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We explore the chaotic behavior of a nonlinear electrical circuit constructed with simple compo-
nents such as diodes and linear operational amplifiers. The circuit may be regarded as a nonlin-
ear analog computer that gives a nearly exact solution of a particular chaotic model. Detailed
comparisons between theoretical and experimental bifurcation points and power spectra yield

differences of less than 1%.
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The recent study of nonlinear dynamical systems
has led to many intriguing and surprising results.
One of these is the observation that certain sys-
tems can exhibit chaos, where small initial uncer-
tainties grow exponentially in time giving large un-
certainties in the future state of the system. Many
examples of chaos have been found in nature and in
numerical solutions of iterated maps and differen-
tial equations. However, the equations often poorly
represent the phenomena they model and the agree-
ment is usually at best qualitative. This paper re-
ports a comparison between a simple model and
an actual experiment with agreement that is better
than 1% for such quantities as bifurcation points
and power spectra.

We consider a time-continuous system de-
scribed by an autonomous ordinary differential
equation (ODE) in a single variable, where the min-
imal conditions for chaos are that the ODE be third-
order and contain a nonlinearity. Several authors
have searched for the simplest third-order ODE
that exhibits chaos [Gottlieb, 1996; Linz, 1997;
Sprott, 1997; Linz & Sprott, 1999; Sprott, 2000a,
2000b]. One of the simplest of such systems uses the
absolute value nonlinearity and is given by [Linz &
Sprott, 1999]

Fo=—AF— i o] -1, (1)

where A is the control parameter. Equation (1) has
a stable fixed point when A > 1 and undergoes a
Hopf bifurcation at A = 1. The solutions follow a

fCurrent address: School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA.
fCurrent address: Department of Physics, University of Oregon, Eugene, OR 97403-5203, USA.
$Current address: Department of Physics, Montana State University, Room 264 EPS Building, Bozeman, MT 59717, USA.



2868 K. Kiers et al.

period-doubling route to chaos as A is lowered from
1 to 0.64085 [Linz & Sprott, 1999]. For A in the
range 0.64085 to about 0.547 the solutions exhibit
a very detailed structure with chaotic bands inter-
rupted by periodic windows [Linz & Sprott, 1999].

As noted by Sprott [2000a, 2000b], Eq. (1) be-
longs to a class of third-order ODEs that may be
represented by simple electronic circuits with the
variable x corresponding to the voltage at a node in
the circuit. Although such a circuit provides an ana-
log simulation of a differential equation, it should
be noted that the power and energy flow among
individual elements in such a circuit are not phys-
ically meaningful. (This may be contrasted with a
physical circuit, in which the power flow has a well-
defined physical meaning, as in a physical spring-
mass system.) The circuits in [Sprott, 2000a] and
[Sprott, 2000b] contain operational amplifiers and
(in some cases) diodes, which produce nonlinearities
and permit chaos. Resistors or other elements may
be used as control parameters to bring the circuits
into or out of chaos, and the circuits may be scaled
over many orders of magnitude in frequency, making
them ideal for demonstration and study. Our choice
of component values puts the typical frequencies in
the range of a few Hertz, allowing for accurate data
measurement and storage. Note that the circuits in
[Sprott, 2000a, 2000b] are similar to Chua’s circuit
[Matsumoto et al., 1985, 1987], although Chua’s cir-
cuit has a very complicated representation in terms
of T, and it is not straightforward to scale to dif-
ferent frequencies because it (typically) contains an
inductor.!

Figure 1 shows the circuit considered here. Its
modular design permits insertion of different non-
linear subcircuits in the box denoted “D(x).” The
circuit contains three successive inverting integra-
tors with global feedback and may be viewed as a
nonlinear analog computer. Simple elements within
the box (such as diodes and operational ampli-
fiers) provide the nonlinearity required for chaos.
The elements are arranged such that the voltage
at the output of the box (on the left) is related
to its input by Vo = D(Vin). A similar modu-
lar design was described in [Sprott, 2000b], where
chaos was observed for several different functions
D(z). Assuming nominal values for the resistors

(R = 47 kQ) and capacitors (C = 1 uF) yields
the following differential equation for the voltage at
the node “x” in the figure,

5;':—<R£;>5U'—9b+D(x)— <R%>Vo, (2)

where the input voltage V; could have either po-
larity. In Eq. (2) & represents differentiation with
respect to the dimensionless quantity ¢ = ¢/(RC),
and R, is the variable resistor in Fig. 1. This resis-
tor is the control parameter that brings the system
into or out of chaos and allows for a detailed quan-
titative study.

We construct and analyze one example from the
class of circuits noted above using the subcircuit in
Fig. 2 described in [Horowitz & Hill, 1989]. To a
very good approximation, the relation between the
input and output of the subcircuit is given by

Vout = D(Vin)

R3Rs; Rs
= Vviny V; 07
[Rsz; R1] ” 3)
_ |5 Vi Vin <0
Rl ms m .

For R = Ry, = R3 = R; = 2R4, the subcir-
cuit yields an absolute value nonlinearity, D(z) =
|z|. With this D(x) and with V; = 0.25 V and
Ry = R, Eq. (2) is equivalent to Eq. (1), except for
a trivial change in the constant term.? A simpler

Fig. 1. Schematic diagram of the circuit described by
Eq. (2). The box labeled “D(z)” represents a subcircuit com-
prised of simple elements such as diodes and linear opera-
tional amplifiers. Nominal values for the unlabeled resistors
and capacitors are R =47 k2 and C' =1 uF.

Variants of Chua’s circuit that do not use inductors may be found, e.g. in [Térres & Aguirre, 2000; Elwakil & Kennedy, 2000;

Elwakil & Kennedy, 2001].

2In the numerical calculations we use measured resistor, capacitor and voltage values, resulting in small changes in the terms

in Eq. (2).
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Fig. 2. Schematic diagram of the subcircuit shown in Fig. 1
that gives Vout = D(Vin) = |Vin| if R1 = R2 = R3 = Rs =
2Ry. Silicon diodes are used in the experiment.
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Fig. 3. Experimental plot of Vout versus Vi, for the subcir-
cuit shown in Fig. 2.

electronic representation of Eq. (1) — using two
diodes, but fewer linear components — was de-
scribed in [Sprott, 2000a]. The advantage of the
present circuit is that it provides an almost ideal
absolute value nonlinearity, whereas the nonlinear-
ity in the former circuit contained a “dead” region
bounded by two “knees” (due to the I-V charac-
teristic of the diodes). The “knees” in the simpler
arrangement are difficult to model theoretically due
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Table 1. Comparison between several experimental and
theoretical values of Vout for the subcircuit shown in Fig. 2.
The theoretical values are obtained from Eq. (3), using mea-
sured values for the various resistances. All entries in the
Table are in units of mV.

Vi Vout (Exp.) Vout (Theory) Difference
—690 690 689 1
—100.0 100.9 99.8 1.1
-31.9 33.0 31.8 1.2
—12.7 13.8 12.7 1.1
—4.1 5.3 4.1 1.2

2.1 4.9 2.1 2.8
12.8 15.6 12.8 2.8
32.1 34.9 32.1 2.8

100.0 102.9 100.1 2.8
690 694 690 4

to their sensitive dependence on ambient laboratory
conditions such as temperature. Figure 3 shows an
experimental plot of Vi, versus V4, for the subcir-
cuit in Fig. 2. It is clear from the plot that the
subcircuit provides an excellent approximation to
the absolute value function, even at quite small val-
ues for the input voltage. Table 1 compares several
experimental values of Vt to theoretical values ob-
tained using Eq. (3). The experimental values tend
to exceed the theoretical ones by approximately
1 mV for Vi, < 0 and 3 mV for V;, > 0. The experi-
mental values are observed to have a mild sensitivity
(on the order of a few mV) to the supply voltage
for the operational amplifiers and to the ambient
conditions in the laboratory.

The variable resistor in Fig. 1 actually con-
sists of a number of fixed resistors in combination
with eight digital potentiometers. The digital po-
tentiometers are in series with each other and in
parallel with a fixed resistance. That combination
is arranged in series with another fixed resistance.
Each potentiometer has 256-step resolution over ap-
proximately 10 k2. The resulting combination of
resistors and potentiometers yields approximately
2000-step resolution over the range of interest from
approximately 57 k2 to 84 k2, with increased
resolution at the high end. Voltages at the nodes
labeled “x” and “—2” in Fig. 1 are sampled at a fre-
quency of 166.7 Hz, which is sufficient to probe the
interesting frequency range from 0 to approximately
20 Hz (c.f. Fig. 6). The Analog-to-Digital (A/D)
conversion system is capable of 12-bit (4096-step)
resolution over 0-5 V. The potentiometers are also
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Fig. 4. Experimental, theoretical and superimposed bifur-
cation plots for the circuit in Figs. 1 and 2. In the superim-
posed plot, the theoretical plot has been shifted vertically by
—5 mV. The short vertical lines in the top plot indicate the
values of R, for the phase space plots in Fig. 5. The labels a—e
in the bottom plot denote the bifurcation points in Table 2.

designed to function between 0 and 5 V. The ground
plane of the circuit is “floated” at approximately
3V to help satisfy the various voltage range require-
ments. Furthermore, simple amplifiers are employed
at the z and —% nodes to make optimal use of the
0 to 5 V range of the A/D converters.

Figure 4 shows experimental and theoretical bi-
furcation plots of local maxima as a function of R,,.
For resistances much above 84 k{2 the solutions of
Eq. (2) (with D(z) = |z|) become unbounded —

and the operational amplifiers saturate — and for
values much below 57 k€2, the voltage approaches
a stable fixed point. To generate the experimental
plot (the top plot in Fig. 4) we identify candidate
local maxima within the data set using a rough cut
that compares triplets of x values. Further refine-
ment includes a cubic polynomial fit to 21 points
surrounding each candidate maximum in x. This
method is very successful at identifying local max-
ima, distinguishing true maxima from “almost” sad-
dle points and removing noise. In particular, the
method works well near R, = 84 k), where the
signal bifurcates from period-2 to period-3 as a
saddle point turns into a new local maximum. A
study of fits obtained in various cases indicates that
true maxima are sometimes underestimated by up
to about 5 mV, depending on the local shape of
the curve. The theoretical plot (the middle plot in
Fig. 4) is generated using a fourth-order Runge-
Kutta with a step size of 0.25 ms. The resistance
and capacitance measurements used in the theory
are accurate to +0.02%, with capacitance measure-
ments performed at 12 Hz. Some of the details of
the theoretical plot are extremely sensitive to the
exact values used for the resistors and capacitors.
For example, varying resistance and capacitance
values within the allowed 4:0.02% ranges causes the
“middle” chaotic band near 80 k{2 to change in
width or disappear. We have chosen values for the
resistors and capacitors (within the allowed ranges)
that produce a band much like the experimental
one. The bottom superimposed plot in Fig. 4 shows
remarkable agreement of theory and experiment.
Table 2 compares the experimental and the-
oretical bifurcation points labeled a—e in Fig. 4.
The values for the bifurcation points differ by
less than one percent, as indicated in the last
column of the table, with the theoretical values
slightly smaller than the experimental ones. This

Table 2. Comparison of theoretical and experimental
bifurcation points. The labels a—e are indicated in the bottom
plot in Fig. 4. Contributions to the quoted uncertainties are
described in the text.

Exp. (k) Theory (k2)  Diff. (kQ)  Diff. (%)
a 63.62 £ 0.07 63.34 £ 0.08 0.28 0.44
b 70.65 £ 0.06 70.44 £ 0.11 0.21 0.30
c 77.18 £0.05 76.95 £ 0.20 0.23 0.30
d 82.11 £0.02 81.70 £0.15 0.41 0.50
e 84.20 £ 0.02 83.76 £0.13 0.44 0.52
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Experimental phase space plots for various values of Ry. In each case & and z are plotted (in V) on the vertical

and horizontal axes, respectively. The values of R, are indicated in the lower-right corner of each plot and correspond to the
short vertical lines in the top plot of Fig. 4. From left to right and top to bottom, the plots are period-1, -2, -4, -8, -6, chaos,

period-7, -5 and -3.

trend is also evident in Fig. 4. There are several
sources of uncertainty in determining the exper-
imental bifurcation points included in the table.
The experimental uncertainties include determin-
ing the bifurcation points from the plot, values of
the fixed resistors in R, (+£0.02% for each) and
the digital potentiometers. The potentiometers are
mildly nonlinear, but are calibrated at 3 V (the
value of the floating ground) to mitigate the ef-
fect of nonlinearity. Nevertheless, this nonlinearity
gives a small uncertainty, as does the calibration
curve itself. The uncertainties in the theoretical bi-
furcation points are determined by choosing resistor
and capacitor values in the theoretical model from
a random Gaussian distribution with width 0.02%.
In most cases, the errors between the experimental
and theoretical bifurcation points in Table 2 exceed
the expected errors, indicating that other experi-
mental or theoretical uncertainties exist. Possible
additional errors include the drifting of resistor or
capacitor values (beyond their stated uncertainties)

due to aging or environmental changes, small leak-
age currents in the operational amplifiers and slight
departures from the idealized behavior assumed for
the subcircuit in Fig. 2. Other studies of the cir-
cuit point to the first of these as the most likely
remaining uncertainty.

A sampling of experimental phase space plots
in Fig. 5 demonstrates the low noise in the circuit
as well as some of the interesting periodic behavior
that occurs in the narrow nonchaotic windows in
Fig. 4. The first four plots (periods one, two, four
and eight) demonstrate the period-doubling route
to chaos evident in Fig. 4. The period-six, -seven
and -five windows are discernible in both the exper-
imental and theoretical bifurcation plots in Fig. 4,
although the period-seven window is quite narrow.
One of the three loops on the period-three attractor
just barely crosses the & = 0 line and looks almost
like a cusp. For slightly smaller values of R, the
loop descends below the & = 0 line and becomes
a “bump,” leaving a period-two phase space plot.
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Fig. 6.

Phase space and power spectral density for the period-five window near R, = 81 k2. In each plot the theoretical and

experimental results are superimposed. The theoretical result is discernible as the smoother of the two lines in the plot on the

right.

The chaotic attractor in Fig. 5 is from the band
near R, = 75 k(.

Figure 6 shows a detailed comparison between
theory and experiment for the period-five window
near R, = 81 k. The theoretical results were
generated using a slightly lower value for R, (by
approximately 0.27 kQ), consistent with the shift
evident in Fig. 4. On the scale shown, there is no
discernible difference between the theoretical and
experimental attractors, although small differences,
of order 4-8 mV, exist. This agreement between
theory and experiment is typical of that found for
the attractors in Fig. 5. The theoretical and exper-
imental frequency spectra in Fig. 6 also agree very
well, as is typical of the cases examined. In this
case, the experimental curve is the one containing a
small amount of noise. The frequency spectrum has
a dominant peak at 3.27 Hz and subdominant peaks
at n x 3.27/5 Hz, where n =1, 2, 3,4, 6, 7,.... At
low frequencies, the positions of the peaks agree to
at least 0.01-0.02 Hz (which is the frequency resolu-
tion of the 8192-point FFT). At frequencies of order
10 Hz, the theoretical and experimental peaks differ
by up to about 0.04 Hz, or about 0.4%.

The circuit described here has a modular design
and may be considered as a nonlinear analog com-
puter that uses simple components (ordinary diodes
and linear operational amplifiers) to give an exact
solution to a chaotic model. The ideal behavior of
the nonlinearity in the circuit and the simplicity of
the circuit itself allow for a very detailed comparison
between theory and experiment. The circuit repre-
sents a new instrument for the detailed quantitative

study of chaotic systems. One could couple two or
more such circuits together and study a wide vari-
ety of complex phenomena such as synchronization,
chaos control, routes to chaos or high-dimensional
dynamics. Such studies have been performed in the
past using other chaotic systems, but not to the
accuracy permitted by this system [Madan, 1993].
The circuit is also ideal for lecture demonstration
and student projects.
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