COMMENTS

Comments refer to papers published in Physics of Plasmas and are subject to a length limitation of two printed pages. The Board of Editors will not hold itself responsible for the opinions expressed in the Comments.

Comment on "A new class of exact solutions of the Vlasov equation" [Phys. Plasmas 8, 5081 (2001)]

G. Rowlands

Department of Physics, University of Warwick, Coventry CV4 7AL, England

J. C. Sprott

Department of Physics, University of Wisconsin, Madison, Wisconsin 53706

(Received 6 June 2002; accepted 13 June 2002)

A recent paper obtained a class of exact one-dimensional solutions of the Vlasov-Poisson equations for a one-component plasma in a parabolic electrostatic potential well. Here it is shown that a significant class of these solutions has already been studied and shown to be chaotic. © 2002 American Institute of Physics. [DOI: 10.1063/1.1498837]

In a recent paper, Yu, Chen, and Stenflo¹ obtained a class of exact one-dimensional solutions of the Vlasov–Poisson equations describing a one-component plasma in a parabolic electrostatic potential well. In particular, the electric field at any time is given by $E = E_0(t)x$ so that the plasma density is given by $A_0 = E_0 + n_0$, where n_0 is the constant background ion density. The Vlasov–Poisson system is then reduced exactly to an infinite set of coupled ordinary nonlinear differential equations of the form

$$\frac{dA_m}{dt} - mE_0 A_{m-1} + (m+1)A_{m+1} = 0. (1)$$

The A_m 's essentially specify the velocity moments of the distribution function.

The authors then introduce various closure schemes, such as $A_4 = 0.03A_0$, and show that bounded chaotic solutions exist for all the other moments for *suitable* initial conditions. As they themselves state, these solutions were found by a trial-and-error search in which the initial conditions of A_m were varied.

This note points out that this search procedure has already been carried out for a significant class of solutions which can result from a particular closure procedure applied to Eq. (1).

If one introduces the closure condition that

$$A_3 = f(A_0, A_1, A_2),$$
 (2)

where as yet f is an arbitrary function, then the dynamics reduce to a single third-order equation of "jerk" form,^{2,3} namely

$$\frac{d^3A_0}{dt^3} = (5n_0 - 6A_0)\frac{dA_0}{dt} - 6f\tag{3}$$

with

$$A_1 = -\frac{dA_0}{dt} \tag{4}$$

and

$$A_2 = \frac{1}{2} \frac{d^2 A_0}{dt^2} + \frac{1}{2} (A_0 - n_0) A_0.$$
 (5)

If one now limits f(A) to be a polynomial of a most quadratic nonlinearity, then following from numerical work by Sprott,⁴ Eichhorn, Linz, and Hänggi⁵ identified seven distinct forms for f(A) that lead to chaotic dynamics. For example, the choice

$$A_3 \equiv f(A) = -\frac{1}{6} [2k_1 A_2 + (5n_0 - 7A_0)A_1 + (k_1 n_0 - k_1 A_0 + k_2)A_0 + k_3]$$
(6)

leads to the equation

$$\frac{d^3A_0}{dt^3} = k_1 \frac{d^2A_0}{dt^2} + A_0 \frac{dA_0}{dt} + k_2 A_0 + k_3, \tag{7}$$

where k_1 , k_2 , and k_3 are arbitrary parameters with chaotic solutions for values such as $k_1 = -1.8$, $k_2 = -2$, and $k_3 = -1$. Equation (7) is an example of the JD_1 model classified by Eichhorn *et al*.

More recently, Sprott and Linz⁶ have identified a number of jerk equations giving chaotic solutions in which the non-linearity is not necessarily polynomial. These systems are of the form

$$\frac{d^3A_0}{dt^3} + a\frac{d^2A_0}{dt^2} + \frac{dA_0}{dt} = g(A_0),$$
(8)

where $g(A_0)$ is nonlinear but not necessarily quadratic in A_0 . Equation (8) corresponds to the closure condition

$$A_3 = f(A) = \frac{1}{3} a A_2 - \frac{1}{6} [(5n_0 - 6A_0 + 1)A_1 + a(A_0 - n_0)A_0 + g].$$
(9)

For example, the case

$$g(A_0) = \frac{1}{c} \{ 1 - b[1 + \tanh(cA_0)] \}$$
 (10)

turned up in a model of the interaction of the solar wind with the magnetosphere (Horton *et al.*⁷) with chaotic solutions for a = 0.6, b = 13, and c arbitrary.

This work was supported by the U.S. Department of Energy.

- ¹M. Y. Yu, Z. Chen, and L. Stenflo, Phys. Plasmas 8, 5081 (2001).
- ²S. J. Linz, Am. J. Phys. **65**, 523 (1997).
- ³J. C. Sprott, Am. J. Phys. **65**, 537 (1997).
- ⁴J. C. Sprott, Phys. Rev. E **50**, R647 (1994).
- ⁵R. Eichhorn, S. J. Linz, and P. Hänggi, Phys. Rev. E **58**, 7151 (1998).
- ⁶J. C. Sprott and S. J. Linz, Int. J. Chaos Theory Appl. **5**, 3 (2000).
- ⁷W. Horton, R. S. Weigel, and J. C. Sprott, Phys. Plasmas 8, 2946 (2001).