Avitorratic Gereratiaon of Fractal Art

JuienClintonSprott

Introduction

The recent realization that very simple equations can have
extremely complicated graphical solutions has surprised most
scientists and delighted many artists. Inexpensive computers
and sophisticated software, now widely available, are power-
ful new tools for both the scientist and the artist. The diffi-
culty is that most equations produce mundane solutions, and
so one usually resorts to extensive experimentation or the
experience of others to find interesting cases. An alternative
is to program the computer to explore a vast range of equa-
tions at random and select those that produce interesting pat-
terns. | will review my attempts over the past decade to auto-
mate this process and produce appealing images with mini-
mal human interaction. Whether patterns produced entirely
by a computer can be considered “art” is a philosophical
debate best left to others.

Strange Attractors

Most processes in nature can be described by determinis-
tic equations that uniquely predict the future based on the
present. Whether it is the trajectory of a spacecraft crossing
the Solar System or the motion of air in a tropical storm, or the
spread of an epidemic, what happens next is determined by
current conditions. However, it may be that a small change in
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Figure 1: Typical 2-D strange attractor

the present leads to a greater change tomorrow and an even
greater change the day after, until eventually all predictability
is lost. Equations with this property are said to exhibit
"chaos”. The graph of a chaotic process is a special kind of
fractal called a "strange attractor”. A fractal is a geometrical
form with infinitely many replicas of itself embedded on ever
smaller scales. A strange attractor is a fractal produced by a
chaotic dynamical system. Hence, detecting chaos is a good
starting point for identifying equations capable of producing
visually interesting patterns.

If you were to write down a hundred arbitrary equations,
only a couple of them would have chaotic solutions.
However, the computer can easily test for chaos by solving

the equations for two different starting conditions to see if th
solutions rapidly diverge from one another. The Lyapunc
exponent is a measure of the divergence, and a positive valu
signifies chaos. Chaotic cases produce strange attractors
each of which, like snowflakes, is unique and usually beaut
ful. Even the same equations can produce very different pa
terns depending on the values of terms in the equation:s
Figure 1 shows a typical example.

To make an image of this type requires two equations, on
for the horizontal position and the other for the vertical pos
tion of each successive dot that makes up the image. Thes
coupled equations are iterated repeatedly to produce
sequence of arbitrarily many points. After a while, most of th
dots fall on top of previous ones (the attractor), and the ca
culation can terminate.
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Figure 2: Typical 3-D strange attractor with the third dimension
rendered in grayscale.

Not all strange attractors produced in this way are equall
interesting. Some are too thin or consist of relatively few isc
lated dots. Others are too thick and eventually fill the scree
solidly. This characteristic can be quantified by calculating th
fractal dimension, which for an attractor of this type can tak
on any value between zero (a collection of isolated dots) an
2 (a surface), and it is usually not an integer.

Experiments with human subjects indicate that most pec
ple prefer attractors with dimension about 1.2 and with
small positive Lyapunov exponent. Thus, the computer ca
be instructed to discard cases that do not satisfy these cor
ditions. The dimension preference is reasonable since mar
natural objects such as rivers and tree branches have dimer
sions in this range. The Lyapunov exponent preference i
more mysterious since it's a dynamical rather than a geome
rical property, but it suggests that humans favor some unpre
dictability, but not too much. Attempts to discern individu:
differences in preferences between artists and scientists le
to mixed results.



Strange Attractors can be produced in dimensions higher
1an 2, butthat requires additional means of visualization.
)ne possible method is to code the third dimension in color.
n example of an attractor produced in this way is shown in
igure 2.

The third (or higher) dimension can also be coded into a
rightness scale, or the attractor can be viewed as an
naglyph (using red-blue glasses), stereogram, or stereo pair
ewed with crossed eyes. The attractor can also rotate in an
nimated view.

erated Function Systems

Another means of producing fractal patterns uses iterated
Inction systems (IFS). An IFS is a dynamical system with
~vo (or more) rules that tell where to go next based on the
urrent position. The rules are chosen randomly such as by
ipping a coin or using the computer random number gener-
tor. Although the sequence of points clearly depends on the
articular random choices, surprisingly, the final pattern does
ot. A typical image produced by this method is shown in
igure 3.
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jure 3: Typical iterated function system
jure 4: Typical generalized Julia set

An IFS pattern can also be classified according to its frac-
il dimension and Lyapunov exponent. As with strange
ttractors, human subjects seem to prefer images with a frac-
il dimension between 1 and 2, but within a wider range.
Ithough the sequence is determined randomly, the same
aquence will cause two initial points to converge to the
ame sequence of values. Therefore, these systems have
egative Lyapunov exponents with a maximum value that

depends on the fractal dimension. Human subjects prefer
cases with the largest negative exponents. Thus, the com-
puter can be programmed to select cases that are likely to be
visually appealing.

Generalized Julia Sets

Some of the most intricate fractals are produced by Julia
sets and their cousins7. These systems are also dynamical,
but the points that evolve with successive iteration are not
plotted. Rather, one plots at each initial position a color deter-
mined by the number of iterations required for its orbit to
escape beyond some specified region or by some other crite-
rion. As with the previous cases, most choices of equations
lead to uninteresting results. The interesting cases are those
for which the orbit escapes, but only slowly. Thus, the com-
puter can discard cases for which an orbit that starts near the
center of the image escapes in less about 100 iterations or
more than about 1000 iterations. The remaining images are
typically appealing. A sample image produced by this method
is shown in Figure 4.

Symmetric Icons

A problem with many of the images produced by the above
methods is that they are they are too unstructured. A simple
way to add structure is to take each image and distort it in
some fashion so that it occupies only a portion of the plane in
which it is displayed. It is then replicated in other portions of
the plane, perhaps with rotations and reflections to produce a
symmetric icon. Almost any fractal that meets the conditions

Figure 5: Typical symmetric icon with 3-fold symmetry

above looks even more interesting when displayed in this
way. Figure 5 shows a typical example.

Other transformations can also be performed on the
image. For example, it can be wrapped onto a cylinder,
sphere, or torus and then projected back onto the plane.

Artificial Neural Networks

Artificial neural networks are computer models that
attempt to emulate the structure and operation of the brain.
They consist of a large number of artificial neurons that take
their input as the sum of the output of other neurons and pro-
duce an output that is some nonlinear function of the input.
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Figure 6: Typical artificial neural net attractor

Normally, they are trained to perform some operation on data
supplied at the input and generate an appropriate output
response. However, if the output is fed back to the input, the
network behaves as a dynamical system and produces a
sequence of output values that may be chaotic. With random
connection strengths between the neurons, such networks
can be used to produce visual patterns using one neuron or
combination of neurons to control the horizontal position, one
the vertical position, and a third the color of each point. They
produce interesting patterns similar to the strange attractors
above, except that they are usually constructed so that all
orbits are bounded to some predetermined region of space.
Consequently, many more cases are chaotic, and there is less
need to discard cases. Figure 6 shows a typical such attractor.

These cases are selected automatically by simply counting
the pixels illuminated on the screen as the pattern develops
and discarding those with too few or too many such pixels.

Neural networks are usually designed to facilitate training.
Thus, the connection strengths of the network can be adjust-
ed to produce visually interesting patterns after training on a
set of images that have been aesthetically evaluated by a
human. | am currently working on this prospect and routine-
ly use a trained neural network to prescreen the fractals of the
day that have appeared in my fractal gallery on the Web
(http://sprott.physics.wisc.edu/fractals.htm) since 1996. The
technique shows promise but needs additional development.
As computers become more powerful and software more
sophisticated, the time may come when such programs rival
humans in the quality of the images that they are capable of
creating. il
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