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A new class of chaotic circuit
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Abstract

A new class of chaotic electrical circuit using only resistors, capacitors, diodes, and inverting operational amplifiers is
{ Ž . Ž .described. This circuit solves the equation xqAxq xsG x , where G x is one of a number of elementary piecewise¨ ˙

linear functions. These circuits are easy to construct and to scale over a wide range of frequencies. They exhibit a variety of
dynamical behaviors and offer an excellent opportunity for detailed comparison with theory. q 2000 Published by Elsevier
Science B.V. All rights reserved.
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After three decades of study, the sufficient condi-
tions for chaos in a system of autonomous ordinary

Ž .differential equations ODEs remain unknown. For
continuous flows, the Poincare–Bendixson theorem´
w x1 implies the necessity of three variables and at

w xleast one nonlinearity. The Rossler attractor 2 is a¨
standard example of such a system with a single
quadratic nonlinearity. Systems with one nonlinearity
can generally be written as a third-order ODE in a
single scalar variable, suggesting a means to catalog

w xand quantify the complexity of such systems 3 . In
this scheme, the Rossler system is relatively compli-¨

w xcated 4 , and the algebraically simplest dissipative
w xquadratic form 5 is

{ 2xsyAxq x yx , 1Ž .¨ ˙
which exhibits chaos for values of A equal to or
slightly greater than 2.017. Systems of the form
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{ Ž . ŽxsF x, x, x have been called jerk equations time¨ ˙
. w xderivative of acceleration 6 .

The discovery of this and other such simple sys-
w x w xtems 7 prompted a search 8 for similar examples

in which the quadratic nonlinearity is replaced by
NxN or another elementary piecewise linear function.

Ž . 2Although Eq. 1 with N xN in place of x does not˙ ˙
appear to have chaotic solutions for any A and initial

w xconditions, chaos was found 9 in the system
{
xsyAxy xqNxNy1 2Ž .¨ ˙

Ž .with A equal to or slightly greater than 0.6. Eq. 2
is a special case of the more general system
{
xqAxq xsG x , 3Ž . Ž .¨ ˙

Ž .where G x is a nonlinear function with the proper-
Ž .ties discussed below. Integrating each term in Eq. 3

reveals that it is a damped harmonic oscillator driven
by a nonlinear memory term involving the integral of
Ž . w xG x 4 . Such an equation often arises in the feed-

back control of an oscillator in which the experimen-
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Ž .Fig. 1. A general circuit for solving Eq. 3 using one of the
Ž .nonlinear feedback elements in Fig. 2 for G x .

tally accessible variable is a transformed and inte-
grated version of the fundamental dynamical vari-
able.

Ž . Ž .Eq. 3 with a piecewise linear G x suggests a
class of chaotic electrical circuit that is simple to
construct, analyze, and scale to most any desired
frequency. It is new in the sense that it does not
involve analog multiplication, it uses only resistors,
capacitors, diodes and operational amplifiers, and the
governing equation is simpler than any previously
modeled electronically. The most straightforward im-

w xplementation 8 involves three successive active in-
{

tegrators to generate x, x, and x from x, coupled¨ ˙
Ž .with a nonlinear element that generates G x and

{
feeds it back to x. Fig. 1 shows a slightly simpler
circuit in which one of the integrators is a passive
RC. Above or to the left of each component is the
value that would make the circuit behave in real
time. Values not shown are unity. Below or to the
right are practical values for As0.6 that produce
similar outputs for the op amps and scale the fre-
quency up by a factor of 104 into the audio range
Ž 4fs10 r2pf1592 Hz at the Hopf bifurcation

.point so that the bifurcations and chaos can be
heard. 1

Ž .In Fig. 1, the element labeled G x represents a
nonlinear resistor with the feature that the current I
exiting the grounded terminal at the left obeys Is
Ž .G V , where V is the voltage applied to the terminal

Ž .at the right. For example, the function G x sBNxN

1 Ž .More detail on a circuit that solves Eq. 2 , including a sound
file of the bifurcations as 1r A is increased can be found at
http:rrsprott.physics.wisc.edurchaosrabschaos.htm.

Ž .yC required to solve Eq. 2 is produced by the
Ž . w xcircuit in Fig. 2 a 10 . Fig. 2 shows three other

cases with chaotic solutions. In each case, the con-
stant A is taken as 0.6 and B is selected to be well

Ž .Fig. 2. Some nonlinear forms for G x that produce chaos and
circuits to produce them.
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Fig. 3. Chaotic attractors produced by each of the circuits in Fig. 2 in the xy x plane. In the left-hand column are oscilloscope traces, and˙
in the right-hand column are the corresponding numerical solutions on the same scale
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into the chaotic regime. The constant C determines
the size of the attractor and has been adjusted for
each case so that x reaches a maximum value of
slightly less than 5. Such a voltage is well above the
noise level but comfortably below a value that would
typically saturate the op amps.

Most any of the components can be varied to
serve as a bifurcation parameter. Unfortunately, there
is no single parameter that controls A in any of the

Ž .circuits or B in the circuit in Fig. 2 a , but the
resistor in the lower right of Fig. 1 can be made
variable with resistance R. With the capacitors cho-
sen to give As0.6 for Rs1, the trajectory in
AyB space then follows the curve As0.4q
0.2rR, Bs1rR.

These circuits are similar in spirit to Chua’s cir-
w xcuit 11,12 , which uses two capacitors, an inductor,

and diodes with operational amplifiers or transistors
to provide a piecewise linear approximation to a
cubic nonlinearity. Chua’s circuit has a much more

{
complicated representation in terms of x with many
more than four terms, involving step functions, delta
functions, and their products with derivatives of x.
Because of the delta functions, the dynamics are not

Ž .continuous in the space of x, x, x . Since the˙ ¨
contraction is not constant along the trajectory, it is
more difficult to verify the Lyapunov exponents.
Chua’s circuit is more difficult to construct, scale to
arbitrary frequencies, and analyze because of the
inductor with its frequency-dependent resistive

Žlosses. Three reactive components capacitors or in-
.ductors are required for chaos in systems with con-

tinuous flows so that the Kirchhoff representation of
the circuit contains three, first-order ODEs.

These circuits provide three points of detailed
comparison with theory – the frequency of oscilla-
tions, the values of A and B at which the various
bifurcations occur, and the amplitude of the output

Ž .voltage x t . All three agree with numerical calcula-
tions to within the precision of the electrical compo-

Ž .nents typically 10% . A version of the circuit in Fig.
Ž .2 a was constructed with high precision components
Ž .;1% , and it was verified that the frequency and
amplitude agree with numerical calculations to within
a few percent. The onset of chaos occurred for a
value of R about 12% smaller than expected, how-
ever. The reason for this discrepancy is that this
particular implementation of the absolute value cir-

cuit requires an operational amplifier with a large
slew rate to minimize hysteresis near the bend in the
curve. This problem can be circumvented by operat-
ing at a lower frequency or by using a slightly more
complicated version of the absolute value circuit.
Fig. 3 shows oscilloscope traces in the xy x plane˙
of the attractors produced by each of the systems in
Fig. 2 for the parameters listed along with the corre-
sponding numerical prediction, plotted on the same
scale.

Ž . Ž .The system in Eq. 3 with a nonlinear G x has
been relatively little studied. Coulett, Tresser, and
Arneodo observed chaos in numerical simulations

w xwith a cubic 13 and a special piecewise linear
w x Ž . w x14,15 form of G x , and Rul’kov, et al. 16,17
devised an RLC circuit using an unspecified nonlin-

Ž .ear amplifier to produce a particular form of G x . It
does not appear to be generally known that many

Ž .functions G x produce chaos, some examples of
which are listed in Table 1. These systems are
elementary, both in the sense of having the alge-
braically simplest autonomous ODE and in the form
of the nonlinearity. The table lists typical values of
B that give chaos for arbitrary values of C with
As0.6, along with the numerically calculated largest

Ž .Lyapunov exponents LE in base-e. The other Lya-
Ž .punov exponents are 0 and y LEqA , and the

w xKaplan–Yorke dimension 18 is D s 2 qKY
Ž .LEr LEqA . Other chaotic systems can be found

Ž .in which G x is a delta function or a hysteretic
Ž .multivalued function, in which case only a second-
order ODE is required for chaos.

Table 1
Ž . Ž .Some simple functions G x that produce chaos in Eq. 3 with

As0.6. The constant C is arbitrary and only effects the size of
the attractor.

Ž . Ž .G x B LE base-e

Ž ." BN xNyC 1.0 0.036
Ž .y Bmax x,0 qC 6.0 0.093
Ž .BxyCsgn x 1.2 0.657

Ž .y BxqCsgn x 1.2 0.162
2Ž ." B x rC – C 0.58 0.073

2Ž .Bx x rCy1 1.6 0.103
2Ž .y Bx x rCy1 0.9 0.126

w Ž . xy B xy2tanh Cx rC 2.2 0.221
Ž ." Bsin Cx rC 2.7 0.069
Ž ." Bcos Cx rC 2.7 0.069
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Ž .For bounded solutions, G x must average to zero
w xalong the orbit 9 , which means that any continuous

Ž . UG x must have at least one zero at xsx . The
Ž U .stability of the fixed point at x , 0, 0 is determined

by the solutions of the eigenvalue equation l3 qAl2

qlyGX s0, where GX sdGrd xN U . This point isx

locally stable for –AFGX F0 and undergoes a Hopf
bifurcation at GX syA, where ls" i. Thus, one
would expect chaotic systems of this form to require
a nonlinearity with either a positive slope at its zero
crossing, or a sizeable negative slope, implying a
negative resistance in the corresponding circuit
model. Systems with GX

)0 apparently require at
least two fixed points for chaos, but systems with
GX

-yA only need one. All the cases studied have
these features. A scaling that preserves GX and the

Ž .shape of G x only effects the size of the attractor.
Of the cases studied, the largest Lyapunov expo-

Ž . Ž .nents occur for systems with G x sBxyCsgn x .
Using a variant of simulated annealing, the parame-
ters A and B were adjusted to maximize the Lya-
punov exponent. The result was As0.55 and Bs

Ž .2.84, for which the Lyapunov exponents base-e are
Ž .1.055, 0, y1.655 , giving an attractor with a Ka-
plan–Yorke dimension of D s2.637. The attrac-KY

tor is contained within a thin torus that nearly touches
the boundary of its small basin of attraction so that
initial conditions must be chosen carefully to pro-
duce bounded solutions. This case resembles the one

Ž .shown in Fig. 3 c .
It is also interesting to determine the least nonlin-

Ž .ear form of G x for which chaos occurs, which we
take to mean the two-part piecewise linear function
with the smallest bend at the knee, u . Of the cases

Ž . Žstudied, this condition occurs for G x s" BNxN
.yC with As0.025 and Bs0.468, for which

Ž y1 .u s2tan B is about 50.28. The basin of attraction
is very small, and the chaotic attractor coexists with
a nearby limit cycle.

Circuits of this type are well suited for detailed
quantitative testing of bifurcation theory and other
chaotic properties. They may have practical applica-

tion in secure communications and broadband signal
generation since they are especially simple circuits
whose properties can be predicted and controlled
with very high accuracy.
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