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Abstract

Spatial patterns such as historical landscape records or digital photographs are often plagued by large numbers of

missing or otherwise corrupted data points or pixels that cannot be easily reproduced. A method is described in which a

simple stochastic cellular automaton is used to produce fictitious fractal data at arbitrarily many spatial points such that

the resulting pattern mimics the morphological features of the actual pattern. The method is simple to implement,

preserves all the existing data, has no adjustable parameters, and can be used to fill in regions of arbitrary size and

shape, even outside the region for which data are available. Furthermore, it reduces to more conventional interpolation

methods when only a few isolated data points are missing.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Spatial patterns such as landscape data [1] and digital

photographs are often plagued by missing, ambiguous,

or otherwise corrupted points that can greatly hinder

some types of analysis. In many cases, the data cannot

be recovered because the pattern has since changed or is

no longer accessible. There are many plausible schemes

for guessing the identity of such points, for example,

using logistic regression [2] or by assuming that the

missing points are the same as their nearest neighbors or

the same as the most abundant data type within some

radius. However, these methods perform poorly with

large blocks of missing data since they tend to fill in the

blocks homogeneously, and they can greatly distort the

morphological features of the data.

Digital image processing and enhancement have a

vast and rich history [3–12] including methods involving

cellular automata [13–15]. However, most traditional

methods do not explicitly use the knowledge of which

pixels are corrupted and typically smooth or sharpen the

image uniformly, altering the good as well as the bad

pixels in the process. These methods often use sophis-

ticated mathematics, not easily understood by students

and programmers, have adjustable parameters, and are

difficult to implement. Furthermore, traditional meth-

ods typically do not preserve the small-scale fractal

structure within the large blocks of missing data,

resulting in a blurry image.

2. The voter model

Recently, Bolliger et al. [16] proposed a stochastic

cellular automaton model that produces a landscape

resembling that from historical records starting from a

wide variety of arbitrary initial conditions. The model is

extremely simple and is known in the cellular automaton

literature as the voter model [17] since it models a

particularly impressionable political electorate. It con-

sists of a two-dimensional rectangular grid of cells with

each cell assuming one of a finite number of values that

could correspond to landscape type (forest, savanna,

prairie, etc.), tree type (pine, oak, maple, etc.), or any

other characteristic such as predominant political

regions of democrats and republicans. The model is

initialized either randomly or with a highly ordered

distribution of values having the same probability as the

landscape to be modeled. At each iteration, cells are

replaced by the contents of a cell chosen at random from
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within a circular neighborhood of radius r. The cells can

be updated either synchronously (all at once) or

asynchronously (randomly). Boundary conditions can

either be periodic (the pattern wraps both horizontally

and vertically), or reflecting (as with a mirror at the

boundary).

After many iterations with an appropriately

chosen value of r, the pattern evolves to one whose

features strongly resemble the historical data according

to various metrics. Common metrics are the cluster

probability (the probability that an arbitrary cell is the

same as its four nearest neighbors), fractal dimension, or

algorithmic complexity [18]. The fractal pattern con-

tinues to evolve with scale-invariant temporal

fluctuations having a 1=f a power spectrum with aE1.6

as would be expected for a self-organized critical

system [19].

The method proposed here uses the cellular auto-

maton model locally to fill in regions of missing or

corrupted data without disturbing the remaining good

data. The single parameter r is chosen so that the regions

of missing data have the same cluster probability as the

regions of good data, although any other appropriate

metric could be substituted. The method can be used to

supply a single missing point, which becomes the same

as one of its randomly chosen neighbors within a radius

r, or to generate an entire landscape as was done by

Bolliger et al. [16], and thus it has wide applicability. The

method is illustrated using a hypothetical two-compo-

nent square data set with a large block of data missing

from its interior. The extension to more complicated

images with many more components is straightforward

and is illustrated with digital photographs from which

numerous large blocks of pixels are removed. Although

the method is illustrated with raster data, it can be

applied equally well to vector data in which the points

do not lie on a regular grid.

3. Application to landscape data

On the left of Fig. 1 is a hypothetical two-component

landscape generated by a stochastic cellular automaton

with 208� 208 cells after 1000 iterations, starting with

equally probable but random values of 0 or 1 in each

cell. Cells asynchronously (randomly) replaced by one of

their eight nearest neighbors are also chosen randomly.

This plot could represent, for example, regions of

forested and non-forested landscapes, but it could also

be a plot or digital photograph of anything whose

underlying structure is a random fractal, such as clouds

or regions of lakes and land. For this case, the

probability that a cell is the same as its four nearest

neighbors is about 40%. If this were an observed

landscape with missing data and an irregular boundary,

the cluster probability could be calculated for only those

points in the set that have four correctly identified

neighbors. Missing data and data outside the boundaries

are presumed to have the same cluster probability.

Fig. 2 shows how the cluster probability changes with

the size of the neighborhood from which replacements

are chosen. Small neighborhoods exhibit strong organi-

zation with relatively few large clusters and a large

cluster probability, while large neighborhoods exhibit

weak organization with many small clusters and a small

cluster probability. The data points represent the mean

of 25 different realizations of the original data, and the

error bars represent plus or minus one standard

deviation. Note that a random two-component pattern

with equal densities has a cluster probability of ð1
2
Þ4 ¼

6:25%:
The parameter r, or equivalently the number of

neighbors (approximately pr2), can be chosen to mimic

a wide range of patterns, including one with many

missing data points. The replacements need not be

chosen uniformly from a disk of radius r, but could, for
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Fig. 1. Hypothetical two-component landscape on a 208� 208 grid produced by a stochastic cellular automaton after 1000 iterations

with random initial conditions. When a 60� 60 block of data is removed from the center, the plausibly realistic image on the right is

generated after 5000 iterations of a stochastic cellular automaton with replacements chosen randomly from an eight-cell neighborhood.
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example, be chosen with a Gaussian or other radial

probability distribution function.

Such multi-parameter probability kernels would permit

fine-tuning the fit to reproduce the pattern even more

realistically, for example using a spectrum of cluster

probabilities in which more than four nearest neighbors

are considered. Anisotropic patterns can be fit using an

elliptical or rectangular neighborhood if desired.

Now suppose that the pattern in the left of Fig. 1 has a

large block of 60� 60 cells with missing data as

indicated in the center plot of Fig. 1. Applying the

cellular automaton model with replacements chosen

from the eight nearest neighbors (Moore neighborhood)

produces the pattern on the right in Fig. 1 after

5000 iterations. The number of iterations is not critical

but should be sufficient to ensure that all the missing

data cells are replaced and the resulting pattern has

organized to the desired cluster probability. The block

fills in gradually from the boundaries with a different

but morphologically similar pattern to the one on the

left of Fig. 1 without disturbing the surrounding region,

which is assumed to contain good data.

The reconstructed data obviously do not duplicate the

actual missing data, but they have the same general

characteristics with the same probability distribution as

the good data along the boundary. They blend into the

good data in a seamless manner at the boundary as

evidenced by the fact that the boundary is not

discernible in the reconstructed image. Accurate predic-

tion is not a goal of the method, but Fig. 3 shows an

accuracy of about 70% near the boundary that degrades

smoothly toward 50% as the boundary recedes as would

be expected by pure chance. Fig. 3 is an average of many

realizations of the predicted data as the cellular

automaton evolves over 5000 iterations.

To demonstrate that the method works for more

complex real landscape data, the left image in Fig. 4
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Fig. 3. The fraction of correctly identified cells in Fig. 1 is

about 70% at the boundary and smoothly degrades to about

50% as the boundary recedes.

Fig. 2. Cluster probability produced by a two-component

cellular automaton with replacements chosen randomly from

different neighborhood sizes.

Fig. 4. The eight-level satellite data on a 548� 548 grid of leaf area index over the Eastern United States on the left (courtesy of Steven

Running, MODIS Land Group Member, University of Montana) is assumed to have a 160� 160 block of data missing from the center

and is reconstructed with 1000 iterations of a stochastic cellular automaton, producing the image on the right.
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shows leaf area index (fraction of the surface area

covered by green foliage) over the Eastern United States

acquired by the Moderate-resolution Imaging Spectro-

radiometer (MODIS) during the period March 24–April

8, 2000 from the Terra satellite [20]. The image is

digitized with 548� 548 pixels in eight colors (plus dark

blue for water). In the center of Fig. 4, a 160� 160 block

of data is removed (perhaps to simulate a region

obscured by clouds), and is reconstructed using 1000

asynchronous iterations of the stochastic cellular
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Fig. 5. The 256-color dithered image of a cat on the left is assumed to have 400 random blocks of 10� 10 pixels removed and then

replaced after 1000 iterations of a stochastic cellular automaton, producing the image on the right.

Fig. 6. The 256-color dithered image of the Matterhorn on the left is assumed to have 25%, 50%, and 75% of the pixels removed in random

blocks of 10� 10 pixels and then replaced after 1000 iterations of a stochastic cellular automaton, producing the images on the right.
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automaton with replacements chosen randomly from an

eight-cell neighborhood, producing the image on the

right of Fig. 4. The reconstructed image is plausibly

realistic with structure that resembles the actual

structure and no discernable discontinuity at the

boundary of the replaced region.

4. Application to digital photographs

For a more demanding and illustrative test of the

method, Fig. 5 shows on the left a dithered image of a

cat digitized at 400� 400 pixels with 256 colors. The

middle image shows the pattern after 400 blocks of

10� 10 pixels have been removed from random posi-

tions within the image (25% of the pixels). On the right

is the result of filling in the blocks using 1000

asynchronous iterations of the cellular automaton with

replacements chosen randomly from an eight-cell

neighborhood. The reconstructed image shows artifacts

around the whiskers and the smooth edge of the ears,

but in the regions of the face where the boundary

between colors is more nearly fractal, the resulting image

appears quite realistic. The dithering of the image to

simulate more than 256 colors suggests that the method

would also work well for half-tone photographs.

The method is especially suited for fractal landscapes

that lack smooth edges such as the photograph of

the Matterhorn digitized at 640� 480 pixels with

256 colors in the left of Fig. 6. The three rows

illustrate the effect of removing 25%, 50%, and 75% of

the pixels, respectively, in random blocks of 10� 10 pixels

each and then reconstructed using 1000 asynchronous

iterations of the cellular automaton with replacements

chosen randomly from an eight-cell neighborhood. The

image quality degrades gracefully, and even the worst case

resembles an impressionist painting of the scene.

5. Conclusions

In summary, the proposed method uses a stochastic

cellular automaton to generate fictitious but plausibly

realistic fractal data in regions of space where actual

data are missing or corrupted as evidenced by measures

such as the cluster probability, fractal dimension, and

algorithmic complexity. It does so by a simple method

whose only parameter is easily determined from what-

ever good data exist. The method is mainly cosmetic and

can be applied to any pattern or image whose underlying

structure is a random fractal.
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