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Abstract

We numerically investigate chaotic behavior in autonomous nonlinear models of fractional order. Linear transfer

function approximations of the fractional integrator block are calculated for a set of fractional orders in ð0; 1�, based on

frequency domain arguments, and the resulting equivalent models are studied. Two chaotic models are considered

in this study; an electronic chaotic oscillator, and a mechanical chaotic ‘‘jerk’’ model. In both models, numerical

simulations are used to demonstrate that for different types of model nonlinearities, and using the proper control

parameters, chaotic attractors are obtained with system orders as low as 2.1. Consequently, we present a conjecture that

third-order chaotic nonlinear systems can still produce chaotic behavior with a total system order of 2þ e, 1 > e > 0,

using the appropriate control parameters. The effect of fractional order on the chaotic range of the control parameters is

studied. It is demonstrated that as the order is decreased, the chaotic range of the control parameter is affected by

contraction and translation. Robustness against model order reduction is demonstrated.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Chaotic systems have been a focal point of renewed interest for many researchers in the past few decades. Such

nonlinear systems can occur in various natural and man-made systems, and are known to have great sensitivity to initial

conditions. Thus, two trajectories starting at arbitrarily nearby initial conditions in such systems could evolve in

drastically different fashions, and soon become totally uncorrelated. At first glance, chaotic time trajectories look very

much like noise. In fact, chaotic signals and noise have similar broad-band frequency spectrum charactersitics.

However, there is a fundamental difference between noise and chaos, determinism: whereas chaos can be classified as

deterministic but unpredictable, noise is neither deterministic nor predictable. This unpredictability of chaotic time

signals has been utilized for secure communication applications. Basically, the useful signal is encapsulated in a chaotic

envelope (produced by a chaotic oscillator) at the transmitter end, and is transmitted over the communication channel

as a chaotic signal. At the receiver end, the information-bearing signal is recovered using various techniques, e.g.

synchronization [1–3].

According to the Poincare–Bendixon theorem [4], an integer order chaotic nonlinear system must have a minimum

order of 3 for chaos to appear. However, in fractional-order nonlinear systems, it is not the case. For example, it has

been shown that Chua�s circuit of order as low as 2.7 can produce a chaotic attractor [5]. Nonautonomous Duffing

systems of fractional order have been addressed in [6], where it is shown that a sinusoidally driven Duffing system of

order less than 2 can still behave in a chaotic manner.
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The underlying theory behind fractional-order systems is deeply rooted in fractional calculus [7]. Basically, these

systems are characterized by characteristic equations of fractional order. From a state-space point of view, the frac-

tional order of the resulting characteristic equation results from a fractional-order integrator placed, for example, in

place of the output integrator in the system block diagram realization. From a circuit realization standpoint, a frac-

tional-order circuit is obtained using fractional capacitors. Recently, a solid-state implementation of fractal capacitors

has been reported [8]. A fractional capacitor �C� of order �m� has an Laplace domain impedance given by ZðsÞ ¼ 1=ðCsÞm.
Clearly, this device is characterized by a phase shift of mp=2, for sinusoidal excitation, and becomes 90� as expected
when the order becomes unity. Moreover, the fractional capacitor is not lossless, as can be seen from its impedance. As

more advances are brought about in the way of solid-state implementations of such devices, we are likely to see a flury

of fractional-order integrated circuits. Thus, the need to understand and be able to analyze such circuits becomes vital.

The analysis of fractional-order systems is by no means trivial. Therefore, the course of numerical simulations is

often adopted in order to study the behavior of these systems. For example, fractional-order nonchaotic Wien bridge

Fig. 1. (a) Block diagram of fractional chaotic oscillator. (b) Block diagram of fractional chaotic jerk model. (c) Fractional integrator

frequency responses: (––) actual, (��) approximation; m ¼ 0:5, and corner frequency of 0.01 rad/s.
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oscillators have recently been studied in [9], where it is shown that limit cycles can be attained for any fractional order,

with the proper value of the amplifier gain which, of course, is a function of the fractional order. In our study we will

Table 1

Linear transfer function approximations of fractional integrator of order �m�, with maximum discrepancy y ¼ 2 dB

m N HðsÞ
0.1 2 1584:8932ðsþ 0:1668Þðsþ 27:83Þ

ðsþ 0:1Þðsþ 16:68Þðsþ 2783Þ

0.2 2 79:4328ðsþ 0:05623Þðsþ 1Þðsþ 17:78Þ
ðsþ 0:03162Þðsþ 0:5623Þðsþ 10Þðsþ 177:8Þ

0.3 4 39:8107ðsþ 0:0416Þðsþ 0:3728Þðsþ 3:34Þðsþ 29:94Þ
ðsþ 0:02154Þðsþ 0:1931Þðsþ 1:73Þðsþ 15:51Þðsþ 138:9Þ

0.4 5 35:4813ðsþ 0:03831Þðsþ 0:261Þðsþ 1:778Þðsþ 12:12Þðsþ 82:54Þ
ðsþ 0:01778Þðsþ 0:1212Þðsþ 0:8254Þðsþ 5:623Þðsþ 38:31Þðsþ 261Þ

0.5 5 15:8489ðsþ 0:03981Þðsþ 0:2512Þðsþ 1:585Þðsþ 10Þðsþ 63:1Þ
ðsþ 0:01585Þðsþ 0:1Þðsþ 0:631Þðsþ 3:981Þðsþ 25:12Þðsþ 158:5Þ

0.6 5 10:7978ðsþ 0:04642Þðsþ 0:3162Þðsþ 2:154Þðsþ 14:68Þðsþ 100Þ
ðsþ 0:01468Þðsþ 0:1Þðsþ 0:6813Þðsþ 4:642Þðsþ 31:62Þðsþ 215:4Þ

0.7 5 9:3633ðsþ 0:06449Þðsþ 0:578Þðsþ 5:179Þðsþ 46:42Þðsþ 416Þ
ðsþ 0:01389Þðsþ 0:1245Þðsþ 1:116Þðsþ 10Þðsþ 89:62Þðsþ 803:1Þ

0.8 4 5:3088ðsþ 0:1334Þðsþ 2:371Þðsþ 42:17Þðsþ 749:9Þ
ðsþ 0:01334Þðsþ 0:2371Þðsþ 4:217Þðsþ 74:99Þðsþ 1334Þ

0.9 2 2:2675ðsþ 1:292Þðsþ 215:4Þ
ðsþ 0:01292Þðsþ 2:154Þðsþ 359:4Þ

Table 2

Linear transfer function approximations of fractional integrator of order �m�, with maximum discrepancy y ¼ 3 dB

m N HðsÞ
0.1 2 501:14ðsþ 0:6811Þ

ðsþ 0:3162Þðsþ 681:1Þ

0.2 2 141:2538ðsþ 0:1334Þðsþ 10Þ
ðsþ 0:05623Þðsþ 4:217Þðsþ 316:2Þ

0.3 4 125:8925ðsþ 0:08483Þðsþ 2:276Þðsþ 61:05Þ
ðsþ 0:03162Þðsþ 0:8483Þðsþ 22:76Þðsþ 610:5Þ

0.4 5 26:6073ðsþ 0:07499Þðsþ 1:334Þðsþ 23:71Þ
ðsþ 0:02371Þðsþ 0:4217Þðsþ 7:499Þðsþ 133:4Þ

0.5 5 50:1187ðsþ 0:07943Þðsþ 1:259Þðsþ 19:95Þðsþ 316:2Þ
ðsþ 0:01995Þðsþ 0:3162Þðsþ 5:012Þðsþ 79:43Þðsþ 1259Þ

0.6 5 28:1838ðsþ 0:1Þðsþ 1:778Þðsþ 31:62Þðsþ 562:3Þ
ðsþ 0:01778Þðsþ 0:3162Þðsþ 5:623Þðsþ 100Þðsþ 1778Þ

0.7 5 7:9433ðsþ 0:1638Þðsþ 4:394Þðsþ 117:9Þ
ðsþ 0:01638Þðsþ 0:4394Þðsþ 11:79Þðsþ 100Þðsþ 316:2Þ

0.8 4 8:1752ðsþ 0:487Þðsþ 36:52Þðsþ 2738Þ
ðsþ 0:0154Þðsþ 1:155Þðsþ 86:6Þðsþ 6494Þ

0.9 2 4:2987ðsþ 14:68Þðsþ 31620Þ
ðsþ 0:01468Þðsþ 31:62Þðsþ 68130Þ
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focus on two types of autonomous chaotic systems that are of practical interest: an electronic chaotic oscillator model

[10], and a mechanical chaotic ‘‘jerk’’ model [11,12]. We will present simulation results of the chaotic behaviors pro-

duced from these two interesting systems as they acquire fractional orders.

One way to study fractional-order systems is through linear approximations. By utilizing frequency domain tech-

niques based on Bode diagrams, one can obtain a linear approximation for the fractional-order integrator, the order of

which depends on the desired bandwidth and discrepancy between the actual and the approximate magnitude Bode

diagrams [13]. In this paper, we use this approach to study the behaviors of the fractional-order versions of our chaotic

oscillator and jerk models. We derive the approximate linear transfer functions for the fractional integrator of order

that varies from 0.1 to 0.9, and study the resulting behavior of the entire system for each case under the effect of different

types of nonlinearities. We demonstrate that chaotic attractors are obtained for total system order as low as 2.1.

In the following, we will consider the state space equations of the systems under study. The output integrator block is

assumed to have a fractional order �m� in ð0; 1�. In the Laplace domain, a fractional integrator of order �m� can be

represented by the transfer function:

F ðsÞ ¼ 1

sm
ð1Þ

Fig. 2. (a) Integer order chaotic oscillator, a ¼ 0:8, f ðx1Þ ¼ sgnðx1Þ. (b) Fractional oscillator, m ¼ 0:9, a ¼ 0:4, f ðx1Þ ¼ sgnðx1Þ, y ¼ 2

dB.
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The transfer function in (1) has a Bode diagram characterized by a slope of �20m dB/decade. We will follow the

algorithm in [13] to calculate linear transfer function approximations of (1). This approximation is based on approx-

imating the �20m dB/decade line with a number of zig-zag lines connected together with alternate slopes of 0 dB/decade

and �20 dB/decade. According to [13], if the discrepancy between the actual and approximate lines is specified as �y� dB
over a frequency range of xmax, and for a corner frequency pT , then Eq. (1) can be approximated as

F ðsÞ ¼ 1

sm
� 1

1þ s
pT

� �m �
QN�1

i¼0 1þ s
zi

� �

QN
i¼0 1þ s

pi

� � ð2Þ

In other words, the fractional integrator is approximated by a linear transfer function of order N þ 1, where N is given

by

N ¼ 1þ Integer
log xmax

p0

� �

logðabÞ

0
@

1
A ð3Þ

Fig. 3. Fractional oscillator, m ¼ 0:9, a ¼ 0:5, f ðx1Þ ¼ sgnðx1Þ: (left) y ¼ 2 dB, (right) 3 dB.

Fig. 4. Fractional oscillator, m ¼ 0:9, a ¼ 0:05, nonlinearity 9b: (left) y ¼ 2 dB, (right) 3 dB.
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Fig. 5. Fractional oscillator, m ¼ 0:9, a ¼ 0:97, nonlinearity 9c: (left) y ¼ 2 dB, (right) 3 dB.

Fig. 6. Fractional oscillator, m ¼ 0:5, a ¼ 0:2, f ðx1Þ ¼ sgnðx1Þ: (left) y ¼ 2 dB, (right) 3 dB.

Fig. 7. Fractional oscillator, m ¼ 0:1, a ¼ 0:02, f ðx1Þ ¼ sgnðx1Þ: (left) y ¼ 2 dB, (right) 3 dB.
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and p0, a, and b are given by

p0 ¼ pT10ðy=20mÞ ð4Þ

Fig. 8. Jerk model, a ¼ 0:6, nonlinearity 9a (a), 9b (b) and 9c (c).
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a ¼ 10½y=10ð1�mÞ� ð5Þ

b ¼ 10ðy=10mÞ ð6Þ

Clearly, the order of the approximating transfer function depends on the fractional order �m� as will be verified shortly.

We will choose arbitrarily xmax ¼ 100 and pT ¼ 0:01 to calculate the approximating transfer functions that will be used

in the simulations.

2. Nonlinear models

2.1. Fractional chaotic oscillator

We consider the one-parameter, third-order chaotic oscillator of canonical structure reported in [10] as being the

simplest possible structure for a chaotic oscillator. This model is shown in block diagram in Fig. 1a. The output in-

Fig. 10. Fractional jerk, m ¼ 0:9, nonlinearity 9b: (left) a ¼ 0:3, y ¼ 2 dB, (right) a ¼ 0:49, y ¼ 3 dB.

Fig. 9. Fractional jerk, m ¼ 0:9, nonlinearity 9a: (left) a ¼ 0:4, y ¼ 2 dB, (right) a ¼ 0:5, y ¼ 3 dB.
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tegrator of this model is then replaced with a fractional integrator. The resulting fractional chaotic oscillator model is

then given in state space as

dxm1
dtm

¼ x2

dx2
dt

¼ x3

dx3
dt

¼ �aðx1 þ x2 þ x3 þ f ðx1ÞÞ

ð7Þ

where �a� is the control parameter for this oscillator, and f ðx1Þ ¼ sgnðx1Þ is the model nonlinearity. In the integer order

case, this oscillator is known to give a double-scroll-like chaotic attractor in the range 1:0 > a > 0:49.

2.2. Fractional jerk model

This model, shown in Fig. 1b, is used to determine the time derivative of acceleration of an object, referred to as jerk

[3,11,12]. In state space, it�s given as follows:

Fig. 11. Fractional jerk, m ¼ 0:9, a ¼ 0:6, nonlinearity 9c: (left) y ¼ 2 dB, (right) 3 dB.

Fig. 12. Fractional jerk, m ¼ 0:5, a ¼ 0:3, nonlinearity 9c: (left) y ¼ 2 dB, (right) y ¼ 3 dB.
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dxm

dtm
¼ v

dv
dt

¼ a

da
dt

¼ �Aa� vþ f ðxÞ

ð8Þ

where x, v, and a are, respectively, the position, velocity, and acceleration of the object, f ðxÞ is the model nonlinearity,

and �A� is the control parameter. In its integer form, i.e. m ¼ 1, this model is known to give chaos for A � 0:6 and

different types of nonlinearities, as shown below:

f ðxÞ ¼
jxj � 2 ðaÞ
1:2x� 4:5sgnðxÞ ðbÞ
�1:2xþ 2sgnðxÞ ðcÞ

8<
:

9=
; ð9Þ

We will study the behavior of the two models above for the nonlinearities given in (9).

3. Transfer function approximations

Using the algorithm in [11], Table 1 gives the resulting approximating transfer functions, HðsÞ for different fractional
orders, in increments of 0.1, for the mth order output integrator, assuming xmax ¼ 100 and pT ¼ 0:01. The maximum

error, �y�, assumed in the calculation is 2 dB. We also calculate in Table 2 another set of approximate transfer functions

assuming y ¼ 3 dB, in order to study the sensitivity of the system behavior to approximation errors. Notice that the

order of the approximate transfer functions increases as the desired error decreases.

The chaotic systems can then be represented by block diagrams as shown in Fig. 1a and b.

In Fig. 1c, we show the magnitude Bode diagrams for a fractional integrator of order m ¼ 0:5, and its linear ap-

proximating transfer function (from Table 1). It can be seen that within the bandwidth of interest the two diagrams are

in good agreement.

4. Simulation results

In our simulations, we have visually inspected the bifurcation diagrams to identify chaos. We have also utilized the

CDA� [14] software package to confirm our findings by looking at Lyapunov exponents and power spectra in some

cases.

Fig. 13. Fractional jerk, m ¼ 0:1, a ¼ 0:05, nonlinearity 9c: (left) y ¼ 2 dB, (right) y ¼ 3 dB.
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The integer order canonical chaotic oscillator with nonlinearity given by f ðx1Þ ¼ sgnðx1Þ is known to give a double-

scroll-like chaotic attractor for control parameter values in the range 1:0 > a > 0:49. This is shown in Fig. 2a which was

obtained for a ¼ 0:8. In Fig. 2b, we show that the same type of chaotic attractor is obtained for a ¼ 0:4 and m ¼ 0:9
which amounts to a total system order of 2.9. Notice, however, that this value of the control parameter was not in the

chaotic range of the integer order model at all. In fact, the integer order system gives an unstable response at a ¼ 0:4. In
Fig. 3, we show the behavior obtained from the chaotic oscillator for the two error values (2 and 3 dB) at a ¼ 0:5,
m ¼ 0:9, and the nonlinearity f ðx1Þ ¼ sgnðx1Þ. As can be seen from the figure, the double-scroll-like attractor is

Fig. 14. (a) Chaotic range versus fractional order for fractional jerk model. (b) Chaotic range versus fractional order for fractional

oscillator model.
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preserved despite the increase in modeling error. The same model is simulated in Fig. 4 using nonlinearity 9b and

a ¼ 0:05, and in Fig. 5 with a ¼ 0:97 and nonlinearity 9c. We further reduced the total system order down to 0.5, Fig. 6,

and 2.1, Fig. 7, and in both cases we obtained the same type of attractor with a ¼ 0:2 and 0.02, respectively, and using

the nonlinearity f ðx1Þ ¼ sgnðx1Þ. These figures demonstrate clearly that indeed the chaotic behavior of the oscillator is

not destroyed by order reduction. Moreover, reasonable modeling errors seem to be tolerable and not to affect the

chaotic behavior of the system. Also, it can be noticed that the effective chaotic range of the control parameter shifts

downward away from that corresponding to the integer order model. For example, with m ¼ 0:5, we obtain chaotic

behavior, a double-scroll-like attractor, in the range of �a� between 0.1 and 0.3, as opposed to 0.49 to 1 for m ¼ 1. Also,

a ¼ 1 for the integer order oscillator gives a limit cycle, whereas with m ¼ 0:9 the system is chaotic.

As for the fractional jerk model, we have noticed that it was more sensitive to modeling error than the oscillator

model. We have carried out similar simulations using different fractional-order values and different nonlinearities. The

baseline plots, obtained from the integer order jerk model, are shown in Fig. 8. In Figs. 9–11, we show simulation

results of the fractional jerk model of total order of 2.9 and using the nonlinearities 9a, 9b, and 9c. The control pa-

rameter value had to be somewhat tuned as the error was changed from 2 to 3 dB. Qualitatively speaking, the chaotic

behavior is preserved in each case. In Figs. 12 and 13, we show simulations of the fractional jerk model of total orders

2.5 and 2.1, using nonlinearity 9c, and control values of 0.3 and 0.05, respectively. Notice, once again, the reduction in

the effective chaotic range of the control parameter, A, as �m� decreases. In Fig. 14, we plot the bounds of the effective

chaotic range of the control parameter for the two models versus the value of �m� assuming nonlinearity 9a as an ex-

ample. Clearly, as the fractional order increases the effective chaotic range increases somewhat proportionally. It is

worth mentioning that the chaotic range for the fractional jerk model is narrow to begin with. Consequently, as the

fractional order decreases below m ¼ 0:5, the chaotic range shrinks significantly, and becomes much less pronounced

than that for the chaotic oscillator as shown in the figure.

Finally, we have conducted several numerical simulations on fractional systems with total system order less than 2,

as would be obtained by replacing all three integrators by fractional ones. However, no evidence of chaos has been

shown. From the above results, we present the following conjecture:

Conjecture. A third-order chaotic autonomous nonlinear system, with the appropriate nonlinearity and control parameters,
is chaotic for any fractional order 2þ e, 1 > e > 0.

5. Conclusion

We have demonstrated via numerical simulations that chaotic autonomous nonlinear systems can still exhibit

chaotic behaviors when the order becomes fractional. Linear approximation techniques which are based on frequency

domain arguments have been used to obtain approximate linear models of the given systems. The resulting order of the

approximating function of the fractional integrator depends on the desired bandwidth, and error between actual and

approximate Bode magnitude plots of the fractional integrator. Both electronic chaotic oscillators and chaotic jerk

models were studied. The effective chaotic range of the control parameter for either model shrinks and moves down-

ward as the total system order decreases and approaches 2, i.e. the chaotic range is affected by contraction and

translation processes as the fractional order decreases. The chaotic behaviors of the fractional-order models exhibit

some degree of qualitative robustness against model order reduction as would be caused by modeling errors.
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