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For many chaotic systems, accurate calculation of the correlation dimension from measured
data is difficult because of very slow convergence as the scale size is reduced. This problem
is often caused by the highly nonuniform measure on the attractor. This paper proposes a
method for collecting data at large scales and extrapolating to the limit of zero scale. The
result is a vastly reduced required number of data points for a given accuracy in the measured
dimension. The method is illustrated in detail for one-dimensional maps and then applied to
more complicated maps and flows. Values are given for the correlation dimension of many

standard chaotic systems.

1. Introduction

The most widely used tool for detecting chaos in
experimental data is calculation of the correlation
dimension using the method of Grassberger and
Procaccia [1983a, 1983b]. The idea is to construct
a correlation integral C(r) equal to the probabil-
ity that two arbitrary points on the orbit in state
space are closer together than r. This is usually
done by calculating the separation between every
pair of N data points and sorting them into bins
of width Ar proportional to r. The correlation di-
mension is given by Dy = dlog(C)/dlog(r) in the
limit Ar — 0, r — 0 and N — oo. These limits are
inherently incompatible for a finite data set, and
for many attractors the computed value of Dy con-
verges very slowly. In the Grassberger—Procaccia
[1983a] paper, examples (with N = 1.5 x 10%) are
shown only for the Hénon map and Lorenz model,
and it turns out that these cases are exceptional
in their rapid convergence. In their longer paper,
Grassberger and Procaccia [1983b] address some of

the problems of slow convergence and propose a
solution of embedding the data in a higher dimen-
sion. This suggestion is helpful, but it does not cure
the problem. Because of this difficulty, the litera-
ture is devoid of credible numerical calculations of
the correlation dimension for most model chaotic
systems, including the logistic map, the Rossler at-
tractor, and the Chirikov map. For the same reason,
spuriously low dimensions have often been reported
for experimental data.

In this paper we describe a method for mea-
suring the correlation integral at finite r and
extrapolating to the limit of » = 0. One product
of this work is improved accuracy in the measured
correlation dimension of several standard chaotic
systems. Throughout, the convergence difficulties
experienced in the numerics are illustrated by an-
alytic results obtained using special cases. The
proposed method is based on identifying critical
points of the measure that are shown to control the
dimension. In the examples discussed in detail, the

1865



1866 J. C. Sprott & G. Rowlands

critical points are relatively easy to identify, but
the method is applicable to more general maps and
flows.

2. Theory

2.1. One-dimensional maps

To study and identify the critical points in the
measure and hence the convergence of the correla-
tion dimension, we consider in some detail the one-
dimensional case for a variety of maps.

The correlation integral C(r) is given in terms
of an invariant measure P(z) by

C(r) = / / P()P()O(r — | — 2/ |)dwds’ (1)

where O is the Heaviside function and the integrals
are over the whole space of the mapping. We take
the measure to satisfy the Frobenius—Perron equa-
tion (see, e.g. [Rowlands, 1990]) in the form

_ P(z1) | P(xa)
[f'(z)] [ (22)]

where f(z) denotes the map and f' = df /dx is its
first derivative. Here x; are the preimages of = such
that = f(z;). We initially restrict our attention
to simple maps that have just two preimages, and
in particular to maps of the form

P(z) + (2)

flz) =1-[2c -1 (3)

where « is a free parameter in the range 1/2 to
0o0. Maps with @ < 1/2 do not have chaotic solu-
tions. The shapes of f(x) for different o are shown
in Fig. 1. In particular, the case a = 2 is the well-
known logistic map [May, 1976], and a = 1 is the
tent map. Each case maps the interval [0, 1] onto
itself and has a maximum of f =1 at x = 1/2. The
generalization to other maps will be made after the
general concepts have been illuminated.
It is convenient to introduce I(r) given by

_dc

1(7’)—5

(4)

in which case we can use Eq. (1) to obtain

1-r
I(r)=2 P(x)P(x +r)dx. (5)
0
To proceed further, we use the well-known
result [Rowlands, 1990] that for a = 2 (the logistic
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Fig. 1. Shapes of general symmetric maps for various a.

equation) the measure is

P(e) = s ©

where Py is a normalization constant equal to 1/m.
Substitution of this form into Eq. (4) gives

I=r dx
o Vrz+r)(1l-z)(1—-—x—r)
(7)

which can be integrated analytically to give I(r) =
4P2K (k) where K is the complete elliptic integral
of the first kind and the argument is k = v/1 — r2.
In particular, for » — 0, we have

I(r) = 2P¢

I(r) = 4P02 2In2 —Inr+ 0(7"2 Inr)]. (8)
This indicates a logarithmic singularity, which we
will see is a feature common to all one-dimensional

maps having a single simple maximum. Using the
above expansion for I(r), we find

- | " I(r)dr
= 4P2[2In24 1)r —rlnr 4+ O(r31n7r)]
which we write in the more general form
C(r) =ar+brinr 4+ O(r3Inr) (9)

from which it follows that

p=InC(r)=p+q+1In (q—i— %) +0(r%q) (10)



where ¢ = Inr. In the numerical evaluation of p or
C(r) we can restrict the range to r < 1, while |q|
is order unity. In this case, terms of order r2q and
higher can be neglected, and p can be written as

p(@)=P+q+n <q+%> (11)

where p and a/b are constants which for the
above case take the values p = In(4P§) and a/b =
—(2In2+ 1) ~ —2.386.

A local correlation dimension v(r) can now be
defined such that
rdC_dp_y 1o )

Q‘i‘g

Y= Car g

while the correlation dimension Ds is the ¢ — —o0
(r — 0) limit of v(r), which goes to 1 for the logistic
map as expected.

The above analysis illustrates that the 1/y/z
singularity in the measure P(z) causes v(r) to
converge logarithmically with r, making numerical
evaluation of the dimension difficult.

To show the ubiquitous nature of this behav-
ior, consider the general logistic equation f(z) =
Az(1 — z). In this case, the Frobenius—Perron
equation takes the form

P(J}l) —i—P(l‘z)
A‘l — 21’1’

with 219 = (1 £ /1 — 42 /A)/2. If we now consider
x ~ A/4 so that both x; and x5 are close to 1/2,

the Frobenius—Perron equation gives

(3)
VI=de/A

With finite P(1/2), the maximum point z = 1/2
maps to a square root singularity at z = A/4.
Further mapping produces additional singularities.
Figure 2 shows a typical measure with these singu-
larities in the logistic map for A = 3.8.

If we now assume that for small enough r these
singularities are separated, we can write

Im:;£M¢<

where g(x, r) is some unknown but smooth function
of x and r, z; is the position of the ith singularity,

P(x) = (13)

P(z) ~ (14)

g(z, r)dx

(15)

x—x;)(x—xi +7)
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Fig. 2. Probability density for the logistic map with
A =3.8.

and L is much greater than r, reflecting the fact
that the singularities are well separated on a scale
compared to r. The case where this is no longer a
reasonable assumption as for the measure on a frac-
tal is considered later. In the small-r limit, we can
evaluate the above integral by expanding g(zx, r) in
a Taylor series in x and r to obtain

I(r) = [Z gz, r= O)] Inr+ O(r) (16)

from which we can calculate C(r) and p(r). Most
importantly, one finds that p(r), neglecting terms
involving r explicitly, is a function of the general
form given by Eq. (11) but where now p and a/b
are unknown quantities of order unity.

Thus the singular nature studied explicitly for
the logistic map with A = 4 is expected for other
values of A. Furthermore, when translated into
an equation for the local correlation dimension,
the same slow logarithmic convergence is expected.
This latter property follows immediately from the
nature of the map near its maximum.

Given that the maximum of the map controls
the convergence, it is important to study examples
where the shape is different. A simple example is
the tent map (o = 1). In this case the Frobenius—
Perron equation reduces to

P(:L‘l) + P(l‘z)

P(z) = 5

where 1 = z/2 and x93 = 1 — /2. An obvious
solution is P(xz) = 1 in the interval 0 < = < 1.
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Substituting this into Eq. (4) gives

I(ry=21-r)
C(r)=2r —r?
and
p(r)=p+q+1In(l —r/2). (17)

Now there is no singularity, and v(r) converges to
unity as powers of r, not q.

The case @ = 1/2 can also be studied analyti-
cally. The Frobenius—Perron equation [Eq. (2)] for
maps of the form of Eq. (3) reduces to

P(z)

B
—5a (1=5) [P@)+ Pz 8)

where T = 22 — 1 = 1 — 2|71|%, 71 > 0 and
B=1—-1/a. For a« =1/2 (or § = —1), we have

P(@) = 5 (1 - B)P@) + P(-7)].

A solution to this is simply
P(@) = Ro(1-7) (19)

where Py is determined by a normalization condi-
tion. This form gives I(r) = 2(2P)2(1/3 +r/2) so
that

2

p(r) =In (%) +q+In(1+3r/4).

Again the convergence is through r, not ¢, and the
dimension is unity.

For other values of «, it has not been possible
to find an analytic expression for the measure P(z).
To obtain the form for v(r), we proceed by study-
ing the form of the singularities in P(z). This is
readily found from Eq. (18) by considering 7; — 0,
in which case for T ~ 1, we obtain

P(z)~ By/(1-7)". (20)

Although we do not know the form for P(Z) except
near these critical points in the evaluation of I(r)
as defined by Eq. (5), it is only these points that
can give anything other than simple powers of r in
I(r). Thus the major contribution to I(r) will be
proportional to an integral of the form

L dx
1:/0 B (21)

With the substitution = r(1 — cosh #)/2, Eq. (21)
reduces to

rq_ 0 do
I= (5)1 25/0 sinh?7~1(9) (22)

where coshf = 1+ 2L/r. For 28 > 1 (or a > 2),
the integral can be divided into a part with limits 0
to oo and another with limits § to co. In the latter

we can express the sinh 6 term in exponentials and
evaluate the integral. In this way we obtain

I=Ar""?’ 4+ B+0O(r)

where A and B are constants. Using this form to
calculate C'(r) and hence p(r), we find

p(r) =po+ % +In [1 + wrw—l}

A
2 21—-06)B 55_
~ po + Eq + -HB A'B) P21, (23)
This corresponds to
B
2 (1 + 27251)
v(r) = (24)

2B 554
«a (1 + A )
where terms of order r have been neglected.

The correlation dimension is now 2/a, but
the convergence is no longer logarithmic in ¢ and
depends on a fractional power of r. Thus we can
expect a faster convergence than for the logistic
equation in any numerical scheme used to calculate
this dimension. This prediction is borne out by the
numerical experiments described below.

For 0 < 26 <1 (or 1 < a < 2) we have to
proceed a little differently since the integral over 6
from zero to infinity is infinite. We first differentiate
with respect to r to give

dI L dr
ar _5/0 ozt Parr)

This integral can now be evaluated the same way
that I(r) was evaluated for § > 1 to give

I(r)=Art"2 1 B.

Now since 23 < 1, the major contribution comes
from B, but otherwise proceeding as above, we have

C(r) = Br +Ar¥/?



where A = aA/2, giving

A
p=po+q+In <1+§r2/a1> (25)

and _
1+ gé,rj/afl
v(r) = ag# . (26)
14 = 2/a—1
+ BT
Thus for o > 2 the dimension is 2/«, and for a < 2
the dimension is unity. This prediction is confirmed
by numerical results discussed later.

Equation (18) for the measure P(Z) has been
solved numerically. First a function (%) is intro-
duced to take out the singular behavior and defined
such that

_ ¥(T)
P(z) = . 2
Then v(T) satisfies the equation
— _ (@) +p(=21)
= 2
where
- <1 ; E) 2/
T) = . 2
k@) 2(1 +7) (29)
R(ZT) is not singular at T+ 1 = 0 and in fact is a
monotonic function of T varying from 1/a at T = —1

to 1/4 at T = 1. Thus we expect (Z) to be a
smooth, almost constant function. This equation
has been solved by iteration, and the results fit well
to a form with ¢ varying slowly with . In fact,
for both o = 1 and a = 2, ¥(Z) is strictly con-
stant. The above form for ¢(Z) when substituted
into Eq. (27) gives a form for P(x) consistent with
the singular behavior of P(x) derived directly from
the Frobenius—Perron equation. Using this form for
P(x) gives

P(@)y(z, r)de

=p [
(r) = 0/0 [z(1—z)(x+7r)(1—2—71)]P
(30)

where 9 (z, r) is a slowly varying function of both r
and z. This shows that the form assumed for P(x)
in Eq. (21) is correct. It is important to note that
the constants A and B that appear in the above
expressions for I(r) do not affect the value of D,
but only the convergence of v(r) to this value. On
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the other hand, the value of Dy is completely deter-
mined by the singular behavior of the measure P(z),
which itself is controlled through the Frobenius—
Perron equation (2) by the nature of f'(z).

2.2. Decoupled maps

We have shown for a range of one-dimensional maps
how the singularities in the measure, traced back
to the behavior of the map in the vicinity of its
maximum, determine the correlation dimension D,
and its asymptotic variation v(r). Unfortunately,
far less is known about the form of the measure in
higher dimensions. In this section we consider two
simple 2-D cases that can be treated to some extent
analytically. One can still define a correlation
function in a form similar to Eq. (1), namely

¢ = [[[] Pa. wPa. e

(r—lz— 2| = |y — v|)dedx’ dydy’ . (31)

We have chosen to measure the distance as |z —
2’| + |y — ¢'| rather than /(z — 2/)2 + (y — y/)? for
analytic convenience, although formally both norms
give very similar numerical results.

The first case we consider is where the x and
y variation are totally independent and the point
(z, y) is mapped to (T, §) by

T = fo(z) and § = fi(y) - (32)

Because of the independence of the x and y
variation, we can write

P(x,y) = Pu(z)Py(y) - (33)

Then the integration over the y variable is analo-
gous to the one-dimensional case, and by analogy
with Eq. (5) we have

ac _
dr

. L d P | P L,(POF)  (34)

IQ(T)

where 7 = r — |z — 2/| and [,(7) is as given by
Eq. (5) for the one-dimensional case for the map b.
A change of order of integration allows us to write

L(r) = % /0 "Ly(r — $)Ga(r, s)ds (35)
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where

1—r

Gq(r, s) = P,(z)Py(z + s)ds

0
-%AlRA@RAm—SMS (36)

with » > s > 0. This is our general result and
will now be applied to a few special cases. We
can interpret this result as saying that the two-
dimensional form for I(r) is a simple convolution of
two one-dimensional forms. Thus we expect that in
two dimensions, the singularities are smoothed out
and convergence improved. Also this result is easily
generalized to higher dimensions.

If both maps are logistic maps, we have for
small r

I(r)=A+Blnr (37)

with A/B = —2In2 ~ —1.386 whereas G(r, s) ~
In(4/s) — s(r — s).
Using these two forms, we find

L(r)=1 [an r+ (AB —2)In T‘} (38)

where T is a constant. This gives for large |q/,

y(r):2+g[l+w].

7 (39)

This result should be compared with the value
obtained for a one-dimensional logistic equation,
namely Eq. (12), which in the present notation takes
the form

1

v(r)=1+ p [1 + (40)

A/B — 1]

In the case where one of the maps is a logistic
map and the other a map with a > 2, we find to
lowest order

mm:1+§+é. (41)

Finally, for a logistic map (o = 2) and a tent
map (a = 1), we have

A 3
1 2B 14
v(ir)y=2+- — 22-—=. (42)
q ¢
Importantly, going to two dimensions, even
when the maps are uncorrelated, can change the
convergence of v(r). In particular, convolving the

map under consideration with the tent map gives a
two-fold improvement in the rate of convergence.
This procedure should also improve convergence
when the time series is not produced from known
maps. Note that in these cases, the final corre-
lation dimension is the sum of the corresponding
one-dimensional values.

2.3. 1-D maps in high-dimensional

embeddings

Grassberger and Procaccia [1983b] showed that
better estimates of the local correlation dimension
v(r) for one-dimensional maps could be obtained by
embedding the map in higher dimensions. If this
embedding dimension is two, this is equivalent to

Pz, y) = P(x)i(y — f(z))

where P(x) is the measure in one dimension and
f(z) is the map. With this form for P(z, y), we
have

(43)

ac _
dr

1 1
= /0 P(:U)d:c/o P(z')dx
O — |z — 2| = [f(z) — )]

Since r is always small, the argument of the delta
function is only near zero if |z — 2/| < 1. In this
case we can expand f(z') about z and write

Ofr — |z — 2’| = |f(z) — f(2")]]
1
~ D(x)

Ig(T)

(44)

dlle —a'| —r/D(z)]  (45)
where D(z) = 1+|f’(z)| and the prime denotes dif-
ferentiation. The evaluation of I3 now proceeds as
in the one-dimensional case, and we find

B [P+ 5)° ()

oo g)ooe )]

The singularities in P(x) are at x = 0 and x = 1,
and we can replace D(z) by its value at these points.
For the logistic map with A = 4, this gives D = 5.
The integrals are then of the same form as the one-
dimensional case except for the prefactor 1/5 and
r — r/5. Thus Is = I(r/5)/5 where I is given by

Ig(T) =

(46)



Eq. (7). The evaluation of Cs(r), Ps(r) and v(r)
proceeds as in Sec. 2.1, and we obtain an expres-
sion for v(r) which is of the same form as Eq. (12)
but with a/b = —(2In2+ 1+ In5) ~ —4. The fac-
tor of 5 is just the local stretching of the map near
its endpoints when the straight line from x = 0 to
x = 1 is distorted into a parabola in two dimensions.
Thus the procedure advocated by Grassberger and
Procaccia [1983b] does not make a significant
change in the logarithmic convergence of v(r).
Convolving with the tent map as discussed in
Sec. 2.2 is a better procedure.

2.4. Two-dimensional maps

In the previous discussion, the case of numerous
critical points in the measure was treated by as-
suming they were separated by at least a distance
L which was larger than r. This procedure is per-
fectly adequate until one has to consider a measure
with fractal structure. Then there is always struc-
ture on a scale of order r or less. To deal with this
problem, we imagine generating the fractal measure
by construction. In particular, consider the middle-
third Cantor set. Initially the measure is uniform
for 0 < < 1. Then the middle third is removed
and the measure is zero for 1/3 < z < 2/3. This is
repeated N times in which case we have 2% islands
of width 1/3. Now to evaluate I(r) as defined by
Eq. (5), we choose r such that » < 1/3N. Then
the only contribution to I(r) comes from integrat-
ing over the same island, and over the integration
range we can treat the measure as uniform. Since
there are 2V of these, we can write

I(r) = A2V (1/3N —r) (47)

where A is a normalization constant. We now
choose r = 1/3V*! to give I(r) = A(2/3)N*1.
Assuming the measure is uniform over the islands,
the normalization factor A is then inversely propor-
tional to the square of the size of the islands. Thus
A x 1/(2/3)?N. Now expressing N in terms of r,
namely N+1 = Inr/In(1/3), we can write I(r) oc r"
where n = —1In(2/3)/1In(1/3) ~ —0.3691. The rest
of the calculation now follows that of Sec. 2.1 to
give a correlation dimension of v =7+ 1 ~ 0.6309.
Note that to this approximation the correlation
dimension is just the similarity dimension In 2/1n 3.

In many systems described by two-dimensional
maps there is a contraction factor that concentrates
the measure on an infinite number of lines hav-
ing the transverse structure of a Cantor set. This
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structure can be understood following a treatment
introduced by Bridges and Rowlands [1977] and
expanded by Broomhead and Rowlands [1984]. For
example, consider the Hénon [1976] map

Tpr1=1— ami + by, (48)
Yntl = T - (49)

If b is small, we can expand in powers of b. To low-
est order, 11 =1 — ax% and y,4+1 = . Thus to
this order the attractor takes the form z = 1 — ay?.
To next order, z,.1 = 1 — az2 + (b/\/a)v/1 — zn,
and so r = 1 —ay? +&/T — y, where £ = b/ /a. We
can in principle continue this expansion to higher
order and see that at each stage the number of lines
making up the attractor is increased by a factor of
2 and the splitting of the lines is controlled by the
factor &.

We can now use the construction of the attrac-
tor to calculate the correlation dimension. Along
each of the lines, the measure is controlled by the
one-dimensional map z,;1 = 1 — ax2 and has
unit correlation dimension. In the transverse direc-
tion we calculate the dimension by treating it as a
Cantor set where the generation of the set is con-
trolled by & rather than the factor 1/3 as in the
example above. An obvious approach would be to
replace 1/3 by £ in the above giving an estimate of

D~1—1In2/In (%) . (50)

Unfortunately this ignores the fact that the sep-
aration in the attractor, though controlled by &,
is not uniform across the attractor. However, we
showed above that the value of the dimension for
the one-third Cantor set is the same as the simi-
larity dimension, and so we make the assumption
that for the Hénon map the correlation dimension
is the Kaplan—Yorke dimension calculated for the
perturbed values of b and a. However, Eq. (50) is a
useful estimate and in particular shows the scaling
with &.

In any numerical evaluation of v(r) there will
be a structure of width &V, which for r > ¢V will
be seen as continuous. This will cause fluctuations
in v(r) of period 1/ as r changes from greater than
¢V to less than ¢V for a particular value of N.
Moreover, the amplitude of these oscillations should
scale as &, since smaller £ implies a more compact
attractor.
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These considerations can be applied to the
Kaplan—Yorke [1979] map

Tp+1 = 2, (mod 1) (51)

Yn+1 = AYn +p(mn) (52)

where p is a periodic function of period-1. The
parameter that controls the quantitative features
of the attractor, &, is now A (see [Broomhead &
Rowlands, 1984]). For the Zaslavsky [1978] map
which we write in the form

Tpt1l = Tp + V + ayps1 (mod 1) (53)
Ynt1 = cos(2mxy,) + e yp (54)

the parameter & is e "/2wa. Numerical results
that follow show the variation of v(g) has a period
that scales with 1/£, and an amplitude that scales
with &.

2.5. Chaotic flows

All chaotic three-dimensional flows have a direc-
tion parallel to the flow along which the measure
should vary continuously, an expanding direction
along which, by analogy with the logistic equation,
we expect singular features to emerge, and a con-
tracting direction, along which, by analogy with the
Hénon map, we expect Cantor-like structure. With
this picture in mind, we use the experience gained
from the study of low-dimensional maps to under-
stand the main features expected in the correlation
integral C(r) and the localized dimension v(r) for
flows.
For the Roéssler [1976] system,

dx

priai A (55)
dy
g +ay (56)
dz
%—b—i-z(x—c) (57)

the contraction is in the z direction. The flow
and expansion occur primarily in the x, y plane
with an angular flow and a radial expansion. This
radial expansion can be quantified by studying the
one-dimensional return map obtained by consider-
ing successive maxima of x. This map is approx-
imately parabolic and has an average measure in
the z-direction as shown in Fig. 3. The qualita-
tive features of this measure are similar to those for

P(x)

(e

3.6 X 11.5

o]

Fig. 3. Average measure for the maximum z values of the
Rossler attractor.

the logistic map for A = 3.8 as shown in Fig. 2.
The singular nature of the measure can be quan-
tified by considering the shape of the 1-D map in
the vicinity of the maximum where a ~ 1.8, so that
in this direction we expect a unit contribution to
the dimension. The smooth flow gives another unit
contribution parallel to the flow.

The behavior in the contracting direction is
controlled by the quantity e €.  Its presence
is indicated in the supposedly one-dimensional
map, which at high resolution is not strictly one-
dimensional but has a width of order 1073. Thus
we expect a final contribution to the dimension of
order In2/1In(1073) = 0.06.

We also expect from the fact that « is close to 2
that the convergence of v(r) with r will be slow, and
because of the smallness of £ we expect relatively
small periodic oscillations. These general features
are borne out by the numerical results described
below.

For the Lorenz [1963] equations,

dz
L oty -2 (58)
dy
E——xz—i-rm—y (59)
dz
i bz (60)

the contraction parameter &, ~ 1072, and so we ex-
pect oscillations in v(r) of small amplitude. Also
the 1-D map obtained by Lorenz [1963] by consid-
ering the maximum excursions in the z-value of the



trajectory is like those with a =~ 0.5 in Fig. 1. Hence
we expect fast convergence of v(r) to Do, and this
is seen numerically.

3. Numerical Method

To study convergence of the correlation dimension,
we need large test data sets, possibly exceeding the
memory of the computer. Since numerical data can
be generated inexpensively compared to the compu-
tational cost of calculating the correlation integral,
a good strategy is to save the data in a circular
buffer. Each new iterate replaces the oldest point
in the buffer, which is then discarded. As each new
point is added to the buffer, its separation from
each of the previous points is calculated and sorted
into bins. A few of the most recent points are ex-
cluded to avoid errors due to temporal correlation
[Theiler, 1986]. The number of such points is small
and can be estimated from the Lyapunov exponent
[Wolf et al., 1985]. For example, with the Hénon
map [Hénon, 1976], the largest Lyapunov exponent
is known to be about 0.605 bits/iteration, and so
after 133 iterations in 80-bit precision, no temporal
correlations should remain. For the work reported
here, a buffer of 32,767 points was used, and the
most recent 767 points were ignored. Thus very
many data points are generated, but an equivalent
N for a fully correlated data set is calculated from
N = /2N, where N, is the number of pairs that
were actually correlated. We typically use values of
N on the order of 10%, which translates into several
days of computation for each system studied. The
numerical algorithm is optimized so that the sepa-
ration of each pair of data points is calculated and
binned in about a hundred machine cycles.

Because of the large data sets and the nature of
some of the cases studied, it was necessary to check
for periodic cycles, which, although rare, would se-
riously skew the results. This was done by checking
for values of separation of exactly zero to machine
precision. In this way, periods up to 32,000 could be
detected, although most of those found had periods
< 2. In such an event, the last 32 million correla-
tions are discarded and the calculation is restarted
with a new random initial condition.

The accuracy with which the correlation
dimension can be calculated is dictated by the value
of N. With abundant data, there is thus a pre-
mium on calculating and binning the separations
as rapidly as possible. The separation between two
vectors R; and R; in a d-dimensional space is calcu-
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lated from the Euclidean norm, r = [(Riz — Rjz)? +
(Riy — Rjy)? + ---]1"/2, which is rotation invariant.
It has been proposed to use other measures that
are easier to calculate such as the absolute norm,
r = |Riz — Rjz| + |Riy — Rjy| + -+ -, or the supre-
mum norm, 7 = max(|Riz — Rjz|, |Riy — Rjyl, -+ ),
but these methods tend to give inferior results.
Note, however, that it is not necessary to perform
the square root; it is just as good to bin the val-
ues of r? as it is to bin the values of r, since
log(r?) = 2log(r).

With bins of width Ar proportional to r, there
are several strategies for sorting the separations into
the appropriate bins. The conceptually simplest
method is to generate a bin index by taking the in-
teger part of log(r?). Calculation of the logarithm
typically limits the speed of this method. A clever
scheme is to make use of the fact that computers
store floating point numbers with a mantissa and
an integer exponent of 2. Thus it is possible to
find the integer part of log,(r?) by extracting the
appropriate bits of the variable 2. This method au-
tomatically gives 2/log;,(2) ~ 6.64 bins per decade,
which is reasonable and sufficient for our purposes.

The number of points in each bin is summed,
starting with the smallest » whose bin is not empty
and continuing until all the pairs have been counted.
The values are then normalized by dividing by the
total number of pairs. In this way, a staircase ap-
proximation to the function C(r) is obtained. Then
a set of (p, q) values is calculated from p = In(C)
and ¢ = In(r). The values of r are normalized so
that the largest is 1.0. Thus p and ¢ are both neg-
ative with p = 0 at ¢ = 0. The standard devia-
tions of the p values are estimated from dp(r) =
V/1/p2(r) +4/N.C(r). The first term accounts for
the systematic error in the data at large r caused by
edge effects, and the second term accounts for the
statistical error in the data at small r caused by
the finite number of correlations in each bin. These
choices were made with a degree of hindsight after
examining dozens of data sets. The pairs are then
least-square-fitted using singular value decomposi-
tion [Press et al., 1992] to a function of the form

p=7+ D2q+ Bf(q) (61)
and the value of the correlation dimension Dy is
determined from the fit. The value of B is a mea-
sure of the slowness of the convergence. The quan-
tity B f(q) was predicted in Sec. 2 for certain of the
cases tested. In general, we take f(q) = In(—q) and
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expect B to be small whenever the convergence is
faster than logarithmic. The errors in the fitted pa-
rameters are calculated assuming a 95% confidence
level (two standard deviations). Grassberger and
Procaccia [1983a, 1983b] quote errors but do not
say how they were calculated.

4. Examples

4.1. Logistic map

As a numerical example, consider the logistic

equation [May, 1976]
Tpt1 = Az (1 — xy) (62)

with A = 4 for which the correlation dimension is
exactly 1.0. This is a case for which Dy converges
very slowly as r — 0 as seen from Eq. (12).

Logmap
H = 4157923
SD = 0.078

D2 = 1.016 & 0.023
B - 0.990 + 0.346

0
0 1/g (arb)

-0.033

Fig. 4. Plot showing slow convergence of the correlation
dimension for the logistic map.

Table 1. Calculated dimension of some common chaotic systems.

System N B Do Dky
Logistic map (A = 4) 4.2 x 10° 0.990 £0.346  1.016 =0.023  1.000
2 logistic maps (A = 4) 2.1 x 10° 1.269 £+ 0.573 1.975 £ 0.073 2.000
3 logistic maps (A = 4) 1.6 x 10° 1.576 £0.838  2.900 £0.146  3.000
Logistic map in 2-D (A = 4) 1.3 x 10° 0.504 + 0.361 0.993 + 0.028 1.000
Logistic map (A = 3.9) 1.1 x 108 0.601 £0.421  0.983+£0.030  1.000
Logistic map (A = 3.6) 1.3 x 10° 0.577 + 0.452 0.989 + 0.031 1.000
1-D uniform random data 1.4 x 10° 0.696 £ 0.461 1.072 £ 0.037 1.000
2-D uniform random data 2.2 x 10° 0.810 + 0.762 2.133 £0.110 2.000
Tent map 1.5 x 10° —0.162 £ 0.400 0.969 + 0.030 1.000
Logistic map + tent map 9.6 x 10° 0.508 + 0.680 1.954 £+ 0.094 2.000
Logistic map + alpha=3 map 1.0 x 10° 0.678 4 0.541 1.649 £+ 0.066 2.000
Triadic Cantor set 1.2 x 10° 0.191 £ 0.295 0.643 £0.016 0.631
Hénon [1976] map (a = 1.4, b=0.1) 1.0 x 10° 0.507 £0.462  1.125+0.038  1.121
Hénon [1976] map (a = 1.4, b=10.3) 3.3 x 10° 0.077 £0.427  1.220 +£0.036  1.258
Hénon [1976] map (a =1, b=0.54) 1.1 x 10° 0.098 £0.464  1.264+0.045  1.299
Lozi [1978] map (a = 1.7, b = 0.5) 2.0x10°  —0.077+£0.545 1.384+£0.053  1.404
Kaplan—Yorke [1979] map (A = 0.1) 9.9 x 10° 0.315 + 0.540 1.327 £ 0.052 1.301
Kaplan—Yorke [1979] map (A =0.2) 2.0 x 10° 0.183+0.535  1.436 £0.052  1.431
Zaslavsky [1978] map 1.5 x 10° 0.161 +0.534 1.546 £+ 0.062 1.552
Chirikov [1979] map (k = 1) 3.5 x 108 0.490 + 0.673 2.000 £ 0.081 2.000
Arnold [1968] cat map 1.3 x 10° —0.055 +0.701 1.987 £+ 0.098 2.000
Rossler [1976] attractor 3.2 x 10° 0.716 £0.634  1.986 +£0.078  2.013
Lorenz [1963] attractor 2.7 x 10° —0.006 £0.732  2.049+£0.096  2.062
Ueda [1979] attractor 3.7 x 10° 0.527 + 0.893 2.675 +0.132 2.674
Sprott [1997] attractor 3.8 x 10° 2.413 £ 0.681 2.187 £ 0.075 2.027
Linz Sprott [1999] attractor 3.7 x 10° 1.841 £+ 0.576 2.131 +£0.072 2.057




It is evident from Eq. (12) that to get a value
of Dy accurate to 1% requires r = 3.72 x 10~4. To
have even one pair of points with a separation that
small would require the order of 10?? data points.
However, since the functional form of p(g) is known,
it is possible to collect data for some convenient
range of r and then extrapolate to the limit r = 0.
For the logistic map, the data are fit to a function
of the form

p="P+ D2q+ Bln(—q) (63)

A plot of v = dp/dg versus 1/q should give a
straight line that extrapolates to the correct value
of Dy in the limit ¢ - —oo (or » — 0). Such a
plot is shown in Fig. 4. Even with N > 4 x 10,
the value of v is still significantly below 1.0, but
extrapolation of the least squares fit to r = 0 gives
a value of Dy = 1.016 £ 0.023 in good agreement
with the theoretical value of Dy = 1. The fitted
value of B is 0.990 # 0.346 in good agreement with
the prediction of B = 1. The logistic map with
A # 4, but in the chaotic regime, gives similar re-
sults, namely slow logarithmic convergence of Do
to a value close to unity (see Table 1). This result
confirms the assumption of separated singularities
that led to Eq. (16). Table 1 also shows that the
logistic map embedded in two dimensions has
similar convergence properties as expected.

4.2. General symmetric maps

The logistic map is special in that its quadratic
maximum leads to the slow convergence of the
correlation dimension. We consider now a more
general class of symmetric 1-D map given by Eq. (3)
and shown in Fig. 1. The prediction for this case
is a fast convergence of v to a value of Dy = 1
for 1/2 < a < 2, a slow logarithmic convergence
to Dy = 1 for o = 2, and a fast convergence to
Dy =2/a for a > 2.

A practical difficulty arises when generating
numerical data for values of a greater than about
3, because of the strong singularity of the measure
at x = 0 and = 1. To calculate separations ac-
curately at small r requires subtracting two nearly
equal numbers. This is not a problem near z = 0
when using floating point numbers, but it is a ma-
jor problem near x = 1, where the smallest Az
is 2764 ~ 5.4 x 1072° for 10-byte extended preci-
sion IEEE-standard temporary real numbers. Thus
the values of x near z = 1 are quantized in incre-
ments of 27%4, and there are many iterates near that
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P P I
1 4 5 & b 4
D,
[ | | | T N
0.5 1 0 10
Fig. 5. Calculated correlation dimension for the maps in

Eq. (3) for various a.

2_||||! I ——

-2||||; | III\\_
0.5 8 10

Fig. 6. A measure of slowness of convergence for the maps
in Eq. (3) for various a.

value of x. Even worse, all these values are mapped
into values near zero on the next iteration where
they are spread out by a factor of 2a because of the
local stretching of the map. Consequently, the use-
ful range of ¢ is roughly —40 < ¢ < 0. With 10°
data points, bins near ¢ = —40 become populated
for Dy < 0.67, placing an upper limit of a ~ 3.

We avoid this problem by a transformation of
variables that maps the end points into a single
point near the origin, but with opposite signs for
the two ends. For the map f(u) =1— |2u — 1]|%, a
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convenient such transformation is

1 1
x = <u+ 2) (mod 1) 5 (64)
Since the new map f(x) is a piecewise-linear rep-
resentation of the original map, it should share its
correlation dimension and convergence properties.
Using this method, large data sets were gener-
ated for a range of 1/2 < o < 10. Smaller values of
a do not have chaotic solutions, and larger values
begin to be troubled by the lack of precision near
z = 1/2. Figure 5 shows that the calculated cor-
relation dimension closely follows the prediction of
Eq. (26). There is also a prediction that v(r) should
converge more slowly for a = 2 than for o # 2 and
that B should equal 1.0 at o = 2. These predictions
are borne out as indicated in Fig. 6, where the fitted
values of B are plotted versus a.

4.3. Decoupled 1-D maps

As an example of a two-dimensional system with
simple properties, consider two decoupled logistic
maps started with different initial values:

Tpy1 = 4z (1 — ) (65)

Yn+1 = 4yn(1 - yn) . (66)

This case converges slowly (B = 1.269 + 0.573)
and slightly underestimates the apparent dimension
(D2 =1.9754+0.073). The corresponding case with
three logistic maps is similar (see Table 1). Table 1
shows two other examples of decoupled maps, the
logistic map plus the tent map, and the logistic map
plus a general symmetric map with a = 3.

There are examples in Table 1 showing the
correlation dimension of the random numbers gen-
erated by the proprietary PowerBASIC Console
Compiler in one and two dimensions. The near
integer values of Dg are consistent with pure ran-
domness. However, the minimum separation was
r = 2731 suggesting that the random numbers
are generated using 4-byte integers. For the same
reason, the numbers are expected to repeat after
231 ~ 2% 10 iterations, limiting the accuracy of the
results. As a result, there are many restarts, and
the useful range is limited to —21 < ¢ < 0. Never-
theless, the fitting method gives good results. This
observation bodes well for application of the method
to experimental data whose values are quantized in
the analog-to-digital conversion.

4.4. Cantor set

The triadic (or middle-third) Cantor set has a time
series produced by a random rather a determinis-
tic algorithm. Starting with a random seed in the
interval 0 < zg < 1, one of two affine mappings,
Tnt1 = Tp/3 and 41 = 1 — x,,/3 is chosen ran-
domly with probability 1/2. The result is an iter-
ated function system that generates the Cantor set
with uniform measure. As a result, all dimensions
should be exactly In2/In3 ~ 0.63093. This case
thus provides a test of the correlation dimension
calculation for a system with noninteger dimension
less than one. Table 1 shows that the convergence
is good (B = 0.191 4+ 0.295), albeit with oscilla-
tions as expected, and with a correlation dimension
(D2 = 0.643 £ 0.016) close to the expected value.

4.5. Hénon map

Another two-dimensional system is the Hénon
[1976] map given in Eqgs. (48) and (49). This
case with @ = 1.4 and b = 0.3 converges rapidly
(B = 0.077 £ 0.427) and gives Dy ~ 1.220 £ 0.036
in good agreement with the Grassberger—Procaccia
[1983a] value of 1.21 £+ 0.01 and the Kaplan—Yorke
dimension of 1.258. Other values of a and b give
similar results (see Table 1).

4.6. Lozi map
The Lozi [1978] map is a piecewise-linear variant of
the Hénon map given by

Tnt1 = 1+ yn — alzy]

Yn+1 = bz,
with the parameters a = 1.7 and b = 0.5. Table 1
shows a rapid convergence (B = —0.077 +0.545) to
a value of Dy = 1.384 +0.053, close to the Kaplan—
Yorke dimension of 1.404. The Lozi map and the

Hénon map both exhibit small oscillations in v(r)
as expected.

4.7. Kaplan—Yorke map
The Kaplan—Yorke [1979] map,

Tpt1 = 2%, (mod 1)

Ynt+1 = \Yp, + cos(4dmzy,)



is a particularly nice example because the x and
y dynamics separate, the Lyapunov exponents
are given by (In2, In\), and the Kaplan—Yorke
dimension is 1 —In 2/In . The calculated corre-
lation dimension converges rapidly but with oscilla-
tions as expected to values near the Kaplan—Yorke
dimension for A = 0.1 and A\ = 0.2 as shown in
Table 1. The oscillation amplitude decreases as r is
reduced, and this feature seems to be shared by all
the examples.

30

-30

0 X 1

Fig. 7. The Zaslavsky map switches back and forth from
1-D to 2-D depending on the scale.

3 |
Zaslavusk Attractor
H = 320830
SD = 0.292
D2 = 1.565 + 0.068
B = 0.287 + 0.569
2
t
v )
+ W]bm
L Y +
1
0
0 1/g (arb) -0.054
Fig. 8. Convergence of the correlation dimension for the

Zaslavsky map shows large oscillations.
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4.8. Zaslavsky map

A particularly difficult example is the Zaslavsky
[1978] map given in Egs. (53) and (54) with pa-
rameters v = 400, r = 3 and a = 12.6695. It has a
succession of scales on which it changes from one-
dimensional to two-dimensional and back. Its map
at the lowest resolution is shown in Fig. 7. Each of
the broad stripes is actually a self-similar collection
of smaller broad stripes, and so forth. Not surpris-
ingly, v(r) for this case undergoes large oscillations
with a period close to that discussed above as shown
in Fig. 8, but the best fit extrapolates to a dimen-
sion (1.546+0.062), very close to the Kaplan—Yorke
dimension of 1.552.

4.9. Chirikov map

The Chirikov [1979] or standard map

Tpt1 = Tn + Ynt1 (mod 27) (71)

Yn+1 = Yn + ksinz, (mod 27) (72)

is a conservative system whose orbit with k£ = 1 is
a fat fractal in the zy plane with a Kaplan—Yorke
dimension of 2.0. Table 1 shows a fast conver-
gence (B = 0.490 4+ 0.673) to a consistent value of
Dy = 2.000 £ 0.081.

4.10. Arnold cat map
The Arnold [1968] cat map

Tpt1l = Tpn + Yn (mod 1) (73)

Yn+1 = Tp, + 2y, (mod 1) (74)

is another simple conservative system with an in-
teger Kaplan—Yorke dimension, a fast convergence
(B = —0.055 + 0.701), and a consistent value of
Dy = 1.987 4+ 0.098 as shown in Table 1.

4.11. Rossler attractor

The Rossler [1976] attractor given by Egs. (55)—
(57) with a = b = 0.2 and ¢ = 5.7 was pre-
dicted in Sec. 2.5 to behave similarly to the logistic
equation. Indeed, Fig. 9 shows a slow convergence
(B = 0.716 £ 0.634) to a correlation dimension of
Dy = 1.986 £ 0.078 in good agreement with the
Kaplan—Yorke dimension of 2.013.
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3
Rossler Attractor
N = 3151928
SD = o.
D2 = 1.983 + 0.078
B= 0.698 + G.TBS

2 |

v
1
0
0 1/g (arb) -0.061
Fig. 9. Convergence of the correlation dimension for the

Rdssler attractor resembles the logistic map.

4.12. Lorenz attractor

The Lorenz [1963] attractor given by Eqgs. (58)—(60)
with ¢ = 10, r = 28 and b = 8/3 was predicted
in Sec. 2.5 to have a rapid convergence. Table 1
shows a very small value of B = —0.006+0.732 and
a correlation dimension of Dy = 2.049 £ 0.096 in
good agreement with the Kaplan—Yorke dimension
of 2.062.

4.13. Ueda attractor

The Ueda [1979] attractor is a driven damped
nonlinear oscillator given by

dz

o 75
ik’ (75)
d
s = 23 — ky+ Asinz (76)
dt
dz
—=1 7
g (77)

which with the parameters A = 7.5 and k£ = 0.05
has a chaotic attractor with a Kaplan—Yorke dimen-
sion of 2.674 and a calculated Dy = 2.675 4 0.132.
It was chosen because it is a nonautonomous system
with a dimension far from an integer.

4.14. Simplest quadratic chaotic
flow

A system has recently been identified [Sprott,
1997] that is claimed to be the algebraically sim-
plest dissipative chaotic flow with a quadratic

nonlinearity:
® ey (78)
% . (79)
%:—Az—i—gf—w. (80)

With A = 2.017, it has a Kaplan—Yorke dimension
of 2.027. Its return map is nearly quadratic, and
the calculated correlation dimension converges very
slowly as indicated in Table 1 with large oscillations.

4.15. Simplest piecewise-linear

chaotic flow

A system has recently been identified [Linz &
Sprott, 1997] that is claimed to be the algebraically
simplest dissipative chaotic flow with a piecewise-
linear nonlinearity:

dx
= = 81
=Y (81)
dy
= = 82
i (82)
d
d—jz—Az—y—]ﬂC\—l—l. (83)

With A = 0.6, it has a Kaplan—Yorke dimension of
2.057. Its return map is also nearly quadratic, and
the calculated correlation dimension converges very
slowly as indicated in Table 1 with large oscillations.

5. Discussion and Conclusions

A class of 1-D maps has been studied in detail, and
a general extrapolation method has been proposed
that can be used to obtain the correlation dimen-
sion Do from the local correlation dimension v(r).
We have shown that both the value of Dy and the
convergence of the extrapolation are directly related
to the nature of the singularities in the Frobenius—
Perron equation which are themselves related to the
turning points in the map. We found that great
care was needed to get accurate values of the solu-
tions of the maps to test convergence and dimen-
sion for ¢ (= In r) less than about —30. This can
lead to relatively large errors in Dy for the maps
where the convergence is slow. However, in all



cases examined, the value of Dy agreed with the
theoretical value to within the somewhat large
error bars.

For 2-D maps, we showed that C(r) could be
understood as a combination of a 1-D longitudinal
contribution and a transverse one associated with a
Cantor set structure. The longitudinal contribution
was easily understood in terms of the earlier analy-
sis of 1-D maps, while the nature of the transverse
part was related to a parameter £ whose value is
obtained directly from the 2-D map. These results
show that one should not expect uniform conver-
gence of v with ¢ and that periodic behavior is in
general expected due to the Cantor set structure of
the measure.

The same concepts were applied to 3-D flows
by identifying the contracting and expanding
directions.

Somewhat surprising is that C(r) and Dy are
insensitive to the nature of 1-D maps. For the range
of maps shown in Fig. 1 and parameterized by «, we
found Dy =1 for 1/2 < a < 2. Ironically, the maps
that look qualitatively similar (those with a > 2)
have very different dimensions (Dy = 2/a). The
convergence of the extrapolation does depend on
the map and hence «, with the worst convergence
for a = 2 (the logistic map).

With these lessons in mind, we can adopt a gen-
eral strategy for calculating the correlation dimen-
sion for an arbitrary time series. The first step is to
see if the time series comes from a one-dimensional
map. This can be done by plotting x,1 versus z,
and looking for fractal structure. If there is none,
then one focuses on the regions of map where f(z)
is an extremum. If df /dz is discontinuous at all at
such extrema, then the correlation dimension will
be 1.0. Otherwise, one focuses on the extremum
with the smallest |d?f/dx?| (the flattest region).
This point (r = x,,) gives rise to the dominant
singularity in the measure that dominates the cor-
relation dimension at small r. Take a few points
in the vicinity of x,, and fit the results to a func-
tion of the form f = f,|r — z,,|* and perform a
least squares fit to determine f,, and a. For a < 2,
the dimension is 1.0. For a > 2, the dimension
is 2/a.

On the other hand, if the time series does not
come from a 1-D map, there is still reason to expect
the correlation dimension to converge in a similar
way. Thus one can fit p = InC(r) to a function of
the general form given by Eq. (63) and have some
confidence that the value of Dy obtained in this way
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is a reasonable approximation. When applied to a
number of standard chaotic systems, this expecta-
tion appears justified. Hence we expect the same
method to be useful when analyzing experimental
data.
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