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The Role of Depth and 1/ f Dynamics
in P erceiving Reversible Figures

Deborah J . Aks1,3 and J ulien C . Sprott2

When confronted with a reversible figure, such as the Necker Cube, viewers ex-
perience a spontaneously changing percept. We assess the dynamic of how the
human visual system resolves perceptual ambiguity in stimuli that offer multi-
ple interpretations. Subjects observed the Necker cube for one of three viewing
durations during which they pressed a key each time they perceived a change
in the orientation of the cube. Manipulations of binocular disparity served
as a parameter to control perceptual stability. Low-depth conditions yielded
more perceptual reversals than high-depth conditions. A F ourier analysis per-
formed on the time series of reversals show 1/ f (pink) noise was evident in
their power spectra. These results together with theoretical models of complex
systems (e.g., Bak, Tang, & Wiesenfeld, 1987) suggest that depth information
may guide our perceptual system into a self-organiz ed state to assist us in re-
solving ambiguous information. Moreover, slopes of the spectra were steeper
in high-depth and brief viewing conditions, suggesting that the visual system
relies more on previous perceptual states and filters more white noise in these
conditions.

KEY W ORDS: visual perception; Necker cube; 1/ f Power laws; self-organization.

T he problem of consciousness poses some of the greatest challenges to

scientific understanding. One challenge pertains to the emergent property as-

sociated with our conscious state. When confronted with a reversible figure,

such as the Necker Cube shown in F ig. 1, viewers experience spontaneous

1Department of Psychology, University of Wisconsin—Whitewater, Whitewater, WI 53190.
2Department of Physics, 1150 University Ave, University of Wisconsin-Madison, Madison, WI
53706.

3Correspondence should be directed to Deborah J . Aks, Department of Psychology, 800
Main St., University of Wisconsin—Whitewater, Whitewater, WI 53190; e-mail: aksd@
mail.uww.edu.

161

1090-0578/03/0400-0161/0 C© 2003 Human Sciences Press, Inc.



162 Aks and Sprott

Fig. 1. Viewers perceive spontaneous changes in the
perceived orientation of the Necker cube (1832).

changes in the orientation of the cube. This is a clear example of a dynami-
cally emerging perceptual state—one that can easily be recorded by having
observers press a key to indicate a shift in their percept.

Previous evidence, using such methodology, suggests that perceptual
reversals are the consequence of a variety of factors (Long, Topping &
K ostenbauder, 1983). Purported sources include satiation of neurons asso-
ciated with a mental representation of the figure (Hochberg, 1950; K ohler,
1940; Howard, 1961; Orbach, Ehrlich, & Heath, 1963), and “priming” (Long,
Topping, & Mondin, 1992), fixating (Peterson & Hochberg, 1983), or at-
tending (Virsu, 1975) to a particular interpretation of the cube. In addition,
a variety of stimulus manipulations such as binocular disparity can modu-
late the coherence and perceptual stability of the Necker cube (Ogle, 1962;
Cormak & Arger, 1968). It is likely that many of these mechanisms operate
concurrently to give rise to spontaneous changes in percepts with no obvious
connection to their underlying sources.

The dynamical systems approach is well suited to describe emergent
phenomena (e.g., percepts) that arise from the interaction of local con-
stituents (e.g., neurons). Conventional approaches have been instrumental
in our understanding of average perceptual behavior. But it is likely the
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Fig. 2. This typical series of perceptual flips shows the erratic percep-
tual behavior that occurs while viewing the Necker cube. The data
series consists of the intervals between key presses or equivalently
the dwell times between flips.

typical focus on the cumulative record across conditions may overlook im-
portant aspects of perceptual processing. To ameliorate this potential gap,
our approach entails recording over time the duration that a person dwells
on a particular interpretation of the Necker Cube. Although the erratic flip-
ping evoked by such a reversible figure (i.e., Fig. 2) is typically attributed to
random or extraneous influences, and is ignored by most vision researchers
(but see Gilden, 2001, Gilden, Thornton, & Mallon, 1995, Kelso, 1992 and
Guastello, 1995 for a summary of Ash’s 1914 work), we believe there may be
a predictable, but subtle dynamic in perceptual changes that occur over time.
Various applications of catastrophe theory has also examined the dynamic
of perception and has shown us that gradual changes in a (bias) parameter
produces a (nonlinear) effect on a perceptual state (e.g., Poston & Stewart,
1978; Ta’eed, Ta’eed & Wright, 1988). These studies have shown that an
asymmetry in perceptual response depends on the direction of a parameter
sequence.4 While this topological approach provides a useful description of
the change in response and illustrates one type of history dependence of the
percept, we ask more broadly what produces complex perceptual behavior
by looking at statistical regularities in these fluctuations: Are there clues of
a subtle deterministic system that may drive perceptual change?

Borrowing from developments in fields such as Physics, Math and
Biology we now reconsider the information content of complex and

4Catastrophe theory and SOC are not competing models. The two theories are descriptions of
different aspects of the same system. Catastrophe theory focuses on the shift in perception,
whereas SOC focuses on the variability in perceiving the two stable states. SOC also provides
a possible mechanism that can produce the erratic shifting inherent to our changing perceptual
states.
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seemingly random data. During the last decade, it has been established that
a large number of natural systems containing several interacting individ-
ual components have statistically similar dynamical properties, independent
of the particular details of the system. Examples include earthquakes (e.g.,
Bak & Tang, 1989), population dynamics (Miramontes & Rohani, 1998),
DNA base sequence structure (Voss, 1992), epidemic outbreaks (Rhodes &
Anderson, 1996, 1997), and various cognitive and reaction time behaviors
(Gilden, 1996, 2001; Gilden, Thornton, & Mallon, 1995; see also Chen,
Ding & Kelso, 1997; Clayton & Frey, 1997; Schmidt, Beek, Treffner & Turvey,
1991).

Examination of the statistical properties of these systems’ fluctuations
has revealed dynamics with well-defined generic scaling properties in the
form of power laws (Bak, Tang, & Wiesenfeld, 1988). Since scaling reflects
a system’s changing properties, this suggests the system, by definition, has
the ability to adjust to its surrounding context. Power exponents, the in-
dicators of scaling, are obtained from decomposing a data series into sine
waves through a Fourier transform procedure, and then plotting the ampli-
tude squared (i.e., power) as a function of frequency. A linear function on a
double-log plot indicates the presence of a power law. The regression slope
of this function determines the power exponent, which as we will see, is also
useful as a measure of memory or noise in the system (e.g., Peak & Frame,
1994).

Power law relations, obtained from the Fourier transform of fluctua-
tions, have important fractal properties that can be a signature of a long-term
dynamic. Moreover, a number of fractal properties implicate a concise and
adaptive code underlie these systems: 1) their dynamic scaling character-
istic noted above, 2) the infinite detail and self-similarity of their complex
behavior, and 3) their underlying simplicity (e.g., Mandelbrot, 1967). We
suggest that fractal structure may underlie and facilitate perception of a
scene when viewing ambiguous items including those present in our natural
environment.

The first property of dynamic scaling refers to the fact that the temporal
evolution of a fractal system is not controlled by one time scale. This absence
of a single characteristic scale is revealed through means and variances that
depend on the size of the sampling resolution, which in the present case, is
the amount of time available to perform the task. The system tends to use
more time as it becomes available, and conversely, the system speeds up as
less time is available. Thus, the mean performance changes over time, which
as a result, contributes to the production of complicated behavior.

The second set of properties associated with fractal systems is the infinite
detail and self-similarity that emerges in the resulting complicated output
of these systems. The detail is a natural consequence of the irregular (i.e.,
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noninteger) shape of fractals. Within the detail are self-similar fluctuations
that occur in the same proportion at all scales suggesting that iterations
of a simple underlying rule may be driving the behavior. Thus, behind the
complex behavior an underlying simplicity may exist.

Thirdly, it is this very property of simplicity that provides the potential
for unlimited coding of information through a compact representation of the
fractal. The high degree of statistical redundancy in the environment reduces
the amount of information needed to be stored to a unique pattern plus a
simple iterative function (Barnsley, et al., 1988; Watson, 1987). Because of
their compactness, fractals are currently used to store digital information, are
used in automated identification systems (Daugman; 1991), and also appear
to be a suitable candidate for coding in the human visual system.

In a particular form of power scaling, those dominated by low frequen-
cies, the temporal phenomenon scales as the inverse of the frequency (f), or
as 1/ f α noise. Bak, Tang, and Wiesenfeld (1987) suggest that these systems,
with a power spectral exponent of approximately α = 1.0, consist of many
interacting constituents, are found to be ubiquitous in nature (see examples
above), and under many conditions, are dynamical systems which organize
themselves into a state with a complex but rather general structure.

One proposed model of these systems is Self-Organized Criticality
(SOC;5 Bak et al., 1987). In the SOC model, dramatic change, or critical-

ity, occurs from the local interaction of the system’s component parts. The
resulting complex behavior is produced by simple local rules with which
neighbors interact, and self-organize so that structures and patterns develop
in the absence of a controlling agent. Spontaneous emergence of a behavior
(e.g., percept) could be one consequence of self-organization.

Bak et al. (1987) developed an avalanching sandpile model to demon-
strate the simple set of rules underlying SOC. In this idealized model, grains
of sand interact and may cause each other to topple. The rules are those of
a cellular automata operating in a system that can be represented on a 2D
grid (i.e., Wolfram, 1984). Each cell’s activity is determined by its current
state, as well as the states of its neighbors (Bak, 1996).

Figure 3 shows SOC generalized to a neural network that can evoke per-
ceptual changes. Early conceptions of neural networks applied to cognitive
phenomena can be found in Hebb’s (1949) seminal work on associative learn-
ing in cell assemblies, and more recently in McClelland & Rummelhardt’s
(1986) Parallel Distributed Processing (PDP) Models. In the model presented

5Bak’s SOC theory is currently under debate as to whether it is a reliable model of 1/ f dynamics.
Alternative models under investigation maintain many similar properties including simple
rules producing complex behaviors and self-organization (e.g., De Los Rios & Zhang, 1999;
Miller, Miller, & McWhorter; 1993). Thus SOC or similar alternatives could account for these
data trends.
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here, local interactions occur through lateral inhibitory and excitatory effects
across neurons, and these can produce global perceptual changes via thresh-
old mechanisms (i.e., Stassinopoulos & Bak, 1995).

The avalanching properties of SOC, and perhaps perceptual changes,
can be described nicely as phase transitions from the field of thermodynam-
ics. When the temperature of the system is equal to the transition tempera-
ture, there is a dramatic change for example from liquid to gas. For all other
temperatures, one can disturb the system locally and the effect of the pertur-
bation will influence only the local neighborhood. However, at the transition
temperature, the local distortion will propagate throughout the system. Al-
though only “nearest neighbor” members of the system interact directly,
the interaction effectively reaches the entire system. The system becomes
critical in the sense that all members of the system influence each other.
Such properties are quite plausible in a system consisting of a network of
neurons.

GOALS AND PREDICTIONS

We propose that the human visual system may be driven by a deter-
ministic process with subtle but important self-organizing properties. While
such a system can produce complex and emergent behavior, the underlying
dynamic may be quite simple. In the present study, we examine the effect of
time and binocular disparity on the dynamic of perceptual flips, and examine
changes in the resulting data distributions and power spectra.

First, we look for scale-invariance in perceptual flipping by evaluating
whether the means and variances of these data distributions change over
time. Thus total time that viewers observe the Necker cube will be manipu-
lated to assess for scale-invariance. The manipulation of time will also serve
to assess the conventional theory of neural satiation. Kohler’s (1940) the-
ory of neural fatigue predicts that the alternating percept should speed up

←

Fig. 3. Bak’s (1996) SOC model is applied to a neural network. The perceived orientation
of the cube at any given step is shown by the cubes to the left of the network. The shifts
in the cubes’ orientation are the global effect of local neuronal interactions. Cells of the 2D
grid represent receptive fields whose corresponding neurons have a random initial distribution
of activity across the network. Activity is represented by numbers ranging from 0 to 4. A
perceptual bias favoring a particular cube is represented by the greater weights in the cells and
the corresponding bold edges of the cubes superimposed on the network. Activity is initiated
by selecting one receptive field site and increasing the activity by one as illustrated here in the
central site of the first network. This simple sequence is repeated many times. The interesting
dynamic of spreading activation occurs when a simple rule is applied—when the activity in a
single cell exceeds a critical value, in this case 3, activity from the site is distributed to four
adjacent regions. After just seven update steps, a region of nine cells has been activated.
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over time, since fatigue should build up with extended viewing of particu-
lar percepts. However, it is easy to conceive of fatigue occurring in the flips
themselves rather than just the percept. Regardless of the impact of time, the
critical finding will center on whether flipping behavior changes over time.
Such changes will indicate the presences of scale invariance in the perceptual
task of resolving such ambiguous information.

Additional analyses of the power spectra of the data series will further
reveal whether flipping behavior can be modeled by a power law. A scale
invariant perceptual system, characterized by a power law function, is im-
portant in a variety of ways. First, scaling suggests there is determinism in
the system, even one that appears random. Second, as described earlier, this
system is an efficient and compact means of coding information (Voss, 1992).
And third, evidence of SOC in the perceptual system would help account for
the flexibility of our visual system and the system’s proficiency in adapting
to novel environments.

The second main goal of this study is to evaluate the impact of binocu-
lar disparity on perceptual flipping. With disparity serving as a parameter to
control the perceived reversibility of the Necker cube, we first assess whether
an increase in disparity reduces the average frequency of flipping. We ex-
pect this result because disparity should encourage one interpretation of
the cube.

Our second analysis focuses on the fourier transform of the flip series.
Shifts in power spectra slopes may be the result of a mechanism that fil-
ters white noise in the system (i.e., Peak & Frame, 1994). Steepening power
spectra slopes indicate a reduction of white noise; perhaps the filtering of the
noise is a consequence of the processing of disparity information. Without
disparity, we might expect shallower power spectra slopes, since without the
filter, white noise is permitted into the system. The result would be to desta-
bilize the system and allow for alternative perceptual states. Such increases
in white noise, could facilitate the observer in seeking out appropriate per-
ceptual states when the external information is too unstructured to lead
to a reliable solution. Shallower slopes would further imply that disparity
is not sufficient to guide the percept and the system is widening its scope
of input.

Changes in power spectra slopes may alternatively reflect the extent
to which the system is influenced by its preceding state. Presumably, a state
containing reliable information is likely to be helpful as a guide to subsequent
states. Long-term correlation in the data series, as reflected in relatively
steeper regression slopes in the power spectra, may indicate that the system
“knows” to sustain the unambiguous state. Since disparity assists the system
in selecting reliable information it may too serve to modulate the memory
of previous percepts.
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METHOD

Subjects

A preliminary study consisted of ten subjects (6 female, age range =
18–24 years). Forty additional subjects (16 female, age range= 18–35 years)
participated in the main study in one of three sessions. Twenty-five partic-
ipants served in a brief viewing condition (target M = 15 min), ten in a
moderate (target M = 30 min), and five in an extended viewing condition
(target M = 60 min). All subjects were members of the University commu-
nity, reported normal or corrected-to-normal vision, and an initial screening
demonstrated an ability to perceive depth from binocular disparity at the
levels tested in this study.

Stimuli & Apparatus

The facades of the Necker Cube observed by subjects measured 7.7 cm.3

Cubes were rotated 80◦ from fronto-parallel and measured 7.65 mm ×
7.40 mm along the vertical and horizontal dimensions. Cubes were gener-
ated on Gateway 2000 (P5-120) PC computers and displayed on 15′′Vivitron
display monitors. Resolution was set to 800× 600 pixels. Binocular disparity
was depicted with red and blue 0.5 mm adjacent contours with offsets ranging
from 0′ to 4′ of visual arc. To perceive depth from the offsets, subjects wore
red-blue anaglyph glasses in all conditions. Subjects in the fifteen minute
group received one of three sets of disparity conditions: 0′, 1′, 2′ or 0′, 2′,
4′. The thirty and sixty minute groups participated in the 0′ and 2′ disparity
conditions.

Procedure

In the preliminary study, five subjects participated in three low (0′, 1′, 2′),
and another five in three high (0′, 2′, 4′) disparity conditions. While viewing
the Necker cube for a 15 minute period, subjects pressed a key each time they
perceived a change in the cube’s orientation (i.e., top-left vs. bottom-right).
This experiment served to replicate earlier findings that flipping frequency
decreases with increasing disparity (Ogle, 1962; Cormak & Arger, 1968).
An additional goal was to select disparity conditions that would provide
a sufficient number of data points to properly look for dynamical struc-
ture while permitting subjects to perform the task in a reasonable amount
of time.
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Once optimal binocular disparity conditions were found (i.e., 0′ & 2′),
forty additional subjects observed the Necker cube in these conditions for
a brief, moderate or extended viewing time. Targeted times were 15–, 30–
or 60–minute viewing periods although mean deviations up to 6 minutes
occurred.6 Subjects in the brief and moderate viewing conditions performed
the two disparity conditions separated by five minute break intervals. Sub-
jects in the 60–minute condition performed two disparity conditions at the
same time on separate days.

Inferential statistics were used to determine, in a conventional analysis,
if a significant difference emerged across the different viewing-duration and
disparity conditions. The primary reason for using these statistics is to pro-
vide a familiar point of comparison to previous findings. At the same time,
we recognize the statistical assumption of independence across trials and
caution the reader of the possible fallacy that may result from sole reliance
on inferential statistics on data that may contain dependencies. To assess
for such dependencies, and to evaluate our primary goal of learning about
the overall dynamic of perception, the intervals between key presses were
recorded and subjected to a variety of time-series analyses described below.

DYNAMICAL ANALYSIS

The dynamical systems approach makes use of a direct numerical anal-
ysis of data across a sequence of trials. We use the time intervals between key
presses, or cube dwell-time, to map the trajectory of perception as it shifts
from one state to another. A typical series of perceptual reversals is shown
in Fig. 2. Key analyses7 involve assessing for scale-invariance by looking for
means and variance of data distributions that change as a function of the
viewing duration. We also evaluate whether a (1/ f ) power law characterizes
this perceptual process.

6Viewing time deviated from the 15, 30, and 60 minute target viewing times due to fatigue.
Actual duration averaged across the two disparity conditions were brief: M = 12 min (SD = 3),
moderate: M = 27 min (SD = 6), and extended viewing: M = 49 min (SD = 13).

7In multi-stable figures, each potential figure can be conceptualized as an attractor state whereby
multistable perception may be a manifestation of the perceptual system switching between
attractors (e.g., Kelso, 1992). To evaluate for the presence of an attractor, we tested various
nonlinear analyses including assessments of return and phase space maps using Sprott and
Rowland’s (1995) CDA software. The dimension of all time series was unmeasurably high
(at least 4.0) suggesting that the system has a large number of degrees of freedom. The high
dimension of the system together with too little data (<1000 data points), prevent us from un-
covering possible deterministic chaotic trends. This was the case even in the longest (60 minute)
sessions. Acquiring additional data needed to detect chaotic processes was prohibitive given
the present paradigm (i.e., collecting greater than 103 data points exceeds what a person can
reasonably perform in one session of viewing the Necker cube). Thus, attempts to assess for
chaos were thwarted by insufficient data relative to the excessive complexity of the system.
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Spectral analysis8 has been a popular technique used to probe noisy time
series for hidden clues to underlying structure. Spectral analysis is sensitive
to statistical correlations. We use a Fast Fourier transform (Press, Flannery,
Teukolsky & Vetterling, 1986) on the data record, and display the power
(mean square amplitude) as a function of frequency.

A power spectrum with a few dominant frequencies shows that the data
can be well approximated by a Fourier series with just a few terms. Of greater
interest to us is whether our data possess scaling behaviors characteristic of
complex systems. Does the temporal phenomenon scale as the inverse of
the frequency ( f ) or as “1/ f noise?” In this particular form of scaling, the
dynamics can be very complicated, yet the underlying rules quite simple.
We specifically are interested in whether perception of the Necker cube is
dominated by low frequencies (i.e., long-term dynamics), and whether the
dynamics are 1/ f .

Spectral analysis will be further used to measure the strength of memory
and noise in the system. Contingencies will be quantified in terms of the
slopes of the power law—steeper slopes suggest stronger contingencies and
less white noise. Aks, Zelinsky & Sprott (2002) elaborate on how the spectra
provide similar information to autocorrelation procedures, and how both
indicate the dependence, or history in the signal.

RESULTS

Preliminary results, shown in Table 1, based on ten subjects participat-
ing in three of the four disparity conditions replicate earlier findings that
increasing binocular disparity is associated with a decrease in the number of
flips (F(2, 16) = 12.3, p < .001), and inversely, an increase in average dwell
time (F(2, 16) = 9.8, p < .01). Variability of the dwell time (i.e., SD) also
tended to increase with disparity (F(2, 16) = 8.5, p < .01).

Similar results emerged in the main experiment that examined the effect
of 0′ and 2′ disparity across brief, moderate and extended viewing sessions

8We note that our data is an ordered list (of time durations) rather than an event sampled at
equal times as is usually the case in spectral analysis of standard time series. Nevertheless, our
“duration” series does have ample precedent. For example Bassingthwaighte, Liebovitch, &
West (1994) plot the power spectrum of the interval between heartbeats, and Musha, Sato, &
Y amamoto (1991) show other biological examples.

Furthermore, a power-law spectrum of durations is also a power law for frequencies since
the duration is the inverse of the frequency, although the slopes will differ. For example, a
1/ f power law for durations will give a power law proportional to f for the corresponding
frequencies. But differentiating a 1/ f time series of durations (taking first-differences) will
produce a 1/ f power law in frequency. In general, if a quantity obeys a power law, any quantity
proportional to any power of it will also be a power law.
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Table 1. Summary of Mean Flips per Minute and Average Dwell Time (ms) from a Preliminary
Test of 0′ to 4′ Disparity Influences on Flipping Frequency in the Necker Cube. Low and High

Depth Groups Differed by a Factor of 2. Standard Deviations are in Parentheses

Disparity

Depth group: 0′ 1′ 2′

Low
16.8 (3.3) 12.5 (3.7) 10.5 (2.3)

3694 (813) 5102 (1356) 6033 (1706)

0′ 2′ 4′

High
16.3 (5.9) 10.9 (2.0) 10.5 (3.1)

4060 (1386) 5656 (979) 6204 (2073)

(i.e., approximately 15, 30 and 60 minute sample times).6 Total flipping fre-
quency decreased with disparity (F(1, 37) = 11.7, p < .01), and increased
with overall viewing duration (F(2, 37) = 5.4, p < .01). To remove the ob-
vious confound of total flipping frequency and experimental duration, we
assessed mean flipping frequency per minute. As shown in Fig. 4, average
flipping frequency is inversely related to disparity (F(1, 36) = 5.6, p < .05),
and overall viewing duration: greater disparity and longer viewing reduced

flipping frequency (F(2, 36) = 3.9, p < .05).9 Disparity and duration effects
were additive (F(2, 36) = 0.1, n.s.).

A variety of analyses support these trends including the inverse find-
ing that average dwell time increased with viewing duration—brief (M =

8.4 sec, SD = 10.0), moderate (M = 9.7 sec, SD = 12.0), and extended view-
ing (M = 15.1 sec, SD = 17.0; F(2, 37) = 3.3, p < .05). The clear influence
of viewing time on flipping frequency and average dwell time is suggestive
of a system that possesses scaling properties.

Analyses of the data distributions of the perceptual flip series were also
consistent with a system that scales over time. A preponderance of brief
intervals in the data produced probability distributions with a clear positive
skew (M Skew = 1.3) and leptokurtic shape (M kurtosis = 2.2). Figure 5
shows typical probability distributions with skew and kurtosis tending to
be larger in the 0′ disparity conditions (M Skew = 1.4; M Kurtosis = 3.4)
relative to 2′ conditions (M Skew = 1.1; M Kurtosis = 1.0), but are similar
across different viewing durations.

9This trend was highly significant after removing one outlier that was 3 SDs above the mean.
This case was included in all other analyses since no other outliers emerged and significance
levels were not affected. Also, two of the 40 subjects participated only in the 0′ disparity
condition. Therefore, the missing data in the 2′ condition was filled in with group means for
statistical analyses, but the reported significance levels were not affected by this procedure.
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Fig. 4. Number of perceptual flips per minute in the 0′

and 2′ disparity conditions for brief, moderate, and ex-
tended viewing times. Increased disparity and viewing
duration reduces flipping frequency.

An additional measure showing scaling properties is “relative disper-
sion” (SD/M; e.g., Liebovitch, 1998). This measure reflects system contin-
gencies as function of sampling resolution, or in this case—viewing dura-
tion. As is shown in Fig. 6, relative dispersion (i.e., contingencies) tended
to increase with average dwell time and decrease as the overall viewing
duration increased. One final analysis of data distributions showed that

Fig. 5. Average probability distributions representing perceptual shifting that occurs while
subjects view the Necker cube in the presence vs. absence of disparity.
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Fig. 6. Relative Dispersion (SD/M) increases with average dwell
time and decreases with overall viewing duration.

variability (SDs) of the average dwell times tended to increase with view-
ing duration, although only reaching marginal significance (F(2, 37) = 2.4,
p = .10).

Fourier analysis (FFT) revealed a consistent pattern of correlation or
“coloring to the noise” that was reliably affected by the degree of disparity,
and the duration of viewing the Necker cube. Fourier analyses produced
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Fig. 7. Typical power spectra have 1/ f trends. More disparity and brief viewing produce steeper
slopes in the power spectra.
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Fig. 8. Mean power spectra slopes are 1/ f . Slopes tended
to increase with disparity and decrease with viewing time.

power spectra with 1/ f pink noise in 80% of the 40 cases.10 Typical power
spectra are shown in Fig. 7 along with a demonstration of how increased
disparity and reduced viewing time produce steeper slopes in the spectra
(M slopes: 0′ = −0.7 vs. 2′ = −0.9, and brief = −0.9 vs. extended−0.7). Au-
tocorrelations were consistent with these trends in 0′ conditions showing a
decrease in correlation from r = .18 in brief viewing, to r = .05 in extended
viewing conditions.

Since all previous analyses are based on data from alternating percepts,
instabilities might have been introduced into the data series. Therefore, we
also performed power spectra analyses on alternate data points to assess the
dynamic of the same percept obtained from the shifting perceptual series.
Similar trends emerged for these analyses on alternate data points as shown
in Fig. 8. In both cases, there were steeper power spectra slopes in brief
viewing and 2′ disparity conditions. The only change was the slightly steeper
slopes in the alternate data point than the full data analysis. Additional
analyses that assessed the reliability of the 1/ f power spectra trends across
individual power spectra confirmed these trends—reduced viewing duration
and increased disparity produced spectra with a greater proportion of the
spectra having 1/ f trends.

10There is some ambiguity to the power spectra, and it is possible that these trends can also result
from a combination of 1/ f 0 and 1/ f 2. Gilden (2001) describes this issue in interpreting the
power spectra derived from inherently noisy human data, in which simple motor responses,
for example, are known to introduce white noise into the data. Nevertheless, the reliability of
the 1/ f trend across the majority of subjects suggests this is likely a reflection of an underlying
(1/ f ) mechanism rather than superposition of noise.
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DISCUSSION

Complex systems theory provides fresh insights into understanding
complex behavioral systems. This perspective led us to predict that aspects
of our visual system (e.g., perceptual-switching mechanism) may be mod-
eled by simple cellular-automata type rules that produce self-organizing,
emergent behavior. We started this investigation by looking at the effect of
disparity and viewing duration on human perception of the Necker cube.
Using Fourier, correlational and descriptive analyses of the data, we found
an intrinsic dynamic to human perceptual shifting with clear signs of scaling
and 1/ f pink noise. Both properties suggest the system is highly adaptive
and has self-organizing properties. Our additional finding of increased power
spectra slopes across increasing disparity conditions suggests binocular dis-
parity may serve to stabilize perception. We believe this may occur either
by disparity acting to filter out extraneous information (i.e., white noise) or
perhaps, it signals the system to rely more on previous percepts.

Scaling and 1/ f Properties

Evidence for a scaling relation between perceptual reversals and time
appeared in shifts in the means, variance and the shape of the probability dis-
tributions with different viewing durations. Such a relationship often appears
in highly flexible and adaptive systems possessing a fractal structure. Unlike
Gaussian distributions, with means and variance tending to converge to a
constant value over time, flipping frequency tended to decrease over time.
In addition to being a signature of a fractal, these time dependent changes
suggest that priming from a prior state, or perhaps, fatigue to a changing
state, may have mediated the dynamic of perception. Either way, we see
clear evidence here for a fractal system with characteristic properties that
change over time and circumstance.

Fractal properties are significant in that they can serve as an efficient and
compact means of coding perceptual information, and may prove optimal
for extracting information from the environment. Specifically, the presence
of 1/ f noise, such as in an SOC system, represents an optimal compromise
between efficient transfer of information and tendency to err (Voss, 1992).
Since biological systems must work on-line, computational complexity and
data compression are critical to effective functioning in a dynamic environ-
ment. We believe that transitions in perceptual states may be well matched to
the statistical redundancy of the visual environment (Field, 1993), and thus
permit perceptual sampling and extraction of self-similar information with
properties similar to those used in fractal image-compression (Daugman,
1988; Field, 1993; Watson, 1987).
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The universal power relation that emerged in the Fourier analysis
further confirmed the scaling and fractal properties of perceptual switching.
The particular 1/ f dynamic also suggests there is long-term determinism in
a system that is often regarded as random. The long range effects are in-
dicated by the preponderance of low frequency components in the power
spectra. Moreover, these 1/ f trends associated with perceptual flipping are
consistent with the possibility that our perceptual system may be governed
by a self-organizing system as described in Fig. 3. Particular models such as
SOC may provide a straightforward account for the emerging behavior that
typifies perception of the Necker cube. But note that finding 1/ f patterns in
our data does not mean that such a process necessarily generated it. These
trends may be a consequence of any of a number of processes some of which
are currently being investigated (e.g., Miller, Miller & McWhorter; 1993;
De Los Rios & Zhang, 1999).

Depth as a Filter of Noise or a “Signal-to-Remember”

The cumulative effect of disparity and time on perceptual flipping sug-
gests that scaling and the associated perceptual dynamic is mediated by
depth. Relative to the 2′ disparity conditions, the more ambiguous 0′ condi-
tions produced distributions with greater skew and leptokurtic shapes. These
shifts in distribution shape with depth are due to the more frequent flipping
(or greater preponderance of brief dwell times) in the absence of depth in-
formation. The higher frequency of flipping in the 0′ disparity conditions
also produced shallower slopes in power spectra. Shifts in the distribution
shape and slope may be a manifestation of 1) filtering of white noise, or 2)
memory in the system. In the first case, since the presence of white noise may
increase the frequency of shifting perceptual states, depth information may
act as a filter of white noise, and guide our perceptual system to coherent
interpretations.

A mechanism based on memory is also plausible in light of the idea that
coherent percepts may guide subsequent percepts. Since ambiguous states
do not serve as a useful guide to subsequent percepts, the perceptual system
may turn to the more reliable external source of disparity information. Thus,
the steeper spectra that emerged in high disparity conditions could reflect
greater filtering of white noise, or greater reliance on previous states in our
self-organizing, yet malleable, perceptual system.
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