Precision measurements of a simple chaotic circuit
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We describe a simple nonlinear electrical circuit that can be used to study chaotic phenomena. The
circuit employs simple electronic elements such as diodes, resistors, and operational amplifiers, and
is easy to construct. A novel feature of the circuit is its use of an almost ideal nonlinear element,
which is straightforward to model theoretically and leads to excellent agreement between
experiment and theory. For example, comparisons of bifurcation points and power spectra give
agreement to within 1%. The circuit yields a broad range of behavior and is well suited for
qualitative demonstrations and as a serious research tool. © 2004 American Association of Physics Teachers.
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I. INTRODUCTION

The study of nonlinear systems and chaos provides a fas-
cinating gateway into the world of research for students.
With the growing use of nonlinear analysis techniques in
many areas of science, it also is becoming increasingly im-
portant to provide undergraduate students with a good intro-
duction to nonlinear systems. Undergraduate chaos experi-
ments that are available commercially tend either to be
relatively expensive or to be somewhat qualitative in nature.
Many articles have been published over the past 15 years
regarding chaotic behavior in systems ranging from a bounc-
ing ball to various electronic circuits.'”® In many of these
articles the authors have made clever use of low cost or
readily available equipment to illustrate well-known aspects
and analytical techniques associated with chaos, such as bi-
furcation diagrams, periodic and chaotic attractors, return
maps and Poincaré sections.

Nonlinear electronic circuits provide an excellent tool for
the study of chaotic behavior. Some of these circuits treat
time as a discrete variable, employing sample-and-hold sub-
circuits and analog multipliers to model iterated maps such
as the logistic map.! Continuous-time flows are somewhat
easier to model electronically. One of the best-known chaotic
circuits of this latter type is Chua’s circuit.””'' The original
version of this circuit contains an inductor (making it diffi-
cult to model and to scale to different frequencies), but in-
ductorless versions of Chua’s circuit have also been
described.'*"'* Recent work has highlighted several new
chaotic circuits that are very simple to construct and
analyze.'>'® These circuits correspond to simple third-order
differential equations, are easy to scale to different frequen-
cies, and contain only simple electronic elements such as
diodes, operational amplifiers (op amps), and resistors. Fur-
thermore, with slight modifications, they hold the potential
for very precise comparisons between theory and
experiment.!’ The differential equations corresponding to
these circuits are among the simplest third-order differential
equations that lead to chaotic behavior.'®=?? As noted in
Refs. 16 and 17, several of these circuits may be grouped
together and regarded as an analog computer for the precise
experimental study of chaotic phenomena. Some possible
uses of these circuits involve studies of synchronization®
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and secure communication.”* Furthermore, several such cir-
cuits could in principle be linked together to investigate
higher-dimensional chaos.

One class of simple circuits that leads to chaotic behavior
is described by the following third-order differential
equation,

X=—Ax—x+D(x)—a, (1)

where x represents the voltage at a particular node in the
corresponding circuit. In Eq. (1) A and « are constants, the
dots denote derivatives with respect to a dimensionless time,
and D(x) is a nonlinear function that characterizes the non-
linearity in the circuit.

In this paper we describe an investigation of a new circuit
belonging to the class of circuits described by Eq. (1). The
nonlinearity in the circuit models a function proportional to
min(x,0). The circuit is similar to the one described in Ref.
15, but uses a more precise implementation of the
nonlinearity.?> The increase in precision allows for a detailed
comparison between theory and experiment. Such compari-
sons yield agreement to within 1% for quantities such as
bifurcation points. The data taken from the circuit also can
be used in a variety of ways to illustrate many aspects of
chaotic and periodic behavior.

The paper is structured as follows. In Sec. II we describe
the circuit and provide several technical details. Section III
contains the experimental results and compares these to the-
oretical expectations. Section IV offers some concluding re-
marks.

II. CIRCUIT

A. General remarks

Figure 1 shows a schematic diagram of the circuit used to
model Eq. (1). The circuit has a modular design and may,
with small changes, be used to study any of several different
chaotic systems, each corresponding to a different nonlinear
function D(x). 16.17 The variable resistor R, acts as a control
parameter, moving the system in and out of chaos, and the
input voltage V, may be either positive or negative.”® All
unlabeled resistors (capacitors) have the same nominal resis-
tance R (capacitance C). The box labeled D(x) in Fig. 1
represents the nonlinearity in the circuit, which is necessary
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Fig. 1. Schematic diagram of the circuit described by Eq. (6). The box
labeled D(x) represents a nonlinear subcircuit. Nominal values for the un-
labeled resistors and capacitors are R=47 k) and C=1 uF. Approximate
values for the input voltage and resistor are V(;=0.250 V and R,
=157k Q. Also, V,=—x and V,=x. The experiment employs dual
LMC6062 operational amplifiers, chosen for their high input impedance.
Power supplies for the operational amplifiers are tied capacitively to ground
to reduce the effects of noise on the circuit.

for the circuit to exhibit chaotic behavior. The voltage at the
output of the box (on the left) is related to that at its input by
the functional relation V ,=D(V;,).

The circuit in Fig. 1 contains three successive inverting
integrators with outputs at the nodes labeled V,, V,, and x,
as well as a summing amplifier with its output at V5. If we
use Kirchhoff’s rules at nodes a-d (along with the “golden
rules” for op amps®’), we obtain the following relations
among the voltages:

V,= RCdx_ ' 2
1= TR (2)
v=—re1 g 3
2= dl =X, ()
ecdVa_ (R R ,
R, V= Rq Vo—Vs3, 4)
V3=—V1—D(x), (5)

where the dots denote derivatives with respect to the dimen-

sionless variable 7=¢/(RC). The substitution of Egs. (2),
(3), and (5) into Eq. (4) yields

( Ry R
X= Rv)x x+D(x) (RO)VO. (6)
Equation (6) may be compared with Eq. (1). It is straightfor-
ward to generalize Eq. (6) to the case where the resistors and
capacitors differ slightly from their nominal values.

In Ref. 17 the nonlinearity in the circuit was taken to have
the form of an absolute value, D(x)=|x|. The solutions of
the differential equation corresponding to this form become
unbounded when R, exceeds a certain threshold. In the cir-
cuit itself, such unbounded solutions manifest themselves
through saturated op amps, making the circuit somewhat dif-
ficult to work with. In particular, it was found that certain
power supplies to the circuit had to be turned on in a specific
order and in quick succession or the circuit would saturate.
This instability manifested itself for all values of R, not just
those beyond the threshold.

504 Am. J. Phys., Vol. 72, No. 4, April 2004

Fig. 2. Schematic diagram of the subcircuit in the box in Fig. 1. The relation
between the output and input voltages is given by V ,=D(V;,)
=—(R, /R )min(V;,,0).

In the present work we employ a different nonlinear sub-
circuit than in Ref. 17. The nonlinearity used here models the
function D(x)=—6 min(x,0) and does not lead to un-
bounded solutions. The resulting circuit is generally much
more stable to work with, making it ideal for use with un-
dergraduate students and for other applications.

Figure 2 shows the nonlinear subcircuit used in this work
to model the function D(x) noted above. Slight variations of
this circuit®’ are used widely in various electronic applica-
tions such as AC voltmeters. To show that the circuit yields
the desired functional form, we use the Shockley equation to
model the /-V curves for the diodes,

Ip=I¢(e*P—1), (7)

where I, and V|, represent the current through and voltage
across each diode, respectively. For the BAV20 silicon di-
odes that we use, the reverse bias current /g is of order a few
nA and «a is of order 20 V™!, If we employ Kirchhoff’s rules
at nodes a and b in Fig. 2, we obtain the following transcen-
de%tal equation relating the input and output voltages in Fig.

(®)
We take a;~a,~20 V™!, Ig ~I5,~3nA and resistances

of the order 10 kQ and find that the solution of Eq. (8) is
very well represented by the approximate expression

Vout: D( Vin) = ( IRS_T) mln( Vimo) . (9)

In the experiment we choose R; and R, such that R,/R;
~6. In this case the exact solution of Eq. (8) gives voltages
of order —10~* V (instead of zero) for positive input volt-
ages. For negative input voltages the exact solution of Eq.
(8) differs from the approximation in Eq. (9) by an amount of
order —IgR,~—2X%10"* V. This amount would yield a
0.3% correction when V;;=—0.01 V and a 0.03% correction
when V;,=—0.1 V. Figure 3 shows an experimental mea-
surement of D(x) as a function of x, with the fit in Eq. (9)
superimposed on the data, demonstrating that Eq. (9) models
the subcircuit quite well.

One interesting feature that we have observed with the
subcircuit is that extremely intense light tends to decrease the
output voltage somewhat. (The casing on the diodes is evi-
dently not completely opaque.) No significant effects were
observed with normal ambient room light.

The important point expressed in Eq. (9) and the ensuing
discussion is that the op amps in Fig. 2 drive the diodes in
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Fig. 3. Experimental measurement of the function D(x) for the nonlinear
subcircuit shown in Fig. 2. The superimposed line shows the function de-
fined in Eq. (9). Both x and D(x) are in volts.

such a way that the circuit becomes quite insensitive to the
particular characteristics of the diodes themselves, that is, to
a very good approximation the solution of Eq. (8) does not
depend on « or 5. A related but slightly simpler version of
the circuit in Figs. 1 and 2 employs a bare diode to model the
function min(x,0)."> A detailed comparison between theory
and experiment in that case involves the solution of a differ-
ential equation similar to Eq. (6), but with a function D(x)
that contains a gradual ‘“‘knee” rather than a sharp disconti-
nuity in slope. The numerical results depend very sensitively
on the exact shape of the knee, so that one must perform a
very careful measurement of the diode’s /—V curve, and then
solve a transcendental equation to determine D(x)
accurately.® In contrast, the nonlinearity in the present cir-
cuit is very well described by the simple piecewise linear
function in Eq. (9), which requires no special handling and
yields a very accurate representation of the experimental re-
sults.

B. Technical details

A few details have been omitted from Fig. 1 for the sake
of clarity. In the first place, the circuit is “floated” at a false
ground of approximately 0.725 V to accommodate various
digital elements in the circuit that were added to collect a
time series record of the signal. (These digital elements re-
quire voltages to be in the range 0-5 V.) Furthermore, the
variable resistor shown in Fig. 1 is actually composed of a
46.3 k() fixed resistor in series with eight 256-step DS1803
digital potentiometers (each of nominal resistance
~10 k Q). Also omitted from Fig. 1 are simple amplification
circuits at the nodes corresponding to x and —x, which are
used to make more efficient use of the 0—5 V range available
for analog-to-digital (A/D) measurements.

The digital potentiometers and fixed resistor that comprise
R, in Fig. 1 yield approximately 2000-step resolution over
the range from about 50 k() to about 130 k(). This resolution
allows for a very detailed bifurcation plot (see Fig. 4) and
also lets the user find very narrow windows of periodicity
within bands of chaotic behavior. The digital potentiometers
are mildly nonlinear devices in the sense that the resistance
of a given potentiometer depends on the voltages at its low
and wiper leads. To minimize the effect of this nonlinearity,
we calibrate the potentiometers near 0.725 V, the floating
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Fig. 4. Experimental, theoretical, and superimposed bifurcation plots for the
circuit in Figs. 1 and 2.

ground for the experiment. The potentiometers themselves
are controlled digitally by a PIC16773 microcontroller,
which also is used to measure the voltages at the nodes cor-
responding to x and —x. These voltage measurements are
made at a frequency of 166.7 Hz and are stored temporarily
on an AT24C256 EEPROM before being transferred serially
to a personal computer to be written to a file. Data collection
over the entire range of interest takes approximately 12
hours. At present, the limiting factor is the time required to
store data on the EEPROM. Modifications are currently
planned that will significantly improve this aspect of the
experiment.>!

II1. RESULTS

A. Bifurcation plot

Figure 4 shows experimental and theoretical plots of local
maxima of x as a function of R,. For R,<53 k) the volt-
age varies periodically, with a single maximum occurring
near 0.3 V. Near 53 k() there is a bifurcation to a period-two
wave form. In this case the signal goes through two local
maxima before repeating. The signal continues to follow a
period-doubling route to chaos as R, is increased, finally
becoming chaotic near 68 k(). In chaotic regions the signal
never repeats itself, that is, the period is infinite. Also evident
in the plots are several windows of periodicity between
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Table I. Comparison of theoretical and experimental bifurcation points. The
labels a—e are indicated in the bottom plot in Fig. 4.

Expt. (k) Theory (k) Diff. (k()) Diff. (%)
a 532 529 03 0.6
b 65.0 65.0 0.0 0.0
c 78.8 787 0.1 0.1
d 101.7 101.7 0.0 0.0
e 1252 125.5 -03 -02

bands of chaos. Most of the experimentally observed peri-
odic windows are quite narrow, and can include high-period
orbits. (See, for example, the period-10 orbit in Fig. 7, which
comes from a periodic window of width 0.3 k() near R,
=98.2kQ.)

The top plot in Fig. 4 shows the experimental maxima. To
reduce the effects of noise on this plot, a cubic polynomial is
fit to points surrounding possible maxima. Spurious maxima
are removed using various cuts. The fitting procedure gener-
ally works very well, but tends to underestimate maxima by
up to about 6 mV. The middle plot shows the theoretical
bifurcation plot obtained by solving Eq. (6) with the nonlin-
earity in Eq. (9). The numerical solution is obtained using a
fourth-order Runge—Kutta algorithm with a fixed step size
corresponding to 0.125 ms. Measured (rather than nominal)
values for the resistors and capacitors are used in the numeri-
cal work. The bottom plot shows the experimental and theo-
retical plots superimposed and demonstrates the excellent
agreement between the two plots. This agreement also is
shown in Table I, which compares the locations of several
bifurcation points. The bifurcation points all agree to within
1%. The excellent agreement between theory and experiment
is due in large part to the nearly ideal behavior of the non-
linear subcircuit. If a single diode is used to approximate the
function in Eq. (9), the agreement between theory and ex-
periment is noticeably poorer (even if one attempts to model
the I-V characteristics of the diode carefully.) Figure 5
shows an expanded view of a section of the experimental
bifurcation plot shown in Fig. 4, showing the fine detail ob-
tained in the experiment.

B. Power spectral densities and phase portraits

Figure 6 contains several experimental power spectra and
illustrates the period-doubling route to chaos followed by the
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Fig. 5. An expanded view of part of the experimental bifurcation plot shown
in Fig. 4.
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Fig. 6. Experimental power spectral density plots showing the period-
doubling route to chaos as R, is increased. The value of R, is indicated in
the lower left corner. The inset in each plot shows a sample of the experi-
mental time series data used to generate the corresponding spectral density.
The smoother line in the period-one plot shows the theoretical spectral den-
sity.

system as R, is increased from approximately 51 k() to 72
k(). In each case the results are obtained from an 8192-point
fast Fourier transform (FFT) of the corresponding experi-
mental x values.>> The uppermost plot shows an example of
period-one behavior and contains a strong peak at the domi-
nant frequency of approximately 3.1 Hz. The harmonic peaks
occurring at integer multiples of the dominant frequency in-
dicate, as would be expected, that the oscillations are not
perfectly sinusoidal. A strong peak near 3 Hz is evident in
each of the other plots as well, although the peak moves to
higher frequencies as R, increases. The period-one case also
contains a theoretical curve for comparison.>* The agreement
between theory and experiment is excellent, with the posi-
tions of the peaks agreeing to within one percent. This level
of agreement between theory and experiment is found for
other values of R, as well. The second plot in Fig. 6 shows
an example of period-two behavior. In this case the oscillat-
ing voltage (shown in the inset) passes through two different
maxima before repeating. The spectral density plot contains
a new peak at half the dominant frequency, illustrating the
fact that period doubling is equivalent to frequency halving.
The trend is continued in the third plot, which shows an
example of a period-four case. The bottom plot shows the
power spectrum for a chaotic case. Despite the noisy appear-
ance of the spectrum, there is still a strong peak near 3.4 Hz.

Several experimental phase portraits are shown in Fig. 7.
In each case x and X are determined experimentally from the
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Fig. 7. Experimental phase portraits for several different values of the vari-
able resistance R, . In each plot x and % are plotted (in volts) on the hori-
zontal and vertical axes, respectively. A theoretical curve is superimposed on
the period-six case for comparison, although the curve is not distinguishable
from the experimental curve. The period-10 attractor comes from a narrow
window that is barely discernible at the far right edge of Fig. 5.

appropriate nodes in the circuit. The upper-left and lower-
right plots show two different chaotic attractors. The latter is
a two-banded attractor taken from the region just to the left
of the final bifurcation out of chaos in Fig. 4. The upper-right
and lower-left plots show period-six and -10 attractors,
which are taken from relatively narrow windows of period-
icity discernible in Figs. 4 and 5. A theoretical curve is su-
perimposed on the period-six attractor, but is not distinguish-
able due to the excellent agreement. Comparisons between
theoretical and experimental phase portraits for several peri-
odic attractors show agreement typically within 3—-6 mV,
with the agreement being somewhat worse for larger values
of R, . For R,=123.2 kQ (near the bifurcation from period-
four to period-two) the theoretical and experimental attrac-
tors differ by up to about 8 mV. Figure 8 shows a stereo-
scopic plot of the first 2000 points of one of the chaotic
attractors in Fig. 7.

Fig. 8. Stereoscopic plot of the chaotic attractor at R, =72.1 k (). The x and
X coordinates are taken from experimental data. The third coordinate is
proportional to & and is determined numerically by using pairs of x values.
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Fig. 9. First- and second-return maps for R,=72.1 k (), taken from experi-
mental data. The insets are magnified by a factor of approximately 6.5 and
show the fractal structure of the plots. The intersections of the return maps
with the diagonal lines give evidence for (unstable) period-one and -two
orbits in the data sets. Such orbits do indeed exist, as seen in Fig. 10.

C. Case study of a chaotic attractor

In this section we focus our attention on the chaotic attrac-
tor near R,=72.1 k(). Phase portraits for this attractor are
shown in Figs. 7 and 8. One point of comparison between
theory and experiment for this case is provided by the return
map associated with the attractor. To construct a return map
for a time-continuous system, we first construct an array con-
taining successive maxima x,. The r-return map is then a
plot of x, ., versus x,,. For a system such as ours, the return
maps have a fractal structure. Figure 9 shows experimental
plots of the first- and second-return maps for R,
=72.1 k. The inset in each case shows the first splitting of
the return map associated with its fractal structure. Subse-
quent splittings at higher magnification are not observable
experimentally due to noise in the experimental data. A com-
parison with the theoretical first-return map shows quite
good agreement, with the theoretical values typically being
larger than the experimental ones by 2—4 mV. The disagree-
ment is due in part to the fact that our fitting procedure for
determining experimental maxima tends to underestimate the
maxima slightly. The theoretical first-return map shows fur-
ther fractal structure. For example, a numerical solution with
step size 0.015625 ms reveals that the main inverted pa-
rabola of the return map is actually two separate lines, sepa-
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Fig. 10. Experimental wave forms showing unstable period-one and -two
orbits within the chaotic time series data for R,=72.1 k (). The top plot
shows an unstable period-one orbit starting shortly after t=60 s, with a
maximum near 0.41 V. The bottom plot shows an unstable period-two orbit
starting just before t=75 s, with maxima near 0.57 V and 0.10 V. The plots
themselves are taken from different datasets.

rated by about 0.026 mV at the peak (further splitting of
these lines is not evident with this step size). The experimen-
tal noise at the peak has a width of about 1 mV, explaining
why the splitting is not observed experimentally.

Return maps can be used to study periodic orbits within
the data set.>*% A diagonal line is superimposed on each of
the plots in Fig. 9. In the top plot the diagonal intersects the
first-return map near x,=0.41 V, giving evidence for a
period-one orbit within the data set. Because the magnitude
of the slope of the return map is greater than unity at that
point, the period-one orbit is unstable.’® A search through the
experimental time series data does indeed yield unstable
period-one orbits within the chaotic oscillations. The top plot
in Fig. 10 shows such an example. In this case the unstable
period-one behavior persists for approximately 10 oscilla-
tions (which is longer than typical for such orbits in the data
set). As expected, the maxima of the oscillations occur at
approximately 0.41 V. In a similar way, the intersection of
the diagonal line with the second-return map in Fig. 9 gives
evidence for unstable period-two orbits with maxima at ap-
proximately 0.57 V and 0.10 V. Examination of the time
series data again yields such orbits, as shown in Fig. 10.

Another point of comparison between theory and experi-
ment is the largest Lyapunov exponent, which measures the
average exponential rate of spreading of nearby trajectories
and is positive for a chaotic system. The experimental value
of this exponent is estimated using the method of Wolf
etal’ as implemented in the Chaos Data Analyzer
program.®® The time series consists of 3228 points sampled
at the local maximum of each cycle for the case shown in
Fig. 9. Candidate pairs are chosen assuming a noise floor of
0.1% and followed for one cycle. The resulting largest
Lyapunov exponent (base e) is estimated to be 1.34
+0.08 s~ !. By comparison, iterating the theoretical expres-
sion in Egs. (6) and (9) (modified slightly to use the mea-
sured component values) gives a spectrum of exponents>”
(1.269,0,—15.037)=0.001 s~ ', in agreement within the es-
timated errors of about 6%. From these values, the Kaplan—
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Yorke dimension*® is found to be Dyy=2+1.269/15.037
=2.084. The proximity of this value to two explains why the
return map is a relatively thin fractal.

IV. DISCUSSION AND CONCLUSIONS

The circuit described in this work is modeled very accu-
rately by a simple, third-order differential equation whose
solutions display a rich variety of chaotic and periodic be-
havior. Investigation of the circuit yields excellent agreement
between theory and experiment for quantities such as power
spectra, bifurcation points, phase portraits, and Lyapunov ex-
ponents. For some of these quantities the agreement is within
1%. The quality of this agreement and the stability of the
circuit itself give the circuit great potential as a serious re-
search tool for studies of synchronization, chaos control,
higher-dimensional chaos, and other topics within nonlinear
dynamics.

Investigation of the circuit is very accessible to under-
graduates and is particularly well suited as a research project
for junior- or senior-level students. The range of projects
associated with the system need only be limited by the stu-
dents’ imaginations. A detailed investigation may be under-
taken using commercially available A/D systems, or, at a
somewhat less sophisticated level, the data may be digitized
using a digital oscilloscope. Several options for investigation
also are available without digitizing the data. For example,
the X—Y setting on an oscilloscope may be used to display
phase portraits in real time. The circuit also may be simpli-
fied by substituting an analog potentiometer for the digital
ones that we use.

Students will invariably be fascinated as they observe the
changes in behavior as R, is varied. Other variations on the
circuit are also possible. For example, different nonlinearities
D(x) may be substituted in place of the one used here.'®!”
Furthermore, the operating frequency of the circuit (approxi-
mately 1/(27RC)) may easily be scaled by using different
resistors or capacitors than those that we used. Scaling the
frequency to the audio range and connecting the output to a
speaker allows for an audible demonstration of chaos, with
clearly distinguishable period doublings (frequency halvings)
en route to chaos.'”> On the theoretical side, modeling the
behavior of the circuit serves as an excellent review of dif-
ferential equations for students. They might write their own
programs to solve the equations or use software such as Mat-
lab or Mathematica to do this. The circuit offers many pos-
sibilities for theoretical and experimental investigation, rang-
ing from simple qualitative demonstrations to indepth
analyses, making it ideal for use in an undergraduate setting.
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