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Abstract

A variant of the multi-species Lotka—Volterra model is studied in which species competing for fixed finite resources are
replaced by new randomly chosen species whenever they become extinct. The model exhibits chaos, punctuated equilibria,
leptokurtosis, and self-organized criticality. It has application to ecology, finance, and possibly other diverse systems.
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Variants of the Lotka—Volterra model [1,2] have
been widely used as the starting point for understand-
ing nonlinear dynamical systems in which two or more
species or agents interact through competition for re-
sources, especially in ecology [3]. Such models often
predict that only a few of the fittest species survive
(the principle of competitive exclusion) [4]. This Let-
ter describes a model in which species that become
extinct are replaced by new randomly chosen species
in an attempt to evolve an ecology with high diversity
and fitness. Surprisingly, the diversity remains low but
exhibits temporal fluctuations that suggest chaos (sen-
sitive dependence on initial conditions), punctuated
equilibria (sporadic volatility), leptokurtosis (fat tails),
and self-organized criticality (scale invariance), which
are characteristics of many complex nonlinear dynam-
ical systems such as those in ecology and finance.
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Consider an ecology in which N species with
population x; for i =1 to N compete for a finite set
of resources according to

dx; N
_lz’"ixi<1 _Zaijxj>v (D
dt =

where r; is the growth rate of the ith species, and
a;j is the extent to which species j competes for the
resources of species i. Without loss of generality, we
can set the diagonal terms (self-interactions) a;; to 1,
which amounts to measuring the population of each
species in units of its carrying capacity in the absence
of the other species. Also, one of the growth rates ry
can be set to 1, which amounts to measuring time in
units of the inverse growth rate of the species i = 1.
Eq. (1) is a form of the Lotka—Volterra model, which
is a system in which x;/x; is a linear function of the
X;’s, and it is quite general because it can be viewed
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as the first approximation in a Taylor series expansion
for a wide class of models [5].

All the biology is contained in the vector of growth
rates 7; and the matrix of interactions a;;, which
are chosen randomly from an exponential distribution
P(a) = exp(—a) with mean 1, so that all the growths
are positive and there is only competition rather
than mutualism (symbiosis) and predation, which
are less common in real ecosystems [6]. Actually,
predation is common, but if the predators have many
species upon which to prey, the prey behave somewhat
like a fixed resource, and the effect on the prey is
equivalent to competition. In fact, the results are not
substantially changed if some of the r;’s and a;;’s are
moderately negative, although unbounded solutions
are then possible in what May [7] calls ‘an orgy
of mutual benefaction’. An exponential distribution
of random a values can be produced using a =
—Inn where n is uniform random in the interval
(0, 1). The parameters are held constant throughout
the calculation, but the calculation is repeated for
many choices of parameters to ensure that the results
are typical.

The solutions of Eq. (1) for arbitrary initial condi-
tions typically exhibit a chaotic transient, which can
last for a very long time for large N, after which the
system approaches a static equilibrium with a small
number (typically less than ten) of species surviving
[8]. This result is not surprising given that the system
has 2" equilibria (each of the N species can be either
present or absent), only one of which corresponds to
coexistence of all species. Oscillatory solutions (limit
cycles) are possible [9] for N > 2, and chaotic solu-
tions (strange attractors) can occur for N > 3, but they
require careful tuning of the parameters [10]. Chaos
can also occur for N = 3 if some of the elements of
a;j are negative [11] or if the a;; depend on the densi-
ties of the species [12]. A typical example of a chaotic
transient for N =48 and x; (0) = 0.1 for all i is shown
in Fig. 1. In this case all but five species become ex-
tinct after about ¢+ = 200, and the system approaches a
stable equilibrium. Such solutions are the most com-
mon.

To produce sustained, aperiodic fluctuations for ar-
bitrary parameters, any species i = m whose popu-
lation falls below 10~ and is decreasing is replaced
by a new species with the same population but with
Tm, @mj, and aj,, for j =1 to N chosen from a ran-
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Fig. 1. Typical temporal variation of 48 species without evolution.

dom exponential distribution. This procedure crudely
models evolution (or speciation) in an ecology with a
fixed maximum number of species. When the number
of species is small, a stable steady state is eventually
reached with all species present, but for N large, the
required time is enormously long. When new species
come into existence faster than the chaotic transient
decays, the chaos persists. Surprisingly, there is no ev-
idence that the solution evolves toward a state of in-
creased fitness, but rather various species dominate for
a time and then become extinct and are replaced by
others. The behavior seen in first half of Fig. 1 then
persists indefinitely, and offers a sobering message for
humanity.

To illustrate the dynamics, define the total biomass
M as

1 N
M=N;xi, 2)
1=

which is normalized to a maximum value of 1.0, and
the biodiversity D as

N

1
Dzl_z(z\/—l)Z

i=1
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which is zero if there is a single existing species
and 1.0 if all species are present in equal amounts.
A typical result for 48 species is shown in Fig. 2.

To demonstrate that the model is chaotic [13],
Fig. 3 shows the same biomass data as in Fig. 2
superimposed on a similar plot in which one of
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Fig. 2. Fluctuations in average biomass and biodiversity for
48 species with evolution.

the 48 species has its initial condition different by
one part in 10°. The two plots track each other
closely until about ¢ = 200, whereupon they begin to
exhibit very different trajectories, showing an alternate
realization of the model for the same parameters.
A plot of biodiversity (not shown) is similar. Although
the species are chosen from a random exponential
distribution, the same seed is used for the random
number generator for the two cases so that the same
species are brought into each population in the same
order, although at different times.

Analysis of a thousand-times-longer record shows
that the largest Lyapunov exponent [14] (base-e) is
approximately 0.0656, which is consistent with the
perturbation growing by a factor of 10 in a time
of + = 316. After a sufficiently long time, the model
has essentially sampled all possible ecologies drawn
from the prescribed distribution, since the parameters
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Fig. 3. Fluctuations in biomass for two initial conditions that differ
by 1079,

are continually changing. Although ecologists have
yet to document an unequivocal example of chaos
in nature [15], laboratory experiments with flour
beetles do indicate chaos [16,17]. Ecological data
certainly fluctuate erratically, and a prediction time of
1/0.065 = 15 growth times as suggested by the model
is plausible and interesting.

One feature of the model is periods of quiescence
separated by intervals of rapid change, reminiscent
of the ‘punctuated equilibrium’ postulated by Gould
and Eldridge [18] based on paleobiological records.
The reason may be that in passing through different
ecologies some combinations of parameters produce
larger fluctuations than others. Similar behavior is
observed in financial data such as market averages
and exchange rates, where the phenomenon is called
‘volatility’. Indeed, the stock market can be viewed
as group of traders competing for resources, which
are the values of the companies being traded, or as a
collection of stocks competing for the wealth of the
investors. Traders drop in and out of the market and
occasionally change strategies, and stocks disappear
from market indices and are replaced by new stocks.

To compare the model with stock movements,
define a measurement function

1 dM@)
y(t)_M—(t) i

“)

which is the fractional rate of change of the biomass,
corresponding to a market average, and calculate the
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Fig. 4. Fluctuations of the stock market (1930-2002), a Gaussian
distribution, and the model, all normalized to the same standard
deviation.

kurtosis

K =

N -

T
/[(y(t) - ?)/o*]4 dt -3, (5)
0

which is zero for a normal distribution, where y is the
time average of y(¢) and o is its standard deviation.
The quantity y(¢) is plotted in Fig. 4 for the daily Dow
Jones Industrials average for the period 1930-2002,
for a Gaussian random distribution, and for the model
biomass with N = 48, all scaled to the same standard
deviation. The model with N = 48 gives K = 4.00
for biomass and K = 3.24 for biodiversity, which is
strongly leptokurtic (fat-tailed), much like the Dow
Jones Industrials average, which has K = 21.8, mostly
due to the single event on October 17, 1987. Over the
more typical period 1944-1986, the kurtosis is K =
3.73. Other financial time series have similarly large
kurtosis [19,20]. For example, the daily Standards
and Poor index of common stocks over the period
1975-1987 (up to the October crash) has K = 2.13.
The daily Pound/$ exchange rate for 1971-2003 has
K =2.35, the Yen/$ exchange rate for 1973-2003 has
K =4.77, and the DM/$ exchange rate for 1973-1987
has K =6.51.

A signature of self-organized criticality is a power-
law variation of various quantities, implying scale in-
variance [21]. Consider the volatility defined as v(¢) =
y%(t), which is large when the biomass is rapidly
changing, and small otherwise. A plot of the probabil-
ity distribution function d P(v)/dv versus v in Fig. 5
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Fig. 5. Probability distribution function of volatility showing a
power-law scaling.

shows a range of five decades of v over which the
slope on a log—log scale is nearly constant at a value
of —0.51, although changes greater than about 1%
per unit time (v > 10™%) are relatively underrepre-
sented. A Gaussian probability distribution function
exp(—y?) is plotted on the same scale to illustrate the
extent to which the tail of the distribution is enhanced.
A similar plot (not shown) of the probability distribu-
tion function for the volatility of the biodiversity has
a slope of —0.50 over the same five decades. Other
quantities also show a power law, although typically
over a more narrow range. For example, the power
spectral density of y(¢#) has a slope of about —2.0
over a range of about two decades of frequency from
0.1 < f < 10. Such power-law fluctuations have been
observed in stock market data and models [22-26].

In summary, a variant of the Lotka—Volterra equa-
tions has been proposed that exhibits chaos (sensitive
dependence on initial conditions), punctuated equilib-
ria (sporadic volatility), leptokurtosis (fat tails), and
self-organized criticality (scale invariance). The fact
that the model is chaotic means that in principle it can
be stabilized by relatively small perturbations [27,28].
While it is intriguing that a purely deterministic model
can produce erratic fluctuations, natural systems al-
most certainly have random exogeneous shocks that
are not adequately described by such a model. Obvi-
ous extensions of the model include stochastic or peri-
odic forcing and relaxation of the requirement that all
parameters be positive. Although originally developed
to simulate ecology, the model may also have applica-
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tion to financial markets and other systems in which
agents compete for finite resources and are occasion-
ally replaced by new agents when they compete un-
successfully.
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