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Can a Monkey with a Computer Create Art?

J. C. Sprott1, University of Wisconsin

Abstract: A computer can be programmed to search through the solution

of millions of equations to find a few hundred whose graphical display is

aesthetically pleasing to humans. This paper describes some methods for

performing such an exhaustive search, criteria for automatically judging

aesthetic appeal, and examples of the results.
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INTRODUCTION

Aspects of chaos have been known and understood for hundreds

of years.  Sir Isaac Newton was said to get headaches contemplating the

three-body problem, and the French mathematician Henri Poincaré

(1890) won a prize in 1889 for showing that the three-body problem had

no analytic solution and hence was unpredictable.  However, the

widespread appreciation of chaos had to await the advent of powerful

and plentiful computers that can approximate the solution of nonlinear

equations and display the results with colorful, high-resolution graphics.

The story is now well known how the meteorologist Edward

Lorenz (1993) accidentally discovered sensitive dependence on initial

conditions in the early 1960s while modeling atmospheric convection on

a primitive digital computer (Lorenz, 1963).  The Lorenz attractor

became an emblem of chaos and for many years was the prototypical and

almost the only such system that was widely studied.  A few other
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chaotic systems of differential equations were known, including those by

Rössler (1976), Moore & Spiegel (1966), and Ueda (1979), shown in

Fig. 1, but chaos was viewed as rather rare and exceptional.  These

objects were called “strange attractors” by Ruelle and Takens (1971), but

neither can recall who coined the term (Ruelle, 1991).

Fig. 1. Some early chaotic flows (a) Lorenz, (b) Rössler, (c) Moore &
Spiegel, and (d) Ueda.

Concurrent with these developments was the understanding that

chaos also occurs in discrete-time systems governed by finite difference

equations, the most celebrated example of which is the logistic map

Xn+1 = AXn(1 – Xn)  (1)

which was brought to the attention of scientists by Sir Robert May

(1976).  Other one-dimensional chaotic maps were known much earlier,

including the linear congruential generator (Knuth, 1997)



NDPLS, 8(1), Monkey Art                                   105

Xn+1 = AXn + B  (mod C) (2)

which had been used for years to produce pseudorandom numbers on the

computer.  One of the earliest and most widely studied two-dimensional

chaotic map was due to Hénon (1976)

Xn+1 = 1 – aXn
2 + bYn

(3)

Yn+1 = Xn

although others were known, including those by Lozi (1978), Ikeda

(1979), and Sinai (1972), shown in Fig. 2.

Fig. 2. Some early chaotic maps (a) Hénon, (b) Lozi, (c) Ikeda, and (d)
Sinai.
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COMPUTER SEARCH

 It is clear from these early examples that a wide variety of

complex visual patterns can be produced by extremely simple equations

and that some of these images have aesthetic as well as mathematical

appeal.  The advent of modern computers raised the possibility of mass-

producing unique images of this type despite the fact that most systems

of dynamical equations produce rather simple and uninteresting solutions

(Sprott, 1993).  The key observations are that a simple system of dynam-

ical equations with a small number of parameters can produce an almost

unlimited variety of shapes as the parameters are varied and that the

visually interesting cases are those whose solutions are chaotic.

Unfortunately, there are no known general rules for predicting the

conditions under which chaos will occur, and thus the only general

approach entails an extensive search.  Fortunately, such a search can be

automated and performed relatively quickly with modern computers.

Fig. 3. Sample strange attractors from Eq. 4 for various values of the
parameters a1 through a6.
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One of the simplest systems that can produce a large variety of

such images is the general time-delayed quadratic map, which is a

generalization of the Hénon map in Eq. 3

Xn+1 = a1 + a2Xn + a3Xn
2 + a4XnYn + a5Yn + a6Yn

2

(4)

Yn+1 = Xn

where a1 through a6 are the parameters that govern the behavior.  This

six-dimensional parameter space is vast and admits an enormous variety

of forms, some examples of which for integer values of the parameters

are shown in Fig. 3.  You can think of the six values as the settings on a

combination lock, some of which open the door to visually interesting

images.

To find visually interesting solutions to a system such as Eq. 4,

at least two tests must be performed.  Unbounded orbits that escape to

infinity are excluded by monitoring the value of |Xn| and moving on to a

new set of parameters if it exceeds some large value such as |Xn| > 1000.

Nonchaotic solutions are excluded in a similar way by testing for

sensitive dependence on initial conditions.  Formally, this is done by

calculating the Lyapunov exponent (Sprott, 2003) and discarding cases

for which it is not decidedly positive.  More simply, perform two simul-

taneous calculations in which the initial conditions (typically taken as X0

= Y0 = 0.05) differ by some small amount such as 10-6, and discard cases

for which any subsequent iterate differs by less than this amount.  It is

also possible to discriminate against attractors that are too thin (line-like)

or too thick (area-filling) by calculating the fractal dimension (Sprott

2003) or more simply by counting the number of screen pixels visited by

the orbit and discarding cases for which this number is very small (less

than about 10% of the number of pixels on the screen) or very large

(more than about 50%).

It is also helpful to begin plotting only after some number of

iterations, such as 1000, to be sure the orbit has reached the attractor and

to allow calculation of the minimum and maximum values of Xn so that

the plot can be appropriately scaled.  Note that the scale for X and Y will

be the same since Yn = Xn-1 is the time delayed value of Xn.  Even restrict-

ing the six parameters to integer values in the range –10 < a < 10 gives
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196 ~ 47 million different values of which approximately 450 (0.001%)

satisfy the above criteria and are nearly all different.  Finer increments of

the parameters produce an astronomical number of unique cases.

AESTHETIC EVALUATION

The above methods eliminate the vast majority of solutions that

are of little aesthetic interest.  Those that remain span a wide range from

rather mundane to quite spectacular.  In one experiment (Sprott 1993),

eight volunteers rated a collection of 7500 strange attractors similar to

those in Fig. 3 on a scale of 1 to 5 according to their aesthetic appeal.

The results in Fig. 4 show a gray scale in which the darker gray indicates

those combinations of largest Lyapunov exponent 1 and correlation

dimension D with greatest appeal.  Think of the dimension as a measure

of the strangeness of the attractor, and the Lyapunov exponent as a

measure of its chaoticity.  All evaluators tended to prefer attractors with

dimensions between about 1.1 and 1.5 and with small Lyapunov

exponents.  This range of dimensions characterizes many natural objects

such as rivers and coastlines.  The Lyapunov exponent preference is

harder to understand since it is a dynamical rather than geometrical

measure, but it suggests that strongly chaotic systems are too unpredict-

able to be appealing.  There is some evidence that scientists and

nonscientists have different preferences (Aks & Sprott, 1996), but the

differences are small.

Fig. 4. Values of the largest Lyapunov exponent 1 and fractal dimension
D that give the most aesthetically pleasing images are shown in darker
gray.
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The discovery of mathematical metrics that quantify aesthetics is

interesting and even disturbing to many people.  However, it does raise

the possibility of programming the computer to evaluate its own art and

to discard cases that it judges would not be appealing to a human.  The

procedure is a bit like having a monkey press computer keys and then

having a program that saves those few gems of prose that would be

produced after millions of trials.  Fortunately, one’s tolerance for visual

art is less demanding than for the written word, and monkeys are capable

of producing some quite respectable paintings (Lenain, 1997).

EMBELLISHMENTS

There are countless ways to embellish the methods described

above.  An obvious extension is to add color.  One simple way to do this

is to introduce a third variable Zn+1 = Yn to Eq. 4 and use the value of Z to

choose the color plotted at each (X, Y) position from some palette such as

a rainbow.  Color figures cannot be shown here, but a Java applet that

produces a new and different pattern of this type every five seconds is at

http://sprott.physics.wisc.edu/java/attract/attract.htm.

The method can be extended to more than three variables,

subject only to finding ways to display the additional variables (Sprott

1993).  For example, the four-dimensional system

Xn+1 = a1Xn + a2Xn
2 + a3Yn + a4Yn

2 + a5Zn + a6Zn
2+ a7Cn + a8Cn

2

Yn+1 = Xn

(5)

Zn+1 = Yn

Cn+1 = Zn

has been used to produce images with depth Z displayed with shadows

and occlusion, and the fourth dimension C displayed as color.  Eight

parameters are used so that the information needed to reconstruct the

image can be encoded into an 8-byte string and used as the DOS file

name.  An example with color displayed as a gray scale is in Fig. 5, but

much more dramatic high-resolution color samples are at

http://sprott.physics.wisc.edu/fractals/pubqual/.  When printed at large

size, these images are quite stunning and artistic by most criteria, except

that a computer produced them without human intervention (other than to

write the program that searches for them).
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Fig. 5. Sample four-dimensional strange attractor from Eq. 5 in which
one dimension is displayed  by shadows and another by color (gray
scale here).

Fig. 6. Sample four-dimensional symmetric icon from Eq. 5 in which the
attractor has been replicated six times around a circle.

Images such as these are delightful, but they typically lack global

symmetry.  It is possible to choose equations whose solutions are

symmetric (Field & Golubitsky, 1992), but a simpler method is to

impose the symmetry afterwards by distorting the attractor into a pie-

shaped wedge and replicating it some number of times, typically between



NDPLS, 8(1), Monkey Art                                   111

two and nine, perhaps with alternate repetitions reversed (Sprott, 1996).

Such images are called “symmetric icons,” and an example of one,

resembling the petals of a flower, is in Fig. 6.  Many more such examples

in color are at http://sprott.physics.wisc.edu/fractals/icons/.

Although the methods described above pertain to strange

attractors, they can be extended to other types of mathematical fractals.

For example, iterated function systems (Barnsley, 1988) consist of two or

more linear affine mappings of the form

Xn+1 = a1Xn + a2Yn + a5

(6)

Yn+1 = a3Xn + a4Yn + a6

chosen randomly at each time step.  Even with as few as two such

mappings, a variety of images emerge as shown in Fig. 7, which have

been selected aesthetically by their correlation dimension and Lyapunov

exponent (Sprott 1994).

Fig. 7. Sample iterated function systems from two randomly chosen
affine mappings as given by Eq. 6.
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Fig. 8. Sample escape-time contours for the general quadratic map
basins in Eq. 8.

Some of the most beautiful examples of mathematical fractals

come from Julia sets, which are the basin of attraction of bounded

solutions of the complex map

Zn+1 = Zn
2 + c         (7)

where Z =  X + iY and c is a complex constant c = a + ib.  Much human

effort has been expended in finding values of a and b that produce

visually interesting images.  That process can be automated by program-

ming the computer to search through thousands of parameter values,

searching for cases whose iterates of Z0 = 0 escape (|Zn| > 2), but only

slowly (such as 100 < n < 1000).  Then the value of n can be plotted in a

color or gray scale for those orbits that escape for a range of starting

values of X0 and Y0 (such as –1 to 1).  Figure 8 shows some examples of
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this technique using the generalized quadratic map (Sprott & Pickover,

1995)

Xn+1 = a1 + a2Xn + a3Xn
2 + a4XnYn + a5Yn + a6Yn

2

(8)

Yn+1 = a7 + a8Xn + a9Xn
2 + a10XnYn + a11Yn + a12Yn

2

with 16 shades of gray that cycle forward and then backward as n (for

Xn
2 + Yn

2 > 1  106) increases.  Many stunning color examples can be

found at http://sprott.physics.wisc.edu/fractals/autoquad/.  There is a

special visual appeal for those cases that satisfy the Cauchy-Riemann

conditions (Arfken 1985), which imply a6 = -a3, a8 = -a5, a9= -a4/2, a10 =

2a3, a11 = a2, and a12 = a4/2.  A variety of other rendering methods for

systems of this type can also be easily implemented (Carlson 1996).

Finally, it is possible to overlay two or more images produced as

described above by combining the pixels at a given location in some

way.  For example, one can plot the larger or smaller of the two color

values or perform an exclusive-or or other binary operation on the

values.  This method works best if the two images are the same size and

use the same color palette.

CONCLUSIONS

Simple nonlinear dynamical equations can produce an enormous

variety of forms, a small fraction of which are visually appealing.

Simple rules have been developed that enable the computer to search

through the vast space of possibilities and single out those cases that are

likely to appeal to humans.  In this way the computer is both the artist

and the critic of its own work.  Carefully tuned programs can generate

thousands of unique and highly appealing images in this way.  The

method is used to produce a “fractal of the day” at http://

sprott.physics.wisc.edu/fractals.htm and to produce the cover art that will

adorn this journal in this and subsequent issues.
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