22.24, 0.160.66i over the range ofA
for which bounded solutions exist.
A similar example of a chaotic flow was found in whic

the ẋ2 term is replaced withxẋ,

x̂1Aẍ2xẋ1x50, ~11!

but this case is equivalent to Eq.~9! to within a constant as
can be seen by differentiating Eq.~9! with respect to time
and defining a new variablev[ ẋ. It is chaotic over the same
range ofA as is Eq.~9!. Figure 2 shows its attractor fo
A52.017 projected onto thex–v plane including a portion

Fig. 1. Strange attractor for Eq.~9!, with A52.017.
539J. C. Sprott
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of the trajectory as it spirals outward to the attractor from
initial condition near~but not at!! the unstable saddle focu
at the origin. These appear to be the only two example
dissipative chaotic jerk equations with three terms and
quadratic nonlinearity.
Two cases were found with three terms and two quadr

nonlinearities, a form analogous to Eq.~9!:

x̂1Axẍ2 ẋ21x50; ~12!

and one analogous to Eq.~11!:

x̂1Axẍ2xẋ1x50. ~13!

Equation~12! has an attractor that strongly resembles Fig
for A50.645, and Eq.~13! has an attractor that resembl
Fig. 2 forA520.113, although the initial conditions must b
chosen carefully since their basins of attraction are relativ
small.
Eight functionally distinct cases were found of jerk fun

tions with four terms and one quadratic nonlinearity th
have strange attractors. These are mostly generalization
the simpler chaotic cases previously described with an a
tional linear term. Most if not all of them are functionall
equivalent to cases in Ref. 8. For example, one can ad
term proportional toẋ or a constant term in either Eq.~11! or
~13! and find chaotic solutions. These cases are characte
by a pair of parameters, and hence it is more tedious
explore their properties.
Other examples of dissipative chaotic flows were found

the form,

x̂1Aẍ1 ẋ1 f ~x!50, ~14!

where f (x) is a second-degree~or higher! polynomial given
in the notation of Eq.~8! by f (x)5a9x

21a8x1a10. One
such case is

x̂1Aẍ1 ẋ2x21B50, ~15!

which has chaotic solutions for parameters in the neighb
hood ofA50.5 andB50.25 and a period-doubling route t
chaos asA is decreased orB is increased. Its attractor i
shown in Fig. 3 including a portion of the trajectory as
spirals outward from an initial condition near~but not at!!
one of the unstable saddle-foci atx52B1/2, ẋ50, ẍ50 ~with
eigenvaluesl>20.8, 0.15261.105i . Equation~15! is func-
tionally equivalent to caseS in Ref. 8.

Fig. 2. Strange attractor for Eq.~11!, with A52.017.
540 Am. J. Phys., Vol. 65, No. 6, June 1997
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B. Conservative systems

In contrast to the cases above, conservative systems
ones in which the phase-space volume is conserved. A
ficient but not necessary condition isa15a25a35a450.
The only such cases found were of this type and had
form of Eq. ~14! with A50. Since chaos requires a nonlin
earity, the functionf (x), must contain a quadratic or othe
nonlinearity. No chaotic solutions were found fo
f (x)56x2, but with an added linear or constant term~or
both!, many such solutions were found. However, in ea
case, the trajectories eventually escaped, although the ch
transient can persist for hundreds of cycles. Unbounded
jectories in a conservative~volume-conserving! system may
seem paradoxical, but an example is a spacecraft launc
from the earth with an initial velocity just sufficient for it to
escape from the solar system.
An example of a conservative system that exhibits chao

Eq. ~15! with A50,

x̂1 ẋ2x21B50. ~16!

Positive values ofB less than about 0.05 produce chao
solutions for selected initial conditions. Large values ofB
~>0.05! are chaotic for most initial conditions, but the tra
jectory quickly escapes. AsB approaches zero, the range
initial conditions that produce chaos shrinks to zero, and
escape time approaches infinity. An appropriate intermed
value isB50.01. As with Eq.~15! this system has two equi
librium points atx56B1/2, ẋ50, ẍ50. They are both un-
stable saddle foci, with the trajectory spiraling out from t
one at2B1/2 and into the one at1B1/2, producing a toroidal
structure. The eigenvalues are given by the character
equation,l31l62B1/250. Equation~16! may represent the
algebraically simplest example of a conservative chao
flow, analogous to Eq.~9! for dissipative chaotic flows. It
may also be the simplest formulation of a torus for suita
initial conditions.
The behavior of such a system is best exhibited in a Po

carésection, where, for example, the location of the traje
tory as it punctures theẍ50 plane is plotted for various
initial conditions. Figure 4 shows such a plot for Eq.~16!
with B50.01. Twenty-one initial conditions are shown, un
form over the intervalx~0!50, 20.011,ẋ~0!,0, ẍ~0!50.
The global topology is a set of nested tori produced by
commensurate periodic oscillations inx ~vertical in Fig. 4!

Fig. 3. Strange attractor for Eq.~15!, with A50.5 andB50.25.
540J. C. Sprott
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and ẋ ~horizontal in Fig. 4!. However, there are an infinit
number of surfaces where the frequency ratio is ration
producing chains of islands in the Poincare´ section. The
period-8, -9, -10, and -11 islands are evident in Fig. 4. E
of these islands is surrounded by a separatrix in the vici
of which chaos occurs. Most of these regions are invisi
small in Fig. 4. However, the period-10 and higher islan
overlap, producing a large connected stochastic region
extends to infinity in the1x direction. The islands with pe
riod less than 10 are apparently enclosed by KAM t
~Kolomorogov–Arnold–Moser24! and are thus bounded.
Equation ~16! can be transformed into a form that r

sembles the logistic equation in Eq.~1! by defining a new
variabley[x/A11/2, whereA[2B1/2. The resulting equa-
tion,

ŷ1 ẏ1Ay~12y!50, ~17!

has properties identical to Eq.~16! except for a scaling fac
tor. A value ofA50.2 gives results analogous toB50.01 in
Fig. 4.
One usual characteristic of conservative flows, not sha

by dissipative flows is time-reversal invariance. Equat
~16! has this property as can be verified by replacingt with
2t and defining a new variabley[2x. The resulting equa-
tion for y is identical to Eq.~16!. Similarly, Eq.~17! is time-
reversal invariant as can be verified by replacingt with 2t
and defining a new variablex[12y.

V. NEWTONIAN JERKS

The jerk function in Eq.~8! is the most general quadrat
polynomial form, but it is not in general derivable by diffe
entiating Newton’s second law with a force that depen
explicitly on the instantaneous position, velocity, and tim
For such a case, we require thatF( ẋ,x,t) satisfy

dF/dt5 ẍ]F/] ẋ1 ẋ]F/]x1]F/]t5mj, ~18!

which in turn implies thatḞ ~and hencej ! must be of the
form Ḟ5 ẍU1 ẋV1c, whereU[]F/] ẋ andV[]F/]x. If j
is of the formj5 j (x,ẋ,ẍ), thenc is a constant. Ifx andẋ are
independent, then]U/]x5]V/] ẋ, and Eq.~8! reduces to

j5~a11a2x1a3ẋ!ẍ1~a51a6x1a2ẋ!ẋ1a10. ~19!

Equation ~19! is the most general quadratic form of wh
might be called a Newtonian jerk function.

Fig. 4. Poincare´ section atẍ50 for Eq. ~16!, with B50.01.
541 Am. J. Phys., Vol. 65, No. 6, June 1997
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An extensive search for chaotic solutions of quadra
Newtonian jerk equations did not produce any such
amples, even with all six coefficients not zero. This resul
reasonable since the force must have an explicit time dep
dence~unlessa1050!, and this dependence consists of
additive term of the formct, which is unbounded ast ap-
proaches infinity. However, the total force must be bound
since it is proportional toẍ, which is bounded.

VI. CUBIC NONLINEARITIES

The procedure outlined above can be extended to o
types of nonlinearities. For example, consider jerk functio
with only cubic nonlinearities. To impose symmetry, set t
constant and quadratic~even! terms to zero. The most gen
eral such jerk function is

j5~b11b2x
21b3ẋ

21b4ẍ
21b5xẋ1b6xẍ1b7ẋẍ!ẍ

1~b81b9x
21b10ẋ

21b11xẋ!ẋ1~b121b13x
2!x.

~20!

Note that Eq.~20! is not a Newtonian jerk because it con
tains terms higher than linear inẍ.
A search was carried out for chaotic solutions using t

jerk form. The search was less extensive than the one w
quadratic jerks~about 106 cases vs 107!. However, chaotic
solutions were found about ten times more often~about 0.1%
of the cases examined vs 0.01%!, and so many example
were found. Eight functionally distinct forms were foun
with three terms and two cubic nonlinearities, and four we
found with four terms and one cubic nonlinearity. Intere
ingly, no cases as simple as Eq.~9! or ~16! were found,
although it’s difficult to rule out their existence.
An example of a cubic dissipative chaotic flow that o

curred often and that has a different structure than the c
previously described is

x̂1 ẍ31x2ẋ1Ax50. ~21!

It is governed by a single parameterA, which over the range
0,A,1 produces limit cycles of many periodicities inte
spersed within broad regions of chaos. Figure 5 shows
attractor forA50.25, projected onto thex–v plane including
a portion of the trajectory as it spirals outward from an init
condition near~but not at!! the unstable saddle focus at th
origin, with eigenvaluesl5~2A!1/3. Similar appearing cha-

Fig. 5. Strange attractor for Eq.~21!, with A50.25.
541J. C. Sprott
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otic solutions can be found by replacing theẍ3 term in Eq.
~21! by x2ẍ or by xẍ2.
Another dissipative cubic jerk function that has chao

solutions is

x̂1Aẍ2xẋ21x350. ~22!

Its strange attractor forA53.6 as shown in Fig. 6 projecte
onto thex–n plane resembles two back-to-back elonga
Rössler attractors. The origin is a saddle focus with eig
valuesl50, 0,2A. It is linearly neutrally stable, but weakl
unstable because of higher-order nonlinearities.
A cubic system was found that is conservative and c

otic. It has three terms and two cubic nonlinearities,

x̂1x2ẋ2A~12x2!x50. ~23!

It consists of two sets of nested tori, one at positivex and the
other at negativex, coupled in such a way that trajectorie
near their intersection are chaotic and encircle both tori. T
trajectories are bounded, in contrast to the case in Fig. 4
Poincare´ section in theẍ50 plane forA50.01 is shown in
Fig. 7. Twenty-one initial conditions are shown, unifor
over the interval20.769,x(0)50.65ẋ(0),0.769,ẍ~0!50.
Island structure is just barely discernible near the last clo
toroidal surface.

Fig. 6. Strange attractor for Eq.~22!, with A53.6.

Fig. 7. Poincare´ section atẍ50 for Eq. ~23!, with A50.01.
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VII. SIMPLE NUMERICAL METHOD

It is worth noting that all the results in this paper can
replicated using an extremely simple numerical algorith
The difficulty in obtaining reliable solutions of coupled di
ferential equations has inhibited teachers and students f
devoting the same attention to chaotic flows as has b
given to chaotic maps such as the logistic map. Inappropr
numerical methods can produce spurious results, includ
false indications of chaos, and the temptation is to rely
pedagogically undesirable canned algorithms.
Consider a linear harmonic oscillator,ẍ52x, whose

phase-space trajectory is a circle with a radius determined
the initial conditions and proportional to the square root
the energy. The most straightforward way to solve such
equation is the Euler method,

xn115xn1hvn , vn115vn2hxn , ~24!

whereh is a small increment of time. However, it is easy
show that each iteration causes the radius to increase
factor of 11h2/2 and the energy by a factor of 11h2. Since
2p/h iterations are required to complete one cycle, the
mulative error is linear inh, and hence the method is calle
first order. The trajectory spirals outward to infinity for an
choice ofh.
This problem is not as serious as it appears for dissipa

systems since it merely reduces the dissipation by an am
that can be made negligible by choosingh sufficiently small.
However, for a conservative system, the Euler method
essentially useless if the trajectory is followed for ma
cycles. A small change in Eq.~24! suggested by Cromer25

leads to a system that conserves energy exactly when a
aged over half a cycle:

xn115xn1hvn , vn115vn2hxn11 . ~25!

This form also is very easy to program because it allows
variables to be advanced sequentially rather than simu
neously. It generalizes to higher dimensions and perfo
well with jerk systems since two of the derivatives involv
only a single variable. A simple~DOS! BASIC program that
solves Eq.~9! by this method is
SCREEN 12
x=.02
v=0
a=0
h=.01
WHILE INKEY$=‘‘ ’’
x=x+h !v
v=v+h !a
j=−2.017 !a+v!v−x
a=a+h!j
PSET (320+40 !x, 240−40 !v)

WEND
This program produces the attractor in Fig. 1. Although
the chaotic systems described in this paper were verified w
a fourth-order Runge–Kutta integrator, the figures were p
duced with minor variations of the code above~sometimes
with a much smaller value ofh! to emphasize the usefulnes
of this simple algorithm and to encourage experimentati
For long calculations, double-precision~or higher! is recom-
mended to control round-off errors.
542J. C. Sprott
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VIII. SUMMARY

This paper has shown many examples of previously
known chaotic systems that involve a third-order ODE in
single variable with simple polynomial~quadratic and cubic!
nonlinearities and either one or two control parameters. N
of the cases have been examined in great detail, offering
opportunity for additional exploration. One could search
other similar and perhaps even simpler examples of cha
flows. One could look at other nonlinearities, such as tri
nometric, logarithmic, or exponential. The bifurcations a
routes to chaos could be examined. The basins of attrac
could be mapped. The Lyapunov exponents and dimens
could be calculated. The structure of various Poincare´ sec-
tions and return maps could be studied. One could try
construct physical models to which these equations ap
and attempt to observe their chaotic behavior. These sug
tions represent a wealth of possibilities for student resea
projects. The simple computer code described in the prev
section provides an appealing starting point for such stud
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place that since I have been in Princeton I have been obliged to expend from 250 to 300 d
per year more than I receive from the college. The trustees however are desposed to be as
as the state of the funds will allow but they cannot exceed their means.
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