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Abstract

The effect of applying a periodic perturbation to an accessible parameter of a high-dimensional (coupled-Lorenz) chaotic
system is examined. Numerical results indicate that perturbation frequencies near the natural frequencies of the unstable
periodic orbits of the chaotic system can result in limit cycles or significantly reduced dimension for relatively small

perturbations. (© 1999 Elsevier Science B.V.
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Control of low-dimensional nonlinear systems is
a well-established art [1-11]. However, the con-
trol of high-dimensional systems remains more elu-
sive [12,13}. Controlling high-dimensional systems
with traditional closed-loop mechanisms often re-
quires detailed knowledge of the system state, as well
as waiting for the system to approach closely the un-
stable periodic orbit (UPQ) to be stabilized, or taking
the additional step of steering the trajectory toward
the desired UPO [14]. The very simple method of an
open-loop control applied as a simple periodic per-
turbation to a system parameter has been overlooked.
Here it is shown for a 96-dimensional polynomial
flow described by a system of 32 coupled Lorenz
equations [15] that small periodic perturbations to
an accessible parameter at the UPO frequencies can
produce limit cycles, a reduced Lyapunov dimen-
sion (Dy) [16], or a decreased leading Lyapunov
exponent (LLE).

Previous work on controlling low-dimensional sys-
tems with periodic perturbations showed successful
perturbation frequencies to be rational multiples of the
periodic drive frequencies that initiated the chaos [ 17-
23], the natural frequencies in a period-doubling route
to chaos [24], or frequencies corresponding to peaks
in the power spectrum [25,26]. Here we show that
these predictors are not always reliable. Rather, the
optimum perturbation frequencies correspond to low-
order rational multiples of the frequencies of UPOs
embedded in the attractor. These UPOs can be ex-
tracted directly from the time series of any state-space
variable, and thus no model for the system dynamics is
required to determine optimum perturbation frequen-
cies.

The ¢xample shown here is a coupled Lorenz model
consisting of a one-dimensional lattice with each site
occupied by a set of Lorenz equations. This model has
been used to study the coupling of two lasers [27], and
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it also exactly describes the dynamics of coupled ther-
mal convection loops, or thermosyphons [28]. The
model used here is taken from Jackson and Kodoge-
orgiou [15], which viscously couples N Lorenz equa-
tions,

Yi=o(y —xi) — p(Xip) + xi-1 +2x)
Yi=—yi— Xz +1x;,
Zi=xy —bzi. (n

Here, i denotes the lattice site (i =0,1,...,N — 1),
and u is the viscous coupling constant. Each lattice
site is coupled to one neighbor on each side. This
system is taken to have periodic boundary conditions:
XN = X9, YN = Yo, Zy = Zo. The parameters used were
o=10, u =3, r=45 b=1,and N = 32. In the
thermosyphon paradigm, x corresponds to the average
fluid velocity around the loop, y corresponds to the
temperature difference between points at “12 o’clock”
and “6 o’clock”, and z corresponds to the horizontal
temperature difference. It was found that the system
exhibits chaos for r down to about 23.

Calculation of the Lyapunov exponent spectrum
is computationally intensive for high-dimensional
chaotic systems since the memory and time required
both scale as N?. For this reason, a lattice with only
N = 32 sites (and thus 3 x 32 = 96 variables) was
considered, and a first-order “leapfrog” integration
scheme was used. In the absence of a perturbation,
this 96-dimensional system has an attractor with a
Lyapunov dimension of 65.8. The uncoupled Lorenz
equations for these parameters was measured to have
Dy = 2.06 £ 0.005, which suggests a dimension for
the coupled system of 32 x 2.06 = 65.9. The agree-
ment between the actual and expected values of Dy,
is remarkable, although it would not have been sur-
prising if the coupling had significantly reduced the
dimension. Although Dy, is apparently an extensive
property of the system size, the behavior reported
here appears general as evidenced by similar be-
havior in other high-dimensional systems [29]. The
parameter r was chosen to be perturbed according
to r = ro + risin{wt), because it corresponds to
the experimentally accessible temperature difference
applied across the thermosyphon.

Fig. 1 shows a recurrence plot histogram of the
periods of UPOs found for this coupled Lorenz sys-
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Fig. 1. Recurrence plot histogram for the coupled Lorenz system.
The period-one peak occurs at m = 252.5 time steps, or f = 1.014.

tem. The method identified a period of m time steps
(At = 1/256) as a UPO whenever the trajectory
passed within some distance & of an arbitrary starting
peoint [30]. A value of ¢ roughly twice the average
step size in the time series was used. All 96 state-
space variables were used to identify UPOs instead
of the common technique of using a single time se-
ries with time-delayed embedding. The frequency of
the period-one UPO was found to be 1.014 £ 0.050,
which is roughly half the frequency of the period-one
UPO for a single Lorenz system. The power spectral
peak for a single variable in the coupled system was
roughly 2.0, which corresponds to the period-one
UPO for a single Lorenz attractor. Thus, the global
dynamics of the coupled system seem to evolve more
slowly than the fluctuations in any state-space vari-
able, which means that this is a system where the
power spectral peak frequency for a single variable is
a rnisleading indicator of the optimum perturbation
frequency. There is no necessity that the UPO with
the lowest frequency corresponds to the peak in the
power spectrum, since its vicinity may be only rarely
visited by the dynamics.

The perturbation frequencies were chosen to be the
frequencies of the UPOs for the coupled system. Fig. 2
shows the Lyapunov dimension (D ) and largest Lya-
punov exponent (LLE) as a function of perturbation
amplitude for seven different perturbation frequencies.
Remarkably, a small perturbation amplitude of r; = 4,
which is only 9% of the unperturbed value, resulted in
limit cycle behavior for a perturbation frequency equal
to the frequency of a period-one UPO ( f = 1.014).
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Fig. 2. Results of perturbing a coupled Lorenz system as evidenced
by the Lyapunov dimension (Dr) and the leading Lyapunov ex-
ponent (LLE). The solid horizontal lines indicate values for the
urperturbed system. Note that a perfurbarion frequency [ = [.0{4
produces a limit cycle for r; = 4, 10, and 12.

This perturbation produced the best overall perfor-
mance. Perturbations of frequency f = 2.028 (twice
the period-one UPO frequency) and f = 1.595 (about
three times the period-two UPO frequency) signifi-
camily dRunaskd ik Fimnsion f e gy, Even
if a perturbation does not produce limit cycles, drasti-
cally decreasing the dunension of & Righ-Ainensional
system is a significant step toward controlling it. Per-
turbations of frequency corresponding to a period-
two (f = 0.507), a period-three ( f = 0.338), and a
period-four ( f = 0.254) UPO decrease the dimension
of the system, but require respectively larger perturba-
tions. A perturbation frequency of f = 2.412, which
was shown to be successful at eliminating chaos for the
single Lorenz system {29], also requires a large am-
plitude to decrease the dimension of the system. None
of the frequencies increased the dimension by more
than one, as has been seen when perturbing coupled
legistic equatious (29{. Frequencies thac ace fucther
mismatched from UPO frequencies may excite addi-
tional, latent degrees of freedom. This case could have
important applications in biological and other high-
dimensionat systems, where it is sometimes desirous
to “uncontrol” chaos [31].

Fig. 3 shows a spatiotemporal plot of the value of
x;, which corresponds to the average fluid velocity at
eacht site. The periurbainon & We Oplimar period-ome
frequency (f = 1.014) was turned on at ¢ = 20 with-
out any regard for the location of the trajectory with
respres (0 e prriod-one UPG. The syserm then seitded
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Fig. 3. Spatiotemporal plot of x; vs time for the coupled Lorenz
equations. A perturbation amplitude of r; = 4 and frequency
f =1.014 is turned on at r = 40 and off at r = 160.

itto & period-twa ( f = 0.507) limit cycle at r > 35,
and remained in that limit cycle untif the perturbation
was turned off at r = 180. The onset of chaos is im-
mediate after the perturbation is removed. Numerous
trials starting from different random initial conditions
showed that the chaos was suppressed on average after
a time of t = 33.4 £ 16.8. Thus, this method is useful
SICE OE Meed 1o¢ ward (Ur thie Systen (o approach a
UPO. Also, a limit cycle is always achieved, although
e (frie (aken (G OOtart (¢ (s vartadie.

In summary, a small-amplitude perturbation applied
to an accessible parameter of a numerical system de-
scribed by 96 equations with a Lyapunov dimension
of 65.8 suppressed the chaos. The optimum frequency
to obtain control with a perturbation of small ampli-
tude was the frequency of the UPOs obtained from the
dynamical fluctuations of the system. UPOs can have
vastly different time scales than the fluctuations in a
given state-space variable, which means that the best
perturbation frequencies are not always those with the
most power. These results appear to be general as ev-
10enced by similar behavior in other chaotic systems
of both low and high dimension as will be reported
elsewhere {29].
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