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1.1.   Introduction 
The Lotka-Volterra equations represent a simple nonlinear model for the dynamic 
interaction between two biological species in which one species (the predator) 
benefits at the expense of the other (the prey). With a change in signs, the same model 
can apply to two species that compete for resources or that symbiotically interact. 
However, the model is not structurally stable, since persistent time-dependent 
(oscillatory) solutions occur for only a single value of the parameters. 

This paper considers structurally stable variants of the Lotka-Volterra equations 
with arbitrarily many species solved on a homogeneous two-dimensional grid with 
coupling between neighboring cells. Interesting, biologically-realistic, spatio-temporal 
patterns are produced. These patterns emerge from random initial conditions and thus 
exhibit self-organization. The extent to which the patterns are self-organized critical 
(spatial and temporal scale-invariant) and chaotic (positive Lyapunov exponent) will 
be examined. 

The same equations, without the spatial interactions, can be used to model 
romantic relationships between individuals. Different romantic styles lead to different 
dynamics and ultimate fates. Love affairs involving more than two individuals can 
lead to chaos. Strange attractors resulting from such examples will be shown.  

1.2.   Lotka-Volterra Equations 
One variant of the Lotka-Volterra equations (Murray 1993) for two species (such as 
rabbits and foxes) is  
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where R is the number of rabbits and F is the number of foxes, both positive and each 
normalized to its respective carrying capacity (the maximum allowed in the absence 
of the other), r1 and r2 are the respective growth rates in the absence of competition, 
and a1 and a2 determine the interspecies competition. In a predator-prey model, the 
predator (foxes) would have r2 < 0 and the other constants would be positive. 
However, the same equations with all positive constants could model competition, or 
with both growth rates negative could model cooperation or symbiosis (chickens and 
eggs, plants and seeds, bees and flowers, etc.). 

1.3.   Equilibrium and Stability  
The system in Eq. (1) has four equilibria, one with no rabbits, one with no foxes, one 
with neither, and a coexisting one with  
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which is of primary interest.  

For the predator-prey case (a1r1 > 0, a1r2 < 0), the coexisting equilibrium is a 
stable focus for r1(1 - a1) < -r2(1 - a2), at which point it undergoes a Hopf bifurcation, 
after which the trajectory spirals outward without bound from the unstable focus. 
Hence there are no structurally stable oscillatory solutions. For the competition case 
(a1r1 > 0, a1r2 > 0), the coexisting equilibrium is a stable node for a1 < 1 and a2 < 1, at 
which point it undergoes a saddle-node bifurcation, after which one of the species 
dies while the other goes to its carrying capacity (R = 1 or F = 1). Thus there are no 
oscillatory solutions, and stability requires that the intraspecies competition 
dominates. When the interspecies competition dominates, the weaker species is 
extinguished by the principle of `competitive exclusion’ or `survival of the fittest’ 
(Gause 1971). For the cooperation case (a1r1 < 0, a1r2 < 0), both species either die or 
grow without bound. 

With N species there are 2N equilibria, only one of which represents coexistence, 
and it is unlikely that this equilibrium is stable since all of its eigenvalues must have 
have only negative real parts. Ecological systems exhibit diversity presumably 
because there are so many species from which to choose, because they are able to 
spread out over the landscape to minimize competition, and because species evolve to 
fill stable niches (Chesson 2000).. If many arbitrary species are introduced into a 
highly interacting environment, most would probably die.   
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1.4.   Spatio-temporal Generalization 

Now assume there are N species with population Si for i = 1 to N and that they are 
spread out over a two-dimensional landscape Si(x,y). The species could be plants or 
animals or both. For convenience, take the landscape to be a square of size L with 
periodic boundary conditions, so that Si(L,y) = Si(0,y) and Si(x,L) = Si(x,0). One 
commonly assumes that each species obeys a reaction-diffusion equation of the form 
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This system is usually solved on a finite spatial grid of cells each of size d so that 
∇2Si(x,y) = [Si(x+d,y) + Si(x-d,y) + Si(x,y+d) + Si(x,y-d) – 4Si(x,y)] / d2. 

Diffusion is perhaps not the best model for biology, however, and if too large, it 
tends to produce spatially homogneity. Instead, assume that each species interacts not 
just with the other species in its own cell but also in the four nearest-neighbor cells (a 
von Neumann neighborhood), giving 
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where ),( yxS j  = Sj(x+d,y) + Sj(x-d,y) + Sj(x,y+d) + Sj(x,y-d) + αjSj(x,y) is a weighted 

average of the neighborhood. In the example of rabbits and foxes, you can think of αj 
as the tendency for the foxes to eat at home. With αj = 0, the foxes always eat out, and 
with αj = 1 they forage uniformly over a five-cell neighborhood. In the case of trees 
and seeds, this term is where one would include a seed dispersion kernel. The 
example that follows uses αj = 1 for all j, but the results are not sensitive to the 
choice. Including only nearest neighbor cells normalizes space so that the cell size d is 
the order of the mean dispersal (or foraging) distance. Note that time can also be 
normalized to one of the growth times, so that we can take r1 = 1 without loss of 
generality. 

1.5.   Numerical Example 

In Eq. (4) all the biology is contained in the vector ri, the interaction matrix aij, and 
the dispersal vector αj here taken as unitary. Instead of modeling realistic biology, we 
choose the values of ri and aij from an IID random normal distribution with zero mean 
and unit variance and examine many instances of the model to explore a range of 
possible ecologies.  

For brevity, Fig. 1 illustrates most of the common behaviors. It starts with six 
species with uniform random values Si(x,y) in the range of 0 to 0.2 on a 100 × 100 
grid. The upper plots show the spatial structure of the six species after 100 growth 
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times, and the lower plot shows the cumulative relative abundance of each species 
versus time. One species (the fourth) dies out. The first, second, and sixth, nearly die, 
and then recover, after which the five species coexist with aperiodic temporal 
fluctuations and spatial heterogeneity. 

 

 
Figure 1.  Typical example of a spatio-temporal solution Eq. (4) with six initial 

species, one of which died. 
 
Figure 2 shows the dominant species in each cell after 100 growth times, each in a 

different color. This display facilitates comparison with real data and with the results 
of cellular automata models (Sprott 2002). As in earlier studies, we define the cluster 
probability as the fraction of cells that are the same as their four nearest neighbors and 
Fourier analyze the temporal fluctuations in cluster probability to obtain its power 
spectrum. The result in Fig. 3 shows a power law over about a decade and a half, 
implying temporal scale invariance as suggestive of self-organized criticality (Bak 
1996). Other quantities such as the total biomass ΣSi(t) also have power-law spectra.  

 
 



Predator-Prey Dynamics for Rabbits, Trees, and Romance 5 

 
 

Figure 2.  Landsccape pattern showing the dominant species in each cell. 
 
 

 
 

Figure 3.  Power spectrum of fluctuations in cluster probability. 
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To assess whether the dynamics are chaotic, we follow Lorenz (1963) and round 
the values of Si(x,y) to four significant digits after the initial transient has decayed and 
calculate the growth of the error in the total biomass as the perturbed and unpertubed 
systems evolve deterministically. The result in Fig. 4 suggests an exponential growth 
in the error with a growth rate the order of 0.1r1. If the system modeled a forest with a 
typical r1 of 50 years, the predictability time would be about 500 years. Five species 
appears to be the minimum number for such chaotic solutions. With four species, 
limit cycles were found, and with three or fewer species, all stable solutions appear to 
attract to a time-independent equilibrium with no spatial structure. Spatial 
heterogeneity always correlates with temporal fluctuations. 

 

 
 

Figure 4.  Exponential growth in total biomass error suggesting chaos. 
 
Note that the chaos and spatial structure arise from a purely deterministic model in 

which the only randomness is in the initial condition.  In fact, similar structures arise 
from highly ordered initial conditions with noise as small as 10-6. The model is purely 
endogenous (no external effects), purely homogeneous (every cell is equivalent), and 
purely egalitarian (all species obey the same equation, with only different 
coefficients). The spatial patterns and fluctuations are inherent in the equations whose 
solutions spontaneously break the imposed symmetry.  

1.6. Application to Romantic Relationships 

To stress the generality of the model, we can apply it to romantic relationships. 
Imagine two lovers, Romeo and Juliet, characterized by a pair of equations such as 
Eq. (1) in which R is Romeo’s love for Juliet and F is Juliet’s love for Romeo, both 
positive. Each lover can be characterized by one of four romantic styles depending on 
the signs of r and a as shown in Table I using names adapted from Strogatz (1988). 
The variable r determines whether one’s love grows or dies in the absence of a 
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response from the other (a = 0), and the variable a determines whether reciprocated 
love enhances or suppresses one’s feelings.  
 

Table I.  Romantic styles 
                a 

– + 
Cautious 

lover 

 
+ + 

Narcissicist 
nerd 

 
–  – 

Hermit 

                   r 
+ – 

Eager 
beaver 

  
With two interacting lovers, there are thus 24 = 16 different combinations of 

romantic styles, the fate of which are determined by the strength of the interations. As 
an example, choosing r and a from an IID random normal distribution with zero mean 
and unit variance gives the results in Table II, where the percentages are the 
probability that a stable steady state is reached. In some sense, the best pairing is 
between an eager beaver and a narcissistic nerd, although two eager beavers have 
solutions that grow mutually without bound. Not surprisingly, the prospects are 
dismal for a hermit and not much better for a cautious lover. Fortunately, humans 
seem capable of adapting their romantic styles to fit the situation. 

 
Table II.  Probability of mutual stable love for various pairings. 

 Narcissistic 
nerd 

Eager 
beaver 

Cautious 
lover 

Hermit 
 

Narcissistic nerd 46% 67% 5% 0% 
 

Eager beaver 67% 39% 0% 0% 
 

Cautious lover 5% 0% 0% 0% 
 

Hermit 0% 0% 0% 0% 
 

It is also instructive to examine love triangles, in which case there are are four 
variables if two of the lovers are unaware of one another, and six variables if each 
person has feelings for the other two. The variables need not be romatic love ; the 
third person could be the child of a couple or perhaps a mother-in-law. With six 
variables, there are 26 = 64 equilibria, only one of which represents a universally 
happy arrangement and 46 = 4096 different combinations of styles, assuming each 
person can adopt a different interaction style toward each of the others. Not 
surprisingly, the prognosis for coexisting positive feelings is very low unless the 
individuals exhibit strong adaptability of their styles. Perhaps humans adapt to such 
situtions much the way plants and animals do, by limiting their interactions, evolving 
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to fill a stable niche, drawing sustinence from others, and maintaining spatial 
separation. 

With three or more variables, there is the possibility of chaotic solutions. 
However, a search for such solutions in the system of Eq. (1) generalized to six 
variables failed to reveal any such solutions, although other similar models do exhibit 
chaos (see for example http://sprott.physics.wisc.edu/lectures/love&hap/).   
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