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Abstract1

It came as a surprise to most scientists when Lorenz in 1963 discovered chaos in a simple
system of three autonomous ordinary differential equations with two quadratic nonlinearities. This
paper reviews efforts over the subsequent years to discover even simpler examples of chaotic
flows. There is reason to believe that the algebraically simplest examples of chaotic flows with
quadratic and piecewise linear nonlinearities have now been identified. The properties of these
and other simple systems will be described.

Keywords: chaos, flow, jerk, strange attractor, differential equations, fractal, bifurcation,
circuits

                                                  
1 Manuscript invited: November 27, 1999; accepted: ????, 2000.

1. Introduction

Some aspects of chaos have been known for
over a hundred years. Isaac Newton was said
to get headaches thinking about the 3-body
problem (Sun, Moon, and Earth). In 1890,
King Oscar II of Sweden announced a prize for
anyone who could solve the n-body problem
and hence demonstrate stability of the solar
system. The prize was awarded to Jules Henri
Poincaré who showed that even the 3-body
problem has no analytical solution [1, 2]. He
went on to deduce many of the properties of
chaotic systems including the sensitive

dependence on initial conditions. With the
successes of linear models in the sciences and
the lack of powerful computers, the work of
these early nonlinear dynamists went largely
unnoticed and undeveloped for many decades.

In 1963, Lorenz published a seminal paper
[3] in which he showed that chaos can occur in
systems of autonomous (no explicit time
dependence) ordinary differential equations
(ODEs) with as few as three variables and two
quadratic nonlinearities. For continuous flows,
the Poincaré-Bendixson theorem [4] implies
the necessity of three variables, and chaos
requires at least one nonlinearity. More
explicitly, the theorem states that the long-time
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limit of any “smooth” two-dimensional flow is
either a fixed point or a periodic solution. With
the growing availability of powerful
computers, many other examples of chaos
were subsequently discovered in algebraically
simple ODEs. Yet the sufficient conditions for
chaos in a system of ODEs remain unknown.

This paper will review early serendipitous
and insightful discoveries as well as later
extensive computer searches for the
algebraically simplest chaotic flows. There are
reasons to believe that the simplest such
examples with quadratic and piecewise linear
nonlinearities have now been identified. The
properties of these systems will be described.

2. Lorenz and Rössler

The celebrated Lorenz equations are:

bzxyz

yrxxzy

yxx

−=
−+−=

σ+σ−=

&

&

&

(1)

where the dot denotes a first time derivative
( dtdxx /=& , etc.). Note that there are seven
terms on the right-hand side of these equations,
two of which are nonlinear (xz and xy). Also
note that there are three parameters, for which
Lorenz found chaos with ó = 10, r = 28, and b
= 8/3. The number of independent parameters
is generally d+1 less than the number of terms
for a d-dimensional system, since each of the
variables (x, y, and z in this case) and time (t)
can be arbitrarily rescaled. The Lorenz system
has been extensively studied, and there is an
entire book by Sparrow [5] devoted to it.

Although the Lorenz system is often taken
as the prototypical chaotic flow, it is not the
algebraically simplest such system. In 1976,
Rössler [6] proposed the following equations:
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This example also has seven terms and three
parameters, which Rössler took as a = b = 0.2
and c = 5.7, but only a single quadratic
nonlinearity (xz).

As recently as 1993, Lorenz [7] wrote: “One
other study left me with mixed feelings. Otto
Rössler of the University of Tübingen had
formulated a system of three differential
equations as a model of a chemical reaction.
By this time, a number of systems of
differential equations with chaotic solutions
had been discovered, but I felt I still had the
distinction of having found the simplest.
Rössler changed things by coming along with
an even simpler one. His record still stands.”

What Lorenz apparently did not realize was
that Rössler himself had much earlier (in 1979)
found an even simpler system [8] given by:
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This system has only six terms, a single
quadratic nonlinearity (y2), and two
parameters, giving chaos with a = 0.386 and b
= 0.2. For some other values of the parameters,
the dynamics are quasiperiodic, with a
trajectory that lies on an invariant torus.

However, note that the simplicity of a
system can be measured in various ways.
Algebraic simplicity is one such way;
topological simplicity is another. The Rössler
attractor and most of the others in this paper
are topologically simpler than the double-lobed
attractor of Lorenz, but they are roughly
equivalent in that they all tend to resemble the
single folded-band structure produced by Eq.
(2).

3. Computer Search

Also unaware of the simpler Rössler
example, Sprott [9] embarked on an extensive
search for autonomous three-dimensional
chaotic systems with fewer than seven terms
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and a single quadratic nonlinearity and systems
with fewer than six terms and two quadratic
nonlinearities. The brute-force method [10, 11]
involved the numerical solution of about 108

systems of autonomous ODEs with randomly
chosen real coefficients and initial conditions.
The criterion for chaos was the existence of a
decidedly positive Lyapunov exponent [12].

He found fourteen algebraically distinct
cases with six terms and one nonlinearity, and
five cases with five terms and two
nonlinearities. One case was volume-
conserving (conservative), and all the others
were volume-contracting (dissipative),
implying the existence of a strange attractor.
Sprott provided a table of the spectrum of
Lyapunov exponents, the Kaplan-Yorke
dimension [13], and the types and eigenvalues
of the unstable fixed points for each of the
nineteen cases. Interestingly, the Rössler
example in Eq. (3) was not found, suggesting
that even this extensive search was not
exhaustive.

Subsequently, Hoover [14] pointed out that
the conservative case A found by Sprott
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is a special case of the Nosé-Hoover
thermostated dynamic system that had earlier
been shown [15] to exhibit time-reversible
Hamiltonian chaos. Note that this case in
general needs an adjustable parameter, but it
turns out that chaos occurs for all coefficients
equal to unity, and so it is especially simple in
that sense. None of the fourteen cases with a
single quadratic nonlinearity share that
property, although there are two other chaotic
cases with all unity coefficients and two
quadratic nonlinearities with strange attractors.
Chaos is observed in Eq. (4) for only a small
range of initial conditions, one choice of which
is (x, y, z) = (0, 5, 0). The other eighteen

chaotic cases were apparently previously
unknown.

This search for algebraically simple chaotic
systems was an outgrowth of earlier studies
[16] in which Sprott showed that three-
dimensional ODEs with quadratic
nonlinearities and bounded solutions are
chaotic for 0.38±0.02 percent of the cases with
uniform randomly chosen coefficients. The
probability of chaos increases approximately
as the square root of the dimension up to at
least d = 8 as shown in Fig. 1. Also shown in
Fig. 1 is the probability of chaos in systems
governed by difference equations (iterated
maps), whose behavior is contrary to the case
of ODEs (flows) for reasons that are only
partly understood. Whereas ODEs with
quadratic nonlinearities require three
dimensions to exhibit chaos, iterated maps can
be chaotic with only one dimension. Similar
studies [17] with randomly connected,
discrete-time, artificial neural networks with a
hyperbolic tangent squashing function show
that the probability of chaos is small at low
dimension and increases to nearly 100% at a
dimension of about 100. The relative rarity of
chaos in low-dimensional ODE systems is the
reason chaos went largely unnoticed for so
long and why new examples of simple chaotic
systems are still being discovered. In a related
study [18] Sprott showed that the average
correlation dimension of chaotic d-dimensional
flows with quadratic nonlinearities and
uniform randomly chosen coefficients is
approximately 1.07d 0.3 and the average largest
Lyapunov exponent is approximately 1.15d-0.84

4. Jerk Functions

In response to Sprott’s work, Gottlieb [19]
pointed out that Eq. (4) could be recast in the
explicit third-order form

xxxxxx &&&&&&&&& /)(3 ++−= (5)
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which he called a “jerk function” since it
involves a third derivative of x, which in a
mechanical system is the rate of change of the
acceleration, sometimes called the “jerk” [20].
It is known that any explicit ODE can be cast
in the form of a system of coupled first-order
ODEs, but the converse does not hold in
general. Even if one can reduce the dynamical
system to a jerk form for each of the phase
space variables, the resulting differential
equations may look quite different. Gottlieb
asked the provocative question “What is the
simplest jerk function that gives chaos?”

Figure 1. Probability of chaos for maps
and flows of various dimensions.

One response was provided by Linz [21]
who showed that the original Rössler model,
the Lorenz model, and Sprott’s case R can be
reduced to jerk forms, albeit of very different
complexity. The Rössler model in slightly
modified form can be written as
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where å (= a = b) = 0.2 and c = 5.7 gives
chaos. Note that the jerk form of the Rössler
equation is a rather complicated quadratic
polynomial with 10 terms. Figure 2 shows that

the attractor in the yy −& phase space is the

familiar folded band.

Figure 2. Phase-space plot of the jerk
representation of the Rössler attractor
from Eq. (6) with å = 0.2 and c = 5.7.

The Lorenz model in Eq. (1) can be written
as
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The jerk form of the Lorenz equation is not a
polynomial since it contains terms proportional
to xx /&  as is typical of dynamical systems with
multiple nonlinearities. Its jerk form contains
eight terms. The phase-space plot of Eq. (7) in
Fig. 3 shows the familiar double-lobed
attractor.

Linz showed that Sprott’s case R can be
written as a polynomial with only five terms
and a single quadratic nonlinearity

0=++−+ baxxxxx &&&&&& (8)
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with chaos for a = 0.9 and b = 0.4. Its attractor
as shown in Fig. 4 is a folded band similar to
the Rössler attractor.

Figure 3. Phase-space plot of the jerk
representation of the Lorenz attractor from
Eq. (7) with ó = 10, r = 28, and b = 8/3.

Figure 4. Attractor for Sprott’s Case R
from Eq. (8) with a = 0.9 and b = 0.4.

Clearly, the Lorenz and Rössler models are
not candidates for Gottlieb’s simplest jerk

function that gives chaos, and Sprott’s models
demonstrate the existence of much simpler
examples.

Meanwhile, Sprott also took up Gottlieb’s
challenge and embarked on an extensive
numerical search for chaos in systems of the
explicit form ),,( xxxJx &&&&&& = , where the (jerk)
function J is a simple quadratic or cubic
polynomial. He found a variety of cases [22],
including two with three terms and two
quadratic nonlinearities in their jerk function,

02 =+−+ xxxaxx &&&&&& (9)

with a = 0.645 and

0=+−+ xxxxaxx &&&&&& (10)

with a = - 0.113, and a particularly simple case
with three terms and a single quadratic
nonlinearity [23],

02 =+±+ xxxax &&&&&& (11)

with a = 2.017. Its attractor is shown in Fig. 5.
For this value of a, the Lyapunov exponents
(base-e) are (0.0550, 0, -2.0720) and the
Kaplan-Yorke dimension is DKY = 2.0265. He
also found systems of the form

)(xGxxax =++ &&&&&& (12)

where G(x) is a second-degree (or higher)
polynomial such as x2 – b or x(x - b).

It is interesting to rewrite Eq. (11) as a
dynamical system in the variables x, y, and z:
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In this form, it is apparent that it has two fewer
terms than the Lorenz or Rössler models and
only a single quadratic nonlinearity (y2). As a
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consequence, it is characterised by a single
parameter (a). It is unlikely that a simpler
quadratic form exists because it would have no
adjustable parameters. The number of
possibilities is quite small, and a systematic
numerical check revealed that none of them
exhibits chaos.

Figure 5. Attractor for the simplest chaotic
flow with a quadratic nonlinearity from
Eq. (11) with a = 2.017.

Equation (11) is simpler than any previously
discovered case, both in its jerk representation
and in its representation as a dynamical
system. It was apparently overlooked in earlier
searches because the range of a over which
chaos occurs is quite narrow (2.0168… < a <
2.0577…). It also has a relatively small basin
of attraction, so that initial conditions must be
chosen carefully. One choice of initial
conditions that lies in the basin of attraction is
(x, y, z) = (0, 0, ±1), where the sign is chosen
according to the sign of the y2 term in Eq. (13).

There is an alternate form for the simplest
quadratic jerk function that can be written as

0=+±+ xxxxax &&&&&& (14)

but this case is equivalent to Eq. (11) to within
a constant as can be seen by differentiating Eq.
(11) with respect to time and then renaming
the variable x&  to x.

These systems, and most of the others in
this paper, share a common route to chaos. The
control parameter a can be considered a
damping rate for the nonlinear oscillator. For
large values of a, there are one or more stable
equilibrium points. As a decreases, a Hopf
bifurcation occurs in which the equilibrium
becomes unstable, and a stable limit cycle is
born. The limit cycle grows in size until it
bifurcates into a more complicated limit cycle
with two loops, which then bifurcates into four
loops, and so forth, in a sequence of period
doublings until chaos finally onsets. A further
decrease in a causes the chaotic attractor to
grow in size, passing through infinitely many
periodic windows, and finally becoming
unbounded when the attractor grows to touch
the boundary of its basin of attraction (a crisis).
A bifurcation diagram for Eq. (11), which is
typical, is shown in Fig. 6. In this figure, the
local maxima of x are plotted as the damping a
is gradually decreased. Note that the scales are
plotted backwards to emphasise the similarity
to the logistic map, xn+1 = Axn(1 – xn) [24].
Indeed, a plot the maximum of x versus the
previous maximum shows an approximate
parabolic dependence, albeit with a very small-
scale fractal structure. No cases were found
with a toroidal attractor. Apparently, three-
dimensional systems with a single quadratic
nonlinearity cannot produce toroidal attractors.

Sprott also found a variety of chaotic jerk
functions with cubic nonlinearities, the
simplest of which have three terms and two
nonlinearities. Two examples are

023 =+++ axxxxx &&&&&& (15)

with a = 0.25 and

032 =+−+ xxxxax &&&&&& (16)
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with a = 3.6. He also found cases with four
terms and one nonlinearity, including the old
(circa 1966), but little known, Moore-Spiegel
oscillator [25]

0
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which models the inviscid convection of a
rotating fluid, where T is analogous to the
Prandtl number times the Taylor number and R
is analogous to the Prandtl number times the
Rayleigh number. Moore and Spiegel reported
“aperiodic behaviour” for T = 6 and R = 20;
the term “chaos” was not coined until 1975
[26].

Figure 6. Bifurcation diagram for Eq.
(11) as the damping is reduced.

A phase-space plot of the Moore-Spiegel
attractor for these parameters is shown in Fig.
7. The regions in R-T space over which chaos
occurs are shown in Fig 8, in which chaos is
assumed to exist if the largest Lyapunov
exponent exceeds 0.005 after 4×105 fourth-
order Runge-Kutta iterations with a step size of
0.05. A more general equation of the same
form as Eq. (17) was derived by Auvergne and
Baglin [27] to model the motion of the
ionisation zone of a star, and they also reported
“irregular behaviour” and a broad power
spectrum.

Figure 7. Attractor for the Moore-
Spiegel oscillator in Eq. (17) with T = 6
and R = 20.

Sprott did not find dissipative chaotic jerk
functions with fewer than four terms and a
single cubic nonlinearity. The absence of chaos
in Eq. (11) with a cubic instead of quadratic
nonlinearity is curious since it contradicts the
conventional wisdom that increasing the
nonlinearity enhances the likelihood of chaos.
It is evident that a certain amount of
nonlinearity is required for chaos, but more is
not necessarily better.

Recently, Malasoma [28] joined the search
for simple chaotic jerk functions and found a
cubic case as simple as Eq. (11) but of a
different form

02 =+−+ xxxxax &&&&&& (18)

which exhibits chaos for a = 2.05. Its attractor
is shown in Fig 9. For this value of a, the
Lyapunov exponents (base-e)  are  (0.0541, 0,
-2.1041), and the Kaplan-Yorke dimension is
DKY = 2.0257. This case follows the usual
period-doubling route to chaos, culminating in
a boundary crisis and unbounded solutions as a
is lowered. The range of a over which chaos
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occurs is very narrow, 2.0278… < a <
2.0840…, which probably explains why it was
missed in earlier numerical searches. There is
also a second extraordinarily small window of
chaos for 0.0753514… < a < 0.0753624…,
which is five thousand times smaller than the
previous case. Malasoma points out that this
system is invariant under the parity
transformation xx −→ and speculates that
this system is the simplest such example.

Figure 8. Regions of R-T space over
which chaos occurs for the Moore-
Spiegel oscillator in Eq. (17).

Both Linz and Sprott pointed out that if the
jerk function is considered the time derivative
of an acceleration of a particle of mass m,
Newton’s second law implies a force F whose
time derivative is dF/dt = mJ. If the force has
an explicit dependence on only x& , x, and time,
it is considered to be “Newtonian jerky”. The
condition for ),,( txxFF &=  is that J depends

only linearly on x&& . In such a case the force in
general includes a memory term of the form

∫ ττ=
t

dxGM ))(( (19)

that depends on the dynamical history of the
motion.

Figure 9. Attractor for the simple cubic
flow in Eq. (18) with a = 2.05.

The jerk papers by Linz and by Sprott
appeared in the same issue of the American
Journal of Physics and prompted von Baeyer
[29] to comment: “The articles with those
funny titles are not only perfectly serious, but
they also illustrate in a particularly vivid way
the revolution that is transforming the ancient
study of mechanics into a new science—one
that is not just narrowly concerned with the
motion of physical bodies, but that deals with
changes of all kinds.” He goes on to say that
the method of searching for chaos in a large
class of systems “is not just empty
mathematical formalism. Rather it illustrates
the arrival of a new level of abstraction in
physical science… At that higher level of
abstraction, dynamics has returned to the
classical Aristotelian goal of trying to
understand all change.”

Eichhorn, Linz and Hänggi [30]
summarized the situation with quadratic jerk
functions that exhibit chaos. They used the
method of comprehensive Gröbner bases [31]
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to show that all the previously mentioned
chaotic flows with a single quadratic
nonlinearity and some of those with multiple
nonlinearities can be organized into a
hierarchy of quadratic jerk equations with
increasingly many terms. A slightly modified
version of their results is shown in Table 1
with simplified parameters that produce chaos.
Case JD0 (not included by Eichhorn, et. al.) is a
special case of JD1 in which the constant term
is zero. Such a categorization provides a
simple means to compare the functional
complexity of different systems and
demonstrates the equivalence of cases not
otherwise apparent. In a subsequent paper [32],
the authors examined the simple cases JD1 and
JD2 in more detail and identified the regions of
parameter space over which they exhibit chaos,
albeit with different forms chosen so that the
locations of the fixed points are independent of
the parameter values. In particular, JD1

becomes

xxbxxaxx &&&&&&& +−−−= (20)

and JD2 becomes

)4/1( 2 −−−−= xbxaxx &&&&&& (21)

They also derived criteria for functional
forms of the jerk function that cannot exhibit
chaos. In particular, they showed that a jerk
equation whose integral can be written as

∫ ττ=Ω+
t

dxGxxx ))((),( &&& (22)

with G being either a positive or a negative
semidefinite function for all x cannot exhibit
chaos. Moreover, if G is of the form

cxGxG += )(
~

)(  with a positive (negative)
constant c and a positive (negative)

semidefinite function G
~

, the dynamics
eventually diverge for all initial values, except
for those that coincide with fixed points.

Table 1. Classification of simple
chaotic polynomial jerk systems

Model Equation Parameters
JD0 xxxax −+= 2&&&&&& a = -2.017

JD1

1−+
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xx

bxxax
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&&&&& a = -1.8
b = -2

JD2
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xbxax &&&&&& a = - 0.5
b= - 1.9

JD3
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&&&&&& a = - 0.6
b = -3
c = 5

JD4
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&&&&&& a = - 0.6
b = -2
c = 3

JD5
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2 a = 0.5
b = -1

JD6

12

2

−++

++=

xxxd
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&&&

&&&&&& a = -1
b = -1
c = 2
d = 2

JD7

1

2

2

−+
++

++=

xx

xexxd

cxxbxax

&&

&&

&&&&&& a = -1
b = 1
c = 2
d = -3
e = 1

Concurrently, Fu and Heidel [33], with a
technical correction by Gascon [34], proved
that all three-dimensional, dissipative,
dynamical systems with quadratic
nonlinearities and fewer than five terms cannot
exhibit chaos. They subsequently extended
their results [35] to include conservative cases.
More precisely, they rigorously proved their
results for almost all conservative cases. The

lone exception, 22 zzz −= &&&& , appears
numerically to have only periodic and
unbounded solutions. Their work lends
credence to the claim that Eq. (11) is the
simplest chaotic flow with a quadratic
nonlinearity.

Working independently, Thomas [36, 37]
considered the terms in the Jacobian matrix of
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the system as feedback loops from which he
was able to deduce candidate chaotic systems
and the required signs of the coefficients. One
such system is

czxz
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(23)

with a = 0.385 and c = 2. This system can be
reduced to the jerk form

02
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which by a transformation of variables is
equivalent to case JD3 in Table 1.  The x2 term
in Eq. (23) can be replaced with other
nonlinearities, including x3, tanh(x), sin(x), and
sgn(x), yielding chaos for appropriate
parameter values. These cases have multiple
equilibrium points.

Thomas also proposed a case with a single
equilibrium (at the origin) given by
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with a = 0.25 and c = 2. Its jerk form is
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which is a generalization of Eq. (14). By a
linear transformation and rescaling, Eq. (26) is
equivalent to case JD1 in Table 1.  The x2 term
in Eq. (25) can be replaced with x3, yielding
chaos for a = 3.3 and c = 4, and a jerk function
similar to but slightly more complicated than
Eq. (18).

Thomas also suggested symmetric equations
of the form
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for which he found chaotic attractors for cubic
polynomial and sinusoidal functions f. For
example, a = 0.18 and f(x) = sin(x) gives chaos
as shown in Fig. 10. With f(x) = sin(x), he also
observed chaos in the conservative limit of a =
0. This particularly simple and elegant
example has a trajectory that percolates
chaotically within the infinite three-
dimensional lattice of unstable steady states.
Thomas calls this “labyrinth chaos.”
Unfortunately, its jerk representation is
complicated because of the three
nonlinearities. Equation (27) is a special case
of the more general, cyclically symmetric
system

),,(

),,(

),,(

yxzfz

xzyfy

zyxfx

=
=
=

&

&

&

(28)

which has chaotic solutions for many choices
of the nonlinear function f.

A convenient feature of chaotic jerk
equations is that all three of the Lyapunov
exponents can be determined from a numerical
calculation of only the largest exponent. This
exponent (ë1) must be positive for chaos, and
there must be one zero exponent (ë2)
corresponding to the direction of the flow.
However, for a bounded system, the sum of the
exponents ë1 + ë2 + ë3 is the rate of volume
expansion averaged along the orbit and must
be negative or zero and given by xJ &&∂∂ / ,
which is equal to a for the Newtonian jerky
cases JD0 though JD3 in Table 1. Hence the
negative exponent is easily  found  from ë3 = a
- ë1. The Kaplan-Yorke dimension then
follows from DKY = 2 - ë1/ ë3.
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Figure 10. Attractor for the symmetric
system of Thomas in Eq. (27) with a =
0.18 and f(x) = sin(x).

Cases whose exponents sum to zero are
conservative, and their orbits fill a three-
dimensional volume. Cases whose exponents
sum to a negative value are dissipative, and
they have a strange attractor with a dimension
between 2 and 3. In either case, initial
conditions must be chosen appropriately to
ensure that they are in the basin of attraction
for the dissipative systems and in the stochastic
sea for the conservative systems. The emphasis
here is on dissipative systems since they are
more mathematically tractable and are better
models of most natural systems.

5. Piecewise Linear Jerk Functions

Having found what appears to be the
simplest jerk function with a quadratic
nonlinearity that leads to chaos, it is natural to
ask whether the nonlinearity can be weakened.

In particular, the 2x&  in Eq. (11) might be

replaced with x& . A numerical search did not

reveal any such chaotic solutions.
However, one can formulate the question

differently. Consider the system,

0=+±+ xxxax
b&&&&&& (29)

which is equivalent to Eq. (11) when b = 2. For
what values of a and b does this system exhibit
chaos? Figure 11 shows the result of a
numerical search in which chaos is assumed to
exist if the largest Lyapunov exponent exceeds
0.005 after 4×105 fourth-order Runge-Kutta
iterations with a step size of 0.05. There are
indeed regions of chaos for 1 < b � 2 as well as
for larger values of b. However, there do not
appear to be chaotic solutions for b = 3 as
mentioned earlier. The spiral structure of the
chaotic region in a-b space begs for an
explanation. It appears that the region of chaos
does not extend down to b = 1, but this is
because systems with |x| + |y| + |z| > 106 have
been discarded since they are considered
unbounded. In fact, the attractor size is found
to increase approximately as exp[1/(b-1)] for 1
< b < 2.

Figure 11. Regions of a-b space for
which chaos occurs in Eq. (29).

In an extensive numerical search for the
algebraically simplest dissipative chaotic flow
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with an absolute-value nonlinearity, Linz and
Sprott [38] discovered the case

01 =+−++ xxbxax &&&&&& (30)

which exhibits chaos for a = 0.6 and b = 1.
Chaos also occurs if the signs of both the last
two terms are reversed, with an attractor that is
a mirror image of the original about the x=0
plane. The attractor for this case as shown in
Fig. 12 resembles the folded-band structure of
the Rössler attractor.

Figure 12. Attractor for the simplest
chaotic system with an absolute-value
nonlinearity from Eq. (30) with a = 0.6
and b = 1.

For these parameters, the Lyapunov
exponents (base-e) are (0.035, 0, - 635), and
the Kaplan-Yorke dimension is DKY = 2.055.
The abrupt change in direction of the flow at x
= 0 is not evident in the figure because the
discontinuity occurs only in the fourth time
derivative of x.

The constant 1 in Eq. (30) affects only the
size of the attractor. Chaos exists for arbitrarily
small values of this constant, but the attractor
and its basin of attraction shrink

proportionally. This system exhibits a period-
doubling route to chaos as shown in Fig. 13
and otherwise resembles the quadratic chaotic
jerk functions previously described. This
example relates to the quadratic flows as the
tent map does to the logistic map. Linz and
Sprott claim it is the most elementary
piecewise linear chaotic flow and point out that
the piecewise linear nature of the nonlinearity
allows for an analytic solution to Eq. (30) by
solving two linear equations and matching the
boundary conditions at x = 0. Figure 14 shows
the regions in a-b space for which chaos
occurs in Eq. (30), in which chaos is assumed
to exist if the largest Lyapunov exponent
exceeds 0.005 after 4×105 fourth-order Runge-
Kutta iterations with a step size of 0.05.

Figure 13. Bifurcation diagram for Eq.
(30) with b = 1 as the damping is
reduced.

More recently, Linz [39] has proved that
chaos cannot exist in Eq. (30) if any of the
terms are set to zero. He also notes that chaos
is possible if the |x| term in Eq. (30) is replaced
with |xn|, |x|n, or x2n, with n a positive integer,
or more generally with any inversion
symmetric function f(x) = f(-x) that is either
positive or negative for all x. Numerical
experiments indicate that chaotic solutions
with f(x) = |x|n exist for all nonzero n, including
non-integer and negative values.
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Figure 14. Regions of a-b space for
which chaos occurs in Eq. (30).

In a recent paper, Fischer, Weiler, Fröhlich,
and Rössler [40] propose a piecewise linear
system whose jerk representation can be
written as

0=+−+++ cxxxbxax &&&&&& (31)

which exhibits chaos for a = c = 0.1 and b =
0.3. It is intended to model an experimental
example of chaos discovered in an electronic
circuit [41]. They claim their system is “a
maximally simple 3-variable ODE with a
single letter-V shaped nonlinearity”.
Unfortunately, it has one more term and one
more parameter than the case in Eq. (30), and
thus it is not “maximally simple” in this sense,
although the term x - |x| can be written as 2
min(x, 0).

Equation (30) and (31) are special cases of
Eq. (12) in which G(x) is a general nonlinear
function with the properties described below.
Integrating each term in Eq. (12) reveals that
this system is a damped harmonic oscillator
driven by a nonlinear memory term that
involves the integral of G(x) as shown in Eq.
(22). Such an equation often arises in the

feedback control of an oscillator in which the
experimentally accessible variable is a
transformed and integrated version of the
fundamental dynamical variable. Despite its
importance and the richness of its dynamics,
this system has been relatively little studied.
Coullet, Tresser, and Arneodo observed chaos
in numerical simulations with a cubic
nonlinearity [42] of the form G(x) = bx(1 – x2)
with a = 0.1 and b = 0.44 and with a special
piecewise linear [43, 44] form









≥++−
≤
−≤−−−

=
1 if  

1 if                 

1 if    

)(

xcbbx

xcx

xcbbx

xG (32)

with a = 0.1, b = 0.2061612, and c =
0.2171604 that models a cubic nonlinearity
and satisfies the Sil’nikov conditions for a
homoclinic orbit [45-47]. Thus it is one case
for which chaos can be rigorously proved
rather than numerically indicated.

It does not appear generally known that
chaos accompanies many functions G(x), some
examples of which are listed in Table 2. These
systems are elementary, both in the sense of
having the algebraically simplest autonomous
ODE and in the form of the nonlinearity. The
table lists typical values of b that give chaos
for arbitrary values of c with a = 0.6, along
with the numerically calculated largest
Lyapunov exponents (LE) in base-e. The
constant c is arbitrary and only affects the size
of the attractor.

For bounded solutions, G(x) must average
to zero along the orbit, which means that any
continuous G(x) must have at least one zero at
x = x*. The stability of the fixed point at (x*, 0,
0) is determined by the solutions of the

eigenvalue equation 023 =′−λ+λ+λ Ga ,
where 'G  = dG/dx, evaluated at x = x*. This
point is locally stable for –a � 'G  � 0 and
undergoes a Hopf bifurcation at 'G  = -a,
where ë = ± i. Thus, one would expect chaotic
systems of this form to require nonlinearity
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with either a positive slope at its zero crossing,
or a large negative slope. Systems with 'G  > 0
apparently require at least two fixed points for
chaos, but systems with 'G  < -a only need
one. All the cases in Table 2 have these
properties. A scaling that preserves 'G  and the
shape of G(x) only affect the size of the
attractor.

Table 2. Some simple functions G(x)
that produce chaos in Eq. (12) with a =

0.6.

G(x) b LE
)||( cxb −± 1.0 0.036

cxb +− )0,max( 6.0 0.093

)sgn(xcbx − 1.2 0.657

)sgn(xcbx +− 1.2 0.162

)/( 2 ccxb −± 0.58 0.073

)1/( 2 −cxbx 1.6 0.103

)1/( 2 −− cxbx 0.9 0.126

]/)tanh(2[ ccxxb −− 2.2 0.221

ccxb /)sin(± 2.7 0.069

ccxb /)cos(± 2.7 0.069

It is interesting to identify the maximally
chaotic piecewise linear system. Of the cases
in Table 2, the largest Lyapunov exponents
occur for systems with )sgn()( xcbxxG −= .
Using a variant of simulated annealing [48],
the parameters a and b were adjusted to
maximise the Lyapunov exponent. The result
was a = 0.55 and b = 2.84, for which the
Lyapunov  exponents  (base-e)  are   (1.055, 0,
-1.655), giving an attractor with a Kaplan-
Yorke dimension of DKY = 2.637. The attractor
as shown in Fig. 15 is contained within an
extremely thin torus that nearly touches the
boundary of its small basin of attraction so that
initial conditions must be chosen carefully to
produce bounded solutions. Initial conditions
that suffice are (x, y, z) = (0.03, -0.33, -0.3).

Figure 15. Attractor for the maximally
chaotic system given by Eq. (12) with a
= 0.55 and G(x) = 2.84x – sgn(x).

It is also interesting to identify the least
nonlinear form of G(x) for which chaos occurs,
which we take to mean the two-part piecewise
linear function with the smallest bend at the
knee, è. Of the cases in Table 2, this condition
occurs for G(x) = ±(b|x| - c) with a = 0.025 and
b = 0.468, for which è (= 2tan-1b) is about
50.2�. The basin of attraction is very small, and
the chaotic attractor coexists with a nearby
limit cycle. Initial conditions that suffice are
(x, y, z) = (0.9, 0, 0). Its attractor is shown in
Fig. 16.

The chaotic cases described above by no
means exhaust the list of simple jerk functions
with chaotic solutions. In an extensive search
for chaos in equations of the form

gxfexxd

xcxbxax

+ϕ++ϕ+
+ϕ+=

)()(

)(

&

&&&&&&&&
(33)

where )(xϕ  is one of a variety of simple
nonlinear functions, several dozen
algebraically distinct cases were found with
three terms on the right-hand side, and several
hundred cases were found with four terms on
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the right-hand side. Cases whose coefficients
have different signs are considered distinct, but
not cases in which only the values differ. Table
3 lists a small selection of those cases, chosen
to exclude ones that have already been
described, ones with multiple nonlinearities,
and ones that are a superset of a simpler
equation listed in the table. These cases have
not been carefully verified, and no values are
given for the coefficients a and b that give
chaotic solutions, except that they are positive.
The coefficients are arbitrarily put into the
leading terms. They are presented here to
encourage further study and experimentation.
Note that many of the cases are conservative
and those cases require a careful choice of
initial conditions and tend to have very small
Lyapunov exponents.

Figure 16. Attractor for the least
nonlinear chaotic system given by Eq.
(12) with a = 0.025 and G(x) = 0.468|x| -
1

6. Electrical Circuit Implementations

The piecewise linear jerk functions
described above are ideally suited for

electronic implementation [49] because they
can be accurately represented with resistors,
capacitors, diodes and operational amplifiers.
The general procedure is to start with the
quantity x&&&−  at the circuit input, and then
successively generate x&& , x&− , and x with
inverting integrators. These signals, perhaps
with an additional constant voltage, are then
appropriately combined to form the function

),,( xxxJ &&& , which is then fed back to the input

of the circuit. Such a circuit can be considered
a nonlinear oscillator with positive feedback.

Table 3. Some additional simple
systems with chaotic solutions for
appropriate values of a and b (not

given).

xxxbxax −−−= &&&&&&&& )sgn(

1)cosh( −+−−= xbxxax &&&&

)1( −±−= xxax &&&&

)( 3xxxax −±−= &&&&

)1)0,max(( +−±−= xxbxax &&&&

)1)0,min(( −−±−= xxbxax &&&&

))sinh(( xxxax −±−= &&&&

2xxxax +±−= &&&&

1)cosh( +−±−− xbxxax &&&&

xxxbxax −−+−= 3&&&&&&&

xxxbxax −−+−= )sinh( &&&&&&&

xxxax −−−= )exp( &&&&&&

xxxbxax −+−−= )cos( &&&&&&&

12 −+−−= xxbxax &&&&&&

)cosh(xxxbxax −+−−= &&&&&&

)exp(xxxbxax ±+−−= &&&&&&

1)0,min( −−−−= xxbxax &&&&&&

)cosh(xxxbxax ±−−−= &&&&&&

)1)(cosh( −±−−= xxbxax &&&&&&

xxxbxax −±−−= )cosh( &&&&&&&

2xxxbxax −±−−= &&&&&&

xxbxax −−±−= )1)(cosh( &&&&&&
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 As an example, Fig. 17 shows a circuit that
solves Eq. (30) with b = 1. In this and the
following circuit, only the inverting input to
the operational amplifiers are shown; the
noninverting inputs are grounded. If the fixed
resistors are 1 Ù, the capacitors are 1 F, and
the battery is 1 V, the circuit should work in
real time and should produce chaotic
oscillations when the variable resistor is
adjusted to a value of 1/a � 1.67 Ù. However,
the frequency at the first Hopf bifurcation at a
= 1 is only 1/2ð Hz. A more practical
implementation uses resistors of 1 kÙ and
capacitors of 0.1 ìF, giving a fundamental
frequency of f = 104/2ð � 1592 Hz at the first
bifurcation. This frequency is well into the
audio range so that the period doublings,
periodic windows, and chaos, as shown in Fig.
13, are easily heard in the signal x(t). The
period doublings are even more pronounced
when the signal x is integrated before
amplification to enhance audibly the low
frequencies.

Figure 17. A chaotic circuit using
inverting operational amplifiers and ideal
diodes that solves Eq. (30) with b = 1.

The operation of the circuit in Fig. 17
should be apparent to anyone with operational
amplifier design experience. However, it is not
the simplest circuit that solves Eq. (12) with G(x)
as shown in Fig. 18 (a). One of the active
integrators can be replaced with a passive
integrator, and one of the diodes can be
eliminated, resulting in a circuit with fifteen
components rather than eighteen [50]. Elwakil

and Soliman [51] have also devised a chaotic
operational amplifier circuit with fifteen
components using resistors, capacitors, and
diodes, but the equations required to model it
are much more complicated.

Figure 18. Some functions G(x) in Eq.
(12) that lead to chaos and are easily
implemented electronically.

The functions shown in Table 2 suggest
other nonlinear circuits. For example, the
function sgn(x) is easily implemented with an
operational amplifier that has no feedback and
thus acts as a comparator, abruptly switching
output from a large positive to a large negative
value as the input voltage crosses zero. Special
operational amplifier comparators are available
that have orders of magnitude better frequency
response and slew rates than those designed for
linear operations. Figure 19 shows a circuit
that solves the equation

0)sgn( =+−++ xxxxax &&&&&& (34)

with a = 0.5, whose nonlinearity is of the form
shown in Fig. 18 (b). In this circuit, capacitors
are in microfarads and all resistors are 1 kÙ.

This circuit has eleven components and
might be the simplest chaotic circuit using only
inverting operational amplifiers, resistors and
capacitors. Its attractor is a single folded band
similar to the Rössler attractor and other
examples previously discussed. Equation (34)
with the last two signs reversed as in Fig. 18
(c) also has chaotic solutions, with a double-
scroll attractor similar to the Lorenz attractor,
as shown in Fig. 20, but its circuit
implementation requires an additional
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inverting amplifier. There is not a direct
correspondence between simple equations and
simple circuits, although the identification of
one may suggest the other.

Figure 19. A chaotic circuit using
inverting saturating operational
amplifiers that solves Eq. (34) with a =
0.5.

Figure 20. Attractor for the chaotic
system given by Eq. (12) with a = 0.5
and G(x) = sgn(x) – x.

For some purposes, such as where size and
expense are crucial, it may be important to
minimize the required total capacitance and to

keep the resistances small so that the whole
circuit can be fabricated on a single chip.
There is no fundamental reason why this
cannot be done, although the challenge would
be in simultaneously keeping the frequency
low.  Note that the initial charge on the three
capacitors corresponds to the three initial
conditions in the equations. Thus the circuits
may not start properly if the initial values lie
outside the basin of attraction for the desired
solution.

These circuits are similar in spirit to Chua’s
circuit [52, 53] that uses two capacitors, an
inductor, and diodes with operational
amplifiers or transistors to provide a piecewise
linear approximation to a cubic nonlinearity. A
version of Chua’s circuit using saturating
operational amplifiers is shown in Fig. 21. The
equations modelling this circuit can be reduced
to

byz

zyxy

xhyax

−=
+−=

−=

&

&

& ))((

(35)

which is simple in the sense of having six
terms and one nonlinearity, h(x), whose form is
similar to G(x) in Eq. (32). However, its jerk
representation is much more complicated:

)]()()([

)(

xbhxhxha

xabxx

++−

=−++
&&&

&&&&&&
(36)

Because of the discontinuities in h&  and h&& , the
dynamics are not continuous in the space of

),,( xxx &&& . Since the contraction is not constant
along the trajectory, it is more difficult to
verify the Lyapunov exponents. Chua’s circuit
is more difficult to construct, scale to arbitrary
frequencies, and analyse because of the
inductor with its frequency-dependent losses,
although a variant of Chua’s circuit with only
capacitors is possible [54]. Three reactive
components (capacitors or inductors) are
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required for chaos in systems with continuous
flows so that the Kirchhoff representation of
the circuit contains three first-order ODEs.

Figure 21. A version of Chua’s circuit
using saturating operational amplifiers.

Systems involving delta functions
(derivatives of the step function) and hysteretic
(double-valued) functions can also lead to
chaos. Since the flow is discontinuous for such
cases, chaos is possible with fewer than three
variables. A 2-D chaotic circuit with thirteen
components based on this idea has been
developed by Tamaševièius, et al. [55].

A further 2-D chaotic example is provided
by Dixon, et al. [56], in which the flow

)1(
22

2

22

bbz
zx

z
z

ax
zx

xz
x

−−−
+

=

−
+

=

&

&

(37)

is singular at the origin and all orbits are forced
to approach the singularity. It is probably not
the simplest such case. Such examples will not
be further discussed because they are usually
not good models for natural phenomena.

7. Conclusions

Many autonomous chaotic systems have
been discovered and studied that are
algebraically simpler than the Lorenz and
Rössler systems that are usually cited as

prototypical dissipative chaotic flows. The
representation of these systems in terms of a
single, autonomous, third-order, scalar ODE (a
jerk equation) has simplified their
identification and classification. Candidate
equations have been found for the simplest
such systems with quadratic and piecewise
linear nonlinearities, Eq. (11) and Eq. (30),
respectively. Those systems with piecewise
linear functions are especially suited for
electronic implementation, and several such
circuits have been described. The simplest
such circuit may not yet have been identified.
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