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Abstract
This report investigates the dynamical stability conjectures of Palis and Smale
and Pugh and Shub from the standpoint of numerical observation and lays
the foundation for a stability conjecture. As the dimension of a dissipative
dynamical system is increased, it is observed that the number of positive
Lyapunov exponents increases monotonically, the Lyapunov exponents tend
towards continuous change with respect to parameter variation, the number of
observable periodic windows decreases (at least below numerical precision)
and a subset of parameter space exists such that topological change is very
common with small parameter perturbation. However, this seemingly inevitable
topological variation is never catastrophic (the dynamic type is preserved) if
the dimension of the system is high enough.

PACS numbers: 05.45.−a, 89.75.−k, 05.45.Tp, 89.70.+c, 89.20.Ff

1. Introduction

Much of the work in the fields of dynamical systems and differential equations has, for the
last hundred years, entailed the classification and understanding of the qualitative features
of the space of differentiable mappings. A primary focus is the classification of topological
differences between different systems (e.g. structural stability theory). One of the primary
difficulties of such a study is choosing a notion of behaviour that is not so strict such that
it differentiates on too trivial a level, yet is strict enough that it has some meaning (e.g. the
Palis–Smale stability conjecture uses topological equivalence whereas the Pugh–Shub stability
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conjecture uses stable ergodicity). Most stability conjectures are with respect to any Cr (r
varies from conjecture to conjecture) perturbation in the set of bounded Ck diffeomorphisms
which allows for variation of the functional form of the mapping with respect to the Whitney
Cr topology (there are no real notions of parameters in a practical sense). In this framework,
perturbations refer to perturbations of the graph of the mapping—from a practical standpoint
infinitely many ‘parameters’ are needed for arbitrary perturbations of the graph of the mapping.
This tactic is employed both for ease of generalization to many mappings and because of the
geometrical argument styles that characterize mathematical dynamical systems. This differs
from the more practical construction used by the non-mathematics dynamics community where
nearly all dynamical systems studied have a finite number of parameters. We will concern
ourselves with a practical construction where we vary a finite number of parameters—yet
study mappings that are ‘universal approximators’ and can approximate to arbitrary accuracy
general Cr mappings and their derivatives in the limit where there exist infinitely many
parameters. Unlike much work involving stability conjectures, our work is numerical and
it focuses on observable asymptotic behaviour in high-dimensional systems. Our chief claim
is that generally, for high-dimensional dynamical systems in our construction, there exist large
portions of parameter space such that topological variation inevitably accompanies parameter
variation, yet the topological variation happens in a ‘smooth’, non-erratic manner. Let us
state our results without rigour or particular precision, noting that we will save more precise
statements for section 3.

Statement of results 1 (Informal). Given our particular impositions (sections 2.1.4 and
2.1.1) upon a space of Cr discrete-time maps from compact sets to themselves relative to
a measure and an invariant (SRB) measure (used for calculating Lyapunov exponents), in the
limit of high dimension, there exists a subset of parameter space such that strict hyperbolicity
is violated (implying changes in the topological structure) on a nearly dense (and hence
unavoidable), yet low-measure (with respect to Lebesgue measure), subset of parameter space.

A more refined version of this statement will contain all of our results. For mathematicians,
we note that although the stability conjecture of Palis and Smale [1,2] is quite true (as proved
by Robbin [3], Robinson [4] and Mañé [5]), we show that in high dimensions this structural
stability may occur over such small sets in the parameter space that it may never be observed in
chaotic regimes of parameter space. Nevertheless, this lack of observable structural stability
has very mild consequences for applied scientists.

1.1. Outline

As this paper is attempting to reach a diverse readership, we will briefly outline the work for
ease of reading. Of the remaining introduction sections, section 1.2 can be skipped by readers
familiar with the stability conjecture of Smale and Palis, the stable ergodicity of Pugh and
Shub and the results from previous computational studies.

Following the introduction we will address various preliminary topics pertaining to this
report. Beginning in section 2.1.1, we present mathematical justification for using time-delay
maps for a general study of d > 1 dimensional dynamical systems. This section is followed by
a discussion of neural networks, beginning with their definition in the abstract (section 2.1.2).
Following the definition of neural networks, we carefully specify the mappings that neural
networks are able to approximate (section 2.1.3), and by doing so, the space of mappings
we study. In section 2.1.4 we give the specific construction (with respect to the neural
networks) we will use in this paper. In section 2.1.5 we tie sections 2.1.1–2.1.4 together.
Those uninterested in the mathematical justifications for our models and only interested in
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our specific formulation should skip sections 2.1.1 through 2.1.3 and concentrate on sections
2.1.4 and 2.1.5. The discussion of the set of mappings we will study is followed by relevant
definitions from hyperbolicity and ergodic theory (section 2.2). It is here where we define the
Lyapunov spectrum, hyperbolic maps and discuss relevant stability conjectures. Section 2.3
provides justification for our use of Lyapunov exponent calculations on our space of mappings
(the neural networks). Readers familiar with topics in hyperbolicity and ergodic theory can
skip this section and refer to it as is needed for an understanding of the results. Lastly, in section
2.4, we make a series of definitions we will need for our numerical arguments. Without an
understanding of these definitions, it is difficult to understand both our conjectures and our
arguments.

Section 3 discusses the conjectures we wish to investigate formally. For those interested
in just the results of this report, reading sections 2.4, 3 and 7 will suffice. The next section,
section 4, discusses the errors present in our chief numerical tool, the Lyapunov spectrum.
This section is necessary for a fine and careful understanding of this report, but this section
is easily skipped upon first reading. We then begin our preliminary numerical arguments.
Section 5 addresses the three major properties we need to argue for our conjectures. For an
understanding of our arguments and why our conclusions make sense, reading this section is
necessary. The main arguments regarding our conjectures follow in section 6. It is in this
section that we make the case for the claims of section 3. The summary section (section 7)
begins with a summary of our numerical arguments and how they apply to our conjectures.
We then interpret our results in light of various stability conjectures and other results from the
dynamics community.

1.2. Background

The goal of this paper is three-fold. First, we want to construct a framework for pursuing a
qualitative, numerical study of dynamical systems. Second, utilizing diagnostics available
to numericists, we want to analyse and characterize behaviour of the space of functions
constrained by a measure on the respective function space. Finally, we want to relate, to the
extent possible, the qualitative features we observe with results from the qualitative dynamical
systems theory. To set the stage for this, and because the mathematical dynamics results
provide the primary framework, language set and motivation for this study, it is important to
understand both the development of the qualitative theory of dynamical systems as constructed
by mathematicians as well as numerical results for constructions similar to the one we will
utilize.

From the perspective of mathematics, the qualitative study of dynamical systems was
devised by Poincaré [6] and was motivated primarily by a desire to classify dynamical
systems by their topological behaviour. The hope was that an understanding of the space
of mappings used to model nature would provide insight into nature (see [7–11]). For
physicists and other scientists, a qualitative understanding is three-fold. First, the mathematical
dynamics construction provides a unifying, over-arching framework—the sort of structure
necessary for building and interpreting dynamics theory. Second, the analysis is rooted in
manipulation of graphs and, in general, the geometry and topology of the dynamical system
which is independent of, and yet can be related to, the particular scientific application. It is
useful to have a geometric understanding of the dynamics. Third, from a more practical
perspective, most experimentalists who work on highly nonlinear systems (e.g. plasma
physics and fluid dynamics) are painfully aware of the dynamic stability that mathematicians
eventually hope to capture with stability conjectures or theorems. Experimentalists have been
attempting to control and eliminate complex dynamical behaviour since they began performing
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experiments—it is clear from experience that dynamic types such as turbulence and chaos are
highly stable with respect to perturbations in highly complicated dynamical systems; the why
and how of the dynamic stability, and defining the right notion of equivalence to capture that
stability, is the primary difficult question. The hope is that, if the geometric characteristics that
allow chaos to persist can be understood, it might be easier to control or even eliminate those
characteristics. At the very least, it would be useful to know very precisely why we cannot
control or rid our systems of complex behaviour.

In the 1960s, to formulate and attack a stability conjecture (see [12,13]) that would achieve
a qualitative description of the space of dynamical systems, Smale introduced axiom A(nosov).
Dynamical systems that satisfy axiom A are strictly hyperbolic (definitions (6) and (7)) and
have dense periodic points on the non-wandering set5. A further condition that was needed
was the strong transversality condition—f satisfies the strong transversality condition when,
for every x ∈ M , the stable and unstable manifolds Ws

x and Wu
x are transverse at x. Using

axiom A and the strong transversality condition, Palis and Smale stated what they hoped
would be a relatively simple qualitative characterization of the space of dynamical systems
using structural stability (i.e. topological equivalence (C0) under perturbation, see ‘volume
14’ [1], which contains many crucial results). The conjecture, stated most simply, says,‘a
system is Cr stable if its limit set is hyperbolic and, moreover, stable and unstable manifolds
meet transversally at all points’ [9]. That axiom A and strong transversality imply Cr structural
stability was shown by Robbin [3] for r � 2 and Robinson [4] for r = 1. The other direction
of the stability conjecture was much more elusive, yet in 1980 this was shown by Mañé [5]
for r = 1. Nevertheless, due to many examples of structurally unstable systems being dense
amongst many ‘common’ types of dynamical systems, proposing some global structure for
a space of dynamical systems became much more unlikely (see ‘volume 14’ [1] for several
counter-examples to the claims that structurally stable dynamical systems are dense in the
space of dynamical systems). Newhouse [14] was able to show that infinitely many sinks
occur for a residual subset of an open set of C2 diffeomorphisms near a system exhibiting a
homoclinic tangency. Further, it was discovered that orbits can be highly sensitive to initial
conditions [15–18]. Much of the sensitivity to initial conditions was investigated numerically
by non-mathematicians. Together, the examples from both pure mathematics and the sciences
sealed the demise of a simple characterization of dynamical systems by their purely topological
properties. Nevertheless, despite the fact that structural stability does not capture all that we
wish, it is still a very useful, intuitive tool.

Again, from a physical perspective, the question of the existence of dynamic stability is
not open—physicists and engineers have been trying to suppress chaos and turbulence in high-
dimensional systems for several hundred years. In fact, simply being able to make a consistent
measurement implies persistence of a dynamic phenomenon. The trick in mathematics is
writing down a relevant notion of dynamic stability and then the relevant necessary geometrical
characteristics to guarantee dynamic stability. From the perspective of modelling nature, the
aim of structural stability was to imply that if one selects (fits) a model equation, small errors
will be irrelevant since small Cr perturbations will yield topologically equivalent models. This
did not work because topological equivalence is too strong a specification of equivalence for
structural stability to apply to the broad range of systems we wish it to apply to. In particular, it
was strict hyperbolicity that was the downfall of the Palis–Smale stability conjecture because
non-hyperbolic dynamical systems could be shown to persist under perturbations. To combat
this, in the 1990s Pugh and Shub [19] introduced the notion of stable ergodicity and with it a
stability conjecture that includes measure-theoretic properties required for dynamic stability

5 �(f ) = {x ∈ M|∀ neighbourhood U of x, ∃n � 0 such that f n(U) ∩ U �= 0}.
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and a weakened notion of hyperbolicity introduced by Brin and Pesin [20]. A thesis for
their work was [19], ‘a little hyperbolicity goes a long way in guaranteeing stably ergodic
behaviour’. This thesis has driven the partial hyperbolicity branch of dynamical systems and
is our claim as well. A major thrust of this paper is to, in a practical, computational context,
investigate the extent to which ergodic behaviour and topological variation (versus parameter
variation) behave given a ‘little bit’ of hyperbolicity. Further, we will formulate a method
to study, and subsequently numerically investigate, one of the overall haunting questions in
dynamics: how much of the space of bounded Cr (r > 0) systems is hyperbolic, and how
many of the pathologies found by Newhouse and others are observable (or even existent) in
the space of bounded Cr dynamical systems, all relative to a measure. The key to this proposal
is a computational framework utilizing a function space that can approximate Cr and admits
a measure relative to which the various properties can be specified.

One of the early numerical experiments of a function space akin to the space we study was
performed by Sompolinksky et al [21], who analysed neural networks constructed as ordinary
differential equations. The primary goal of their construction was the creation of a mean field
theory for their networks from which they would deduce various relevant properties. Their
network architecture allowed them to make the so-called local chaos hypothesis of Amari,
which assumes that the inputs are sufficiently independent of each other such that they behave
like random variables. In the limit of infinite dimensions, they find regions with two types
of dynamics, namely fixed points and chaos with an abrupt transition to chaos. Often, these
findings are argued using random matrix theory using results of Girko et al [22], Edelman [23]
and Bai [24]. In a similar vein, Doyon et al [25,26] studied the route to chaos in discrete-time
neural networks with sparse connections. They found that the most probable route to chaos
was a quasi-periodic one regardless of the initial type of bifurcation. They also justified their
findings with results from random matrix theory. Cessac et al [27] came to similar conclusions
with slightly different networks and provided a mean-field analysis of their discrete-time neural
networks in much the same manner as Sompolinsky et al did for the continuous-time networks.
A primary conclusion of Cessac [28], a conclusion that was proved in [29] by an analysis given
the local chaos hypothesis, was that in the space of neural networks in the Cessac construction,
the degrees of freedom become independent, and thus the dynamics resemble Brownian
motion.

The network architecture utilized in this paper is fundamentally different from the
architectures used by Sompolinsky, Cessac or Doyon. In particular, the aforementioned studies
use networks that map a compact set in Rd to itself, and there is no time-delay. This paper
utilizes feed-forward, discrete time, time-delayed neural networks. The difference in the
respective architectures induces some very important differences. The local chaos hypothesis,
the property that allows the mean field analysis in the aforementioned studies, is not valid for
time-delayed networks. Moreover, the construction we utilize induces correlations in time and
space, albeit in a uniform, random manner; the full effects of which are a topic of ongoing
work. However, current intuition suggests that the chaotic regime of the systems we study have
turbulent-like dynamics rather than Brownian-motion-like dynamics. The choice of time-delay
neural networks was motivated by the relative ease of computation for the derivative map, the
approximation theorems of Hornik et al [30], the fact that time-delay neural networks are a very
practical tool for time-series reconstruction and that the embedology (and the associated notion
of prevalence) theory of Sauer et al [31] can be used to construct a means of connecting abstract
and computational results. It is likely that all these systems can be shown to be equivalent
via an embedding, but the implied measures on the respective spaces of mappings could be
(and probably are) rather different. In the end, it is reassuring that many of the results for the
different architectures are often similar despite the networks being fundamentally different.
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Other noteworthy computational studies of similar flavour, but using other frameworks, can
be found in [18, 32, 33].

Finally, general background regarding the dynamics of the particular space of mappings
we utilize can be found in [34] and [35]. In particular, studies regarding bifurcations from
fixed points and the route to chaos can be found in [36–38], respectively. In this work we
will discuss, vaguely, taking high-dimension, high-number-of-parameter limits. This can be a
very delicate matter, and some of the effects of increasing the number of dimensions and the
number of parameters are addressed in [34].

2. Definitions and preliminaries

In this section we will define the following items: the family of dynamical systems we wish
to investigate, the function space we will use in our experiments, Lyapunov exponents and
definitions specific to our numerical arguments.

2.1. The space of mappings

The motivation and construction of the set of mappings we will use for our investigation of
dynamical systems follows from the embedology of Sauer et al [31] (see [39,40] for the Takens
construction) and the neural network approximation theorems of Hornik et al [30]. We will
use embedology to demonstrate how studying time-delayed maps of the form f : Rd → R

is a natural choice for studying standard dynamical systems of the form F : Rd → Rd .
In particular, embedding theory shows an equivalence via the approximation capabilities of
scalar time-delay dynamics with standard, xt+1 = F(xt ) (xi ∈ Rd ) dynamics. However, there
is no mention of, in a practical sense, the explicit functions used for the reconstruction of the
time-series in the Takens or the embedology construction. The neural network approximation
results show in a precise and practical way what a neural network is and what functions it can
approximate ( [41]). In particular, it says that neural networks can approximate the Cr(Rd)

mappings and their derivatives (and indeed are dense in Cr(Rd) on compacta), but there is no
mention of the time-delays or reconstruction capabilities we use. Thus, we need to discuss
both the embedding theory and the neural network approximation theorems.

Those not interested in the justification of our construction may skip to section 2.1.4 where
we define, in a concrete manner, the neural networks we will employ.

2.1.1. Dynamical systems construction. In this paper we wish to investigate dynamical
systems mapping compact sets (attractors) to themselves. Specifically, begin with an open set
U ⊂ Rq (q ∈ N ), a compact invariant set A such that A ⊂ U ⊂ Rq where boxdim(A) = d � q

and a diffeomorphism F ∈ Cr(U) for r � 2 defined as

xt+1 = F(xt ) (1)

with xt ∈ U . However, for computational reasons, and because practical scientists work
with scalar time-series data, we will be investigating this space with neural networks that can
approximate (see section 2.1.3) dynamical systems f ∈ Cr(Rd, R) which are time-delay maps
given by

yt+1 = f (yt , yt−1, . . . , yt−(d−1)), (2)

where yt ∈ R. Both systems (1) and (2) form dynamical systems. However, since we intend to
use systems of the form (2) to investigate the space of dynamical systems as given in equation
(1), we must show how mappings of the form (2) are related to mappings of the form (1).
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The relationship between a dynamical system and its delay dynamical system is not one
of strict equivalence; the relationship is via an embedding. In general, we call g ∈ Ck(U, Rn)

an embedding if k � 1 and if the local derivative map (the Jacobian—the first order term in the
Taylor expansion) is one-to-one for every point x ∈ U (i.e. g must be an immersion). The idea
of an embedding theorem is that, given a d-dimensional dynamical system and a ‘measurement
function’, E : A → R (E is a Ck map), where E represents some empirical style measurement
of F , there is a ‘Takens map’ (which does the embedding) g for which x ∈ A can be represented
as a 2d+1 tuple (E(x), E◦F(x), E◦F 2(x), . . . , E◦F 2d(x)) where F is an ordinary difference
equation (time evolution operator) on A. Note that the 2d + 1 tuple is a time-delay map of x.
The map that iterates the time-delay coordinates, denoted the delay coordinate map, is given
by F̃ = g ◦F ◦g−1. There is no strict equivalence between dynamical systems and their time-
delay maps because many different measurement functions exist that yield an embedding of A

in R2d+1, thus destroying any one-to-one relationship between equations (1) and (2). Whether
typical measurement functions will yield an embedding (and thus preserve the differential
structure) was first undertaken by Takens [39, 40]. In the Takens construction, the original
mapping (F ) is of Ck manifolds to themselves, not attractors with fractal dimensions, and the
notion of typical is of (topological) genericity (i.e. a countable union of open and dense sets)
that is compatible with Cr where no meaningful notion of measure can be directly imposed.
This framework was generalized by Sauer et al [31,42] to a more practical setting by devising
a practical, measure-theoretic notion of typical, and proving results applicable to invariant
sets (attractors) instead of just manifolds. The key to the generalization of the notion of
typical from generic to a measure-theoretic notion lies in the construction of the embedding.
An embedding, in the particular circumstance of interest here, couples a space of dynamical
systems with a space of measurement functions. In the Takens construction, the embedding
was g ∈ S ⊂ Diff(M) × Ck(M, R) where F ∈ Diff(M) and the measurement function was
in E ∈ E ⊂ Ck(M, R). Because E ⊂ Ck(M, R), the only notion available to specify typical
is genericity. However, the measurement function space, E , can be replaced with a (finite-
dimensional) function space that can yield a measure—such as polynomials of degree up to
2d + 1 with d variables. Equipped with a measurement function space that yields a measure,
a new notion of typical, devised in [31] and discussed in [43–45], prevalence, can be defined
and utilized.

Definition 1 (Prevalence [31]). A Borel subset S of a normed linear space V is prevalent if
there is a finite-dimensional subspace E ⊂ V such that for each v ∈ V , v + e ∈ S for Lebesgue
a.e. e ∈ E .

Note that E is referred to as the probe space. In the present setting, V represents F and the
associated space of measurement functions, E, is E . Thus, E is a particular finite-dimensional
space of (practical) measurement functions. The point is that S is prevalent if, for any starting
point in V , variation in E restricted to E will remain in S Lebesgue a.e. We can now state the
embedding theorem relevant to the construction we are employing.

Theorem 1. Let F ∈ Cr(U), r � 1, U ⊂ Rq , and let A be a compact subset of U with
boxdim(A) = d , and let w > 2d , w ∈ N (often w = 2d + 1). Assume that for every positive
integer p � w, the set Ap of periodic points of period p satisfied boxdim(Ap) < p/2, and that
the linearization DFp for each of these orbits has distinct eigenvalues. Then, for almost every
(in the sense of prevalence) C1 measurement function E on U , F̃ : U → Rw is (i) one-to-one
on A, and (ii) is an immersion on the compact subset C of a smooth manifold contained in A.

This thus defines an equivalence, that of an embedding (the Takens map, g : U → Rw),
between time-delayed Takens maps of ‘measurements’ and the ‘actual’ dynamical system
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Figure 1. Schematic diagram of the embedding theorems applied to our construction.

operating in time on xt ∈ U . This does not imply that all time-delay maps can be embeddings
of a Cr dynamical system (see [31] for a detailed discussion of how time-delay dynamical
systems can fail to yield an embedding).

To explicitly demonstrate how this applies to our circumstances, consider figure 1 in which
F and E are as given above and the embedding g is explicitly given by

g(xt ) = (E(xt ), E(F (xt )), . . . , E(F 2d(xt ))). (3)

In a colloquial, experimental sense, F̃ just keeps track of the observations from the
measurement functionE and, at each time step, shifts the newest observation into thew = 2d+1
tuple and sequentially shifts the scalar observation at time t (yt ) of the 2d + 1 tuple to the t − 1
position of the 2d + 1 tuple. In more explicit notation, F̃ is the following mapping:

(y1, . . . , y2d+1) 	→ (y2, . . . , y2d+1, g(F (g−1(y1, . . . , y2d+1)))), (4)

where, again, F̃ = g ◦ F ◦ g−1. The embedology theorem of Sauer et al says that there is
a prevalent Borel subset (in a probe space, S) of measurement functions (E) of dynamical
systems of the form (1) (F ), which will yield an embedding g of A. The neural networks we
will propose in the sections that follow can approximate F̃ and its derivatives (to any order)
to arbitrary accuracy (a notion we will make more precise later). Thus, we will investigate the
space of Cr dynamical systems given by (1) via the mappings used to approximate them.

2.1.2. Abstract neural networks. Begin by noting that, in general, a feed-forward, scalar
neural network is a Cr mapping γ : Rd → R; the set of feed-forward, scalar networks with a
single hidden layer, �(G), can be written as:

�(G) ≡ {γ : Rd → R|γ (x) =
N∑

i=1

βiG(x̃T ωi)}, (5)

where x ∈ Rd is the d-vector of network inputs, x̃T ≡ (1, xT ) (where xT is the transpose
of x), N is the number of hidden units (neurons), β1, . . . , βN ∈ R are the hidden-to-output
layer weights, ω1, . . . , ωN ∈ Rd+1 are the input-to-hidden layer weights and G : Rd → R is
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the hidden layer activation function (or neuron). The partial derivatives of the network output
function, γ , are

∂γ (x)

∂xk

=
N∑

i=1

βiωikDG(x̃T ωi), (6)

where xk is the kth component of the x vector, ωik is the kth component of ωi and DG is the
usual first derivative of G. The matrix of partial derivatives (the Jacobian) takes a particularly
simple form when the x vector is a sequence of time delays (xt = (yt , yt−1, . . . , yt−(d−1)) for
xt ∈ Rd and yi ∈ R). It is precisely for this reason that the time-delayed formulation eases
the computational woes.

This paper contains numerical evidence of a geometric mechanism, specified by the
Lyapunov spectrum, that is present in the above class of functions as d → ∞. In doing
so, we will often make arguments that involve taking d → ∞ while leaving N limits vague.
That we can do this is a result of the function approximation characteristics of the neural
networks; to see N specified in particular see [34, 46].

2.1.3. Neural networks as function approximations. Hornik et al [30] provided the theoretical
justification for the use of neural networks as function approximators. The aforementioned
authors provide a degree of generality that we will not need; for their results in full generality
see [30, 47].

The ability of neural networks to approximate (and be dense in) the space of mappings
relevant to dynamics is the subject of the keynote theorems of Hornik et al [30] (for their results
in full generality see [30, 47]). However, to state these theorems, a discussion of Sobolev
function space, Sm

p , is required. We will be brief, noting references Adams and Fourier [48]
and Hebey [49] for readers wanting more depth with respect to Sobolev spaces. For the sake
of clarity and simplification, let us make a few remarks which will pertain to the rest of this
section:

(i) µ is a measure; λ is the standard Lebesgue measure; for all practical purposes, µ = λ;
(ii) l, m and d are finite, non-negative integers; m will be with reference to a degree of

continuity of some function spaces and d will be the dimension of the space we are
operating on;

(iii) p ∈ R, 1 � p < ∞; p will be with reference to a norm—either the Lp norm or the
Sobolev norm;

(iv) U ⊂ Rd , U is measurable.
(v) α = (α1, α2, . . . , αd)

T is a d-tuple of non-negative integers (or a multi-index) satisfying
|α| = α1 + α2 + · · · + αk , |α| � m;

(vi) for x ∈ Rd , xα ≡ x
α1
1 · x

α2
2 , . . . , x

αd

d ;
(vii) Dα denotes the partial derivative of order |α|

∂ |α|

∂xα
≡ ∂ |α|

(∂x
α1
1 ∂x

α2
2 . . . ∂x

αd

d )
; (7)

(viii) u ∈ L1
loc(U) is a locally integrable, real valued function on U ;

(ix) ρm
p,µ is a metric, dependent on the subset U , the measure µ, and p and m in a manner we

will define shortly;
(x) ‖ · ‖p is the standard norm in Lp(U);
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Letting m be a positive integer and 1 � p < ∞, we define the Sobolev norm, ‖ · ‖m,p, as
follows:

||u||m,p =

 ∑

0�|α|�m

(‖ Dαu ‖p
p)




1/p

, (8)

where u ∈ L1
loc(U) is a locally integrable, real valued function on U ⊂ Rd (u could be

significantly more general) and || · ||p is the standard norm in Lp(U). Likewise, the Sobolev
metric can be defined:

ρm
p,µ(f, g) ≡ ||f − g||m,p,U,µ. (9)

It is important to note that this metric is dependent on U .
For ease of notation, let us define the set of m-times differentiable functions on U ,

Cm(U) = {f ∈ C(U)|Dαf ∈ C(U), ||Dαf ||p < ∞ ∀α, |α| � m}. (10)

We are now free to define the Sobolev space for which our results will apply.

Definition 2. For any positive integer m and 1 � p < ∞, we define a Sobolev space Sm
p (U, λ)

as the vector space on which || · ||m,p is a norm:

Sm
p (U, λ) = {f ∈ Cm(U)| ||Dαf ||p,U,λ < ∞ for all |α| � m} (11)

Equipped with the Sobolev norm, Sm
p is a Sobolev space over U ⊂ Rd .

Two functions in Sm
p (U, λ) are close in the Sobolev metric if all the derivatives of order

0 � |α| < m are close in the Lp metric. It is useful to recall that we are attempting to
approximate F̃ = g ◦ F ◦ g−1 where F̃ : R2d+1 → R; for this task the functions from
Sm

p (U, λ) will serve quite nicely. The whole point of all this machinery is to state approximation
theorems that require specific notions of density. Otherwise we would refrain and instead use
the standard notion of Ck functions—the functions that are k-times differentiable uninhibited
by a notion of a metric or norm.

Armed with a specific function space for which the approximation results apply (there
are many more), we will conclude this section by briefly stating one of the approximation
results. However, before stating the approximation theorem, we need two definitions—one
which makes the notion of closeness of derivatives more precise and one which gives the
sufficient conditions for the activation functions to perform the approximations.

Definition 3 (m-uniformly dense). Assume m and l are non-negative integers 0 � m � l,
U ⊂ Rd and S ⊂ Cl(U). If for any f ∈ S, compact K ⊂ U and ε > 0 there exists a
g ∈ �(G) such that

max
|α|�m

sup
x∈K

|Dαf (x) − Dαg(x)| < ε (12)

then �(G) is m-uniformly dense on compacta in S.

It is this notion of m-uniformly dense in S that provides all the approximation power of both
the mappings and the derivatives (up to order l) of the mappings. Next we will supply the
condition on our activation function necessary for the approximation results.

Definition 4 (l-finite). Let l be a non-negative integer. G is said to be l-finite for G ∈ Cl(R)

if

0 <

∫
|DlG|dλ < ∞, (13)

i.e. the lth derivative of G must be both bounded away from zero, and finite for all l (recall dλ

is the standard Lebesgue volume element).
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The hyperbolic tangent, our activation function, is l-finite.
With these two notions, we can state one of the many existing approximation results.

Corollary 1. (corollary 3.5 [30] ) If G is l-finite, 0 � m � l, and U is an open subset of Rd ,
then �(G) is m-uniformly dense on compacta in Sm

p (U, λ) for 1 � p < ∞.

In general, we wish to investigate differentiable mappings of compact sets to themselves.
Further, we wish for the derivatives to be finite almost everywhere. Thus, the space Sm

p (U, λ)

will suffice for our purposes. Our results also apply to piecewise differentiable mappings.
However, this requires a more general Sobolev space, Wm

p . We have refrained from delving
into the definition of this space since it requires a bit more formalism. For those interested
see [30] and [48].

2.1.4. Explicit neural network construction. The single layer feed-forward neural networks
(γ from the above section) we will consider are of the form

xt = β0 +
N∑

i=1

βiG


sωi0 + s

d∑
j=1

ωijxt−j


, (14)

which is a map from Rd to R. The squashing function G, for our purpose, will be the
hyperbolic tangent. In (14), N represents the number of hidden units or neurons, d is the input
or embedding dimension of the system which functions simply as the number of time lags and
s is a scaling factor on the weights.

The parameters are real (βi, ωij , xj , s ∈ R) and the βi and ωij are elements of
weight matrices (which we hold fixed for each case). The initial conditions are denoted
(x0, x1, . . . , xd), and (xt , xt+1, . . . , xt+d) represents the current state of the system at time t .
The βs are iid uniform over [0, 1] and then re-scaled to satisfy the condition

∑N
i=1 β2

i = N .
The ωij s are iid normal with zero mean and unit variance. The s parameter is a real number
and can be interpreted as the standard deviation of the w matrix of weights. The initial xj are
chosen iid uniform on the interval [−1, 1]. All the weights and initial conditions are selected
randomly using a pseudo-random number generator [50, 51].

We would like to make a few notes with respect to the squashing function, tanh(). First,
tanh(x), for |x| 
 1, will tend to behave much like a binary function. Thus, the states of the
neural network will tend towards the finite set (β0 ±β1 ±β2 . . .±βN), or a set of 2N different
states. In the limit where the arguments of tanh() become infinite, the neural network will
have periodic dynamics. Thus, if 〈β〉 or s become very large, the system will have a greatly
reduced dynamic variability. Based on this problem, one might feel tempted to bound the β

a la
∑N

i=1 |βi | = k fixing k for all N and d. This is a bad idea, however, since, if the βi are
restricted to a sphere of radius k, as N is increased, 〈βi

2〉 goes to zero [52]. The other extreme
of tanh() also yields a very specific behaviour type. For x very near 0, the tanh(x) function
is nearly linear. Thus, choosing s small will force the dynamics to be mostly linear, again
yielding fixed point and periodic behaviour (no chaos). Thus the scaling parameter s provides
a unique bifurcation parameter that will sweep from linear ranges to highly non-linear ranges,
to binary ranges—fixed points to chaos and back to periodic phenomena.

2.1.5. Neural network approximation theorems and the implicit measure. Because the neural
networks can be identified with points in Rk(k = N(d+2)+2), we impose a probability measure
on �(tanh) by imposing a probability measure on parameter space Rk . These measures, which
were explicitly defined in section 2.1.4, can be denoted mβ (on the β), mω (on the ω), ms

(on s), and mI (on the initial conditions) and form a product measure on Rk × Rd in the
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standard way. All the results in this paper are subject to this measure—this is part of the point
of this construction. We are not studying a particular dynamical system, but rather we are
performing a statistical study of a function space. From the measure-theoretic perspective,
all networks are represented with this measure, although clearly not with equal likelihood.
For instance, Hamiltonian systems are likely a zero measure set relative to the measures we
utilize. Moreover, the joint-probability distributions characteristic of neural networks, where
training has introduced correlations between weights, will likely produce greatly varying results
depending on the source of the training (for analytical tools for the analysis of trained networks,
see [53]).

Specifying ‘typical’, or forging a connection between the results we present and the results
of other computational studies, or the results from abstract dynamics is a delicate problem.
Most abstract dynamics results are specified for the Cr function space in the Ck Whitney
topology using the notion of a residual (generic) subset because no sensible measure can
be imposed on the infinite-dimensional space of Cr systems. Because we are utilizing a
space that, with finitely many parameters, is a finite-dimensional approximation of Cr , the
space we study will always be non-residual relative to Cr . In fact, even when m-uniformal
density is achieved at N = ∞, Cr still has an uncountably infinite number of dimensions as
opposed to the countably infinite number of dimensions induced by m-uniformal density on
�(tanh). Moreover, because we are studying a space of functions and not a particular mapping,
comparing results of, say, coupled-map lattices with our study must be handled with great care.
A full specification of such relationships, which we will only hint at here, will involve two key
aspects. First, the proper language to relate the finite-dimensional neural network construction
to the space of embeddings of dynamical systems is that of prevalence [43–45]. Prevalence
(see definition 1) provides a measure-theoretic means of coping with the notion of typical
between finite and infinite-dimensional spaces. Second, training the neural networks induces
(joint) probability measures on the weight structure and thus a means of comparison in measure
of various different qualitative dynamics types (see [53] as a starting point). In the simplest
situation, if the measures of two trained ensembles of networks are singular with respect to
each other, it is likely that the sets containing the volume as determined by the measures are
disjoint. Thus, the space, �(tanh), with different measures can be used to quantify, in a precise
way, the relationship between different dynamical types.

In a practical sense, this construction is easily extendible in various ways. One extension of
particular relevance involves imposing different measures on each component of Rk producing
a more non-uniform connection structure between the states (a different network structure).
Another extension involves imposing a measure via training [41, 54, 55] on, for instance,
coupled-map data (or data from any other common mapping). Because the latter situation
induces a dependence between the weights, thus Rk will be equipped with a joint probability
measure rather than a simple product measure. Given the neural network approximation
theorems, imposing different measures, and in particular, correlations between the weights,
should have the same effect that studying different physical systems will have. The point is,
with the abstract framework outlined above, there is a way of classifying and relating systems
by their dynamics via the space of measures on the parameter space of neural networks.

2.2. Characteristic Lyapunov exponents, hyperbolicity, and structural stability

The theories of hyperbolicity, Lyapunov exponents and structural stability have had a long,
wonderful and tangled history beginning with Smale [56] (for other good starting points
see [9,11,13,57]). We will, of course, only scratch the surface with our current discussion, but
rather put forth the connections relevant for our work. In structural stability theory, topological
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equivalence is the notion of equivalence between dynamical systems, and structural stability
is the notion of the persistence of topological structure.

Definition 5 (Structural stability). A Cr discrete-time map, f , is structurally stable if there
is a Cr neighbourhood, V of f , such that any g ∈ V is topologically conjugate to f , i.e. for
every g ∈ V , there exists a homeomorphism h such that f = h−1 ◦ g ◦ h.

In other words, a map is structurally stable if, for all other maps g in a Cr neighbourhood, there
exists a homeomorphism that will map the domain of f to the domain of g, the range of f to
the range of g and the inverses, respectively. Structural stability is a purely topological notion.
The hope of Smale and others was that structural stability would be open-dense (generic) in
the space of Cr dynamical systems as previously noted in section 1.2 (see [1] for counter-
examples). Palis and Smale then devised the stability conjecture that would fundamentally tie
together hyperbolicity and structural stability.

The most simple and intuitive definition of hyperbolic applies to the linear case.

Definition 6 (Hyperbolic linear map). A linear map of Rn is called hyperbolic if all of its
eigenvalues have modulus different from one.

Because strict hyperbolicity is a bit restrictive, we will utilize the notion of uniform partial
hyperbolicity which will make precise the notion of a ‘little bit’ of hyperbolicity.

Definition 7 (Partial hyperbolicity). The diffeomorphism f of a smooth Riemannian
manifold M is said to be partially hyperbolic if for all x ∈ M the tangent bundle TxM

has the invariant splitting:

TxM = Eu(x) ⊕ Ec(x) ⊕ Es(x) (15)

into strong stable Es(x) = Es
f (x), strong unstable Eu(x) = Eu

f (x) and central Ec(x) =
Ec

f (x) bundles, at least two of which are non-trivial6. Thus, there will exist numbers
0 < a < b < 1 < c < d such that, for all x ∈ M:

v ∈ Eu(x) ⇒ d||v|| � ||Dxf (v)||, (16)

v ∈ Ec(x) ⇒ b||v|| � ||Dxf (v)|| � c||v||, (17)

v ∈ Es(x) ⇒ ||Dxf (v)|| � a||v||. (18)

There are other definitions of hyperbolicity and related quantities such as non-uniform partial
hyperbolicity and dominated splittings; more specific characteristics and definitions can be
found in [7, 19, 20, 58, 59]. The key provided by definition 7 is the allowance of centre
bundles, zero Lyapunov exponents and, in general, neutral directions, which are not allowed in
strict hyperbolicity. Thus, we are allowed to keep the general framework of good topological
structure, but we lose structural stability. With non-trivial partial hyperbolicity (i.e. Ec is not
null), stable ergodicity replaces structural stability as the notion of dynamic stability in the
Pugh–Shub stability conjecture (conjecture (5) of [60]). Thus, what is left is to again attempt
to show the extent to which stable ergodicity persists.

In numerical simulations we will never observe an orbit on the unstable, stable or centre
manifolds (or the bundles). Thus, we will need a global notion of stability averaged along a
given orbit (which will exist under weak ergodic assumptions). The notion we seek is captured
by the spectrum of Lyapunov exponents.

6 If Ec is trivial, f is simply Anosov, or strictly hyperbolic.
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Definition 8 (Lyapunov Exponents). Let f : M → M be a diffeomorphism (i.e. discrete
time map) on a compact Riemannian manifold of dimension m. Let | · | be the norm on the
tangent vectors induced by the Riemannian metric on M . For every x ∈ M and v ∈ TxM

Lyapunov exponent at x is denoted:

χ(x, v) = lim sup
t→∞

1

t
log ||Df nv||. (19)

Assume the function χ(x, ·) has only finitely many values on TxM {0} (this assumption may not
be true for our dynamical systems) which we denote χ

f

1 (x) < χ
f

2 (x) . . . < χ
f
m(x). Next denote

the filtration of TxM associated with χ(x, ·), {0} = V0(x) � V1(x) � . . . � Vm(x) = TxM ,
where Vi(x) = {v ∈ TxM|χ(x, v) � χi(x)}. The number ki = dim(Vi(x))− dim(Vi−1(x)) is
the multiplicity of the exponent χi(x). In general, for our networks over the parameter range
we are considering, ki = 1 for all 0 < i � m. Given the above, the Lyapunov spectrum for f

at x is defined as:

Spχ(x) = {χk
j (x)|1 � i � m}. (20)

(For more information regarding Lyapunov exponents and spectra see [61–64]).
A more computationally motivated formula for the Lyapunov exponents is given as

χj = lim
N→∞

1

N

N∑
k=1

ln(〈(Dfk · δxj )
T , (Dfk · δxj )〉) (21)

where 〈, 〉 is the standard inner product, δxj is the j th component of the x variation7 and
Dfk is the ‘orthogonalized’ Jacobian of f at the kth iterate of f (x). Through the course of
our discussions we will dissect equation (21) further. It should also be noted that Lyapunov
exponents have been shown to be independent of coordinate system. Thus, the specifics of our
above definition do not affect the outcome of the exponents.

For the systems we study, there could be an x dependence on equations (19) and (21). As
will be seen in later sections, we do not observe much of an x-dependence on the Lyapunov
exponents over the parameter ranges considered. The existence (or lack) of multiple attractors
has been partially addressed in a conjecture in [65]; however, a more systematic study is
currently under way.

In general, the existence of Lyapunov exponents is established by a multiplicative ergodic
theorem (for a nice example, see theorem (1.6) in [66]). There exist many such theorems
for various circumstances. The first multiplicative ergodic theorem was proved by Oseledec
[67]; many others—[20, 68–72]—have subsequently generalized his original result. We will
refrain from stating a specific multiplicative ergodic theorem; the conditions necessary for the
existence of Lyapunov exponents are exactly the conditions we place on our function space
in section 2.3, that is, a Cr (r > 0) map of a compact manifold M (or open set U ) to itself
and an f -invariant probability measure ρ, on M (or U ). For specific treatments we leave the
curious reader to study the aforementioned references, noting that our construction follows
from [20, 59, 69].

There is an intimate relationship between Lyapunov exponents and global stable and
unstable manifolds. In fact, each Lyapunov exponent corresponds to a global manifold,
and often the existence of the various global manifolds is explicitly tied to the existence
of the respective Lyapunov exponents. We will be using the global manifold structure as
our measure of topological equivalence and the Lyapunov exponents to classify this global
structure. Positive Lyapunov exponents correspond to global unstable manifolds, and negative
Lyapunov exponents correspond to global stable manifolds. We will again refrain from stating

7 In a practical sense, the x variation is the initial separation or perturbation of x.
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the existence theorems for these global manifolds (see [64] for a good discussion of this) and
instead note that in addition to the requirements for the existence of Lyapunov exponents, the
existence of global stable/unstable manifolds corresponding to the negative/positive Lyapunov
exponents requires Df to be injective. For specific global unstable/stable manifold theorems
see [69].

Finally, the current best solution to the structural stability conjecture of Palis and
Smale, the result that links hyperbolicity to structural stability, is captured in the following
theorem.

Theorem 2 (Mañé [5] theorem A, Robbin [3], Robinson [73]). A C1 diffeomorphism (on a
compact, boundaryless manifold) is structurally stable if and only if it satisfies axiom A and
the strong transversality condition.

Recall that axiom A says the diffeomorphism is hyperbolic with dense periodic points on
its non-wandering set � (p ∈ � is non-wandering if for any neighbourhood U of x, there
is an n > 0 such that f n(U) ∩ U �= 0). We will save a further explicit discussion of this
interrelationship for a later section, noting that much of this report investigates the above
notions and how they apply to our set of maps. Finally, for a nice, sophisticated introduction
to the above topics see [62] or [74].

2.3. Conditions needed for the existence and computation of Lyapunov exponents

We will follow the standard constructions for the existence and computation of Lyapunov
exponents as defined by the theories of Katok [68], Ruelle [66, 69], Pesin [70–72], Brin and
Pesin [20] and Burns et al [59].

Let H be a separable real Hilbert space (for practical purposes Rn) and let X be an open
subset of H. Next let (X, �, ρ) be a probability space where � is a σ -algebra of sets and
ρ is a probability measure, ρ(X) = 1 (see [75] for more information). Now consider a Cr

(r > 1) map ft : X 	→ X which preserves ρ (ρ is f -invariant, at least on the unstable
manifolds) defined for t � T0 � 0 such that ft1+t2 = ft1 ◦ ft2 and that (x, t) 	→ ft (x), Dft(x)

is continuous from X × [T0, ∞) to X and bounded on H. Assume that f has a compact
invariant set

� =
{ ⋂

t>T0

ft (X)|ft (�) ⊆ �

}
(22)

and Dft is a compact bounded operator for x ∈ �, t > T0. Finally, endow ft with a scalar
parameter s ∈ [0 : ∞]. This gives us the space (a metric space—the metric will be defined
heuristically in section 2.1.4) of one parameter, Cr measure-preserving maps from bounded
compact sets to themselves with bounded first derivatives. It is for a space of the above
mappings that Ruelle shows the existence of Lyapunov exponents [69]; similar requirements
are made by Brin and Pesin [20] in a slightly more general setting. The systems we will
study are dissipative dynamical systems, and thus area-contracting, so ρ will not be absolutely
continuous with respect to Lebesgue measure onX. However, to compute Lyapunov exponents,
it is enough for there to exist invariant measures that are absolutely continuous with respect to
Lebesgue on the unstable manifolds [64, 76–78]. Thus, the Lyapunov exponents in the systems
we study are computed relative to SRB measures [64] that are assumed, but not proved, to exist
for systems we study. Implications of invariant measures for dissipative dynamical systems
such as those studied here can be found in [79].

We can take X in the above construction to be the Rd of section 2.1.1. The neural
networks we use map their domains to compact sets; moreover, because they are constructed
as time-delays, their domains are also compact. Further, their derivatives are bounded up to



1816 D J Albers and J C Sprott

arbitrary order; although for our purposes, only the first order need be bounded. Because the
neural networks are deterministic and bounded, there will exist an invariant set of some type.
We are relegated to assuming the existence of SRB measures with which we can calculate
the Lyapunov exponents because proving the existence of SRB measures, even for relatively
simple dissipative dynamical systems, is non-trivial [80, 81]. Indeed, there remains much
work to achieve a full understanding of Lyapunov exponents for general dissipative dynamical
systems that are not absolutely continuous; for a current treatment see [61] or [64]. The
specific measure theoretic properties of our networks (i.e. issues such as absolute continuity,
uniform/non-uniform hyperbolicity, basin structures) is a topic of current investigation. In
general, up to the accuracy, interval of initial conditions and dimension we are concerned with
in this paper, the networks observed do not have multiple attractors and thus have a single
invariant measure. We will not prove this here and, in fact, know of counter-examples to the
former statement for some parameter settings.

2.4. Definitions for numerical arguments

Because we are conducting a numerical experiment, it is necessary to present notions that
allow us to test our conjectures numerically. We will begin with a notion of continuity. The
heart of continuity is based on the following idea: if a neighbourhood about a point in the
domain is shrunk, this implies a shrinking of a neighbourhood of the range. However, we
do not have infinitesimals at our disposal. Thus, our statements of numerical continuity will
necessarily have a statement regarding the limits of numerical resolution below which our
results are uncertain.

Let us now begin with a definition of bounds on the domain and range:

Definition 9 (εnum). εnum is the numerical accuracy of a Lyapunov exponent, χj .

Definition 10 (δnum). δnum is the numerical accuracy of a given parameter under variation.

Now, with our εnum and δnum defined as our numerical limits in precision, let us define
numerical continuity of Lyapunov exponents.

Definition 11 (num-continuous Lyapunov exponents). Given a one parameter map f :
R1 × Rd → Rd , f ∈ Cr , r > 0, for which characteristic exponents χj exist (a.e. with
respect to an SRB measure). The map f is said to have num-continuous Lyapunov exponents
at (µ, x) ∈ R1 × Rd if for εnum > 0 there exists a δnum > 0 such that if

|s − s ′| < δnum (23)

then

|χj (s) − χj (s
′)| < εnum (24)

for s, s ′ ∈ R1, for all j ∈ N such that 0 < j � d.

Another useful definition related to continuity is that of a function being Lipschitz continuous.

Definition 12 (num-Lipschitz). Given a one parameter map f : R1 × Rd → Rd , f ∈ Cr ,
r > 0, for which characteristic exponents χj exist (and are the same under all invariant
measures), the map f is said to have num-Lipschitz Lyapunov exponents at (µ, x) ∈ R1 × Rd

if there exists a real constant 0 < kχj
such that

|χj (s) − χj (s
′)| < kχj

|s − s ′|. (25)
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Further, if the constant kχj
< 1, the Lyapunov exponent is said to be contracting8 on the

interval [s, s ′] for all s ′ such that |s − s ′| < δnum.

Note that neither of these definitions imply strict continuity, but rather they provide bounds
on the difference between the change in parameter and the change in Lyapunov exponents.
It is important to note that these notions are highly localized with respect to the domain in
consideration. We will not imply some sort of global continuity using the above definitions;
rather, we will use these notions to imply that Lyapunov exponents will continuously (within
numerical resolution) cross through zero upon parameter variation. We can never numerically
prove that Lyapunov exponents do not jump across zero, but for most computational exercises,
a jump across zero that is below numerical precision is not relevant. This notion of continuity
will aid in arguments regarding the existence of periodic windows in parameter space.

Let us next define a Lyapunov exponent zero-crossing.

Definition 13 (Lyapunov exponent zero-crossing). A Lyapunov exponent zero-crossing is
simply the point sχj

in parameter space such that a Lyapunov exponent continuously (or
num-continuously) crosses zero, e.g. for s − δ, χi > 0, and for s + δ, χi < 0.

For this report, a Lyapunov exponent zero-crossing is a transverse intersection with the
real line. For our networks non-transversal intersections of the Lyapunov exponents with the
real line certainly occur, but for the portion of parameter space we are investigating, they are
extremely rare. Along the route-to-chaos for our networks, such non-transversal intersections
are common, but we will save the discussion of that topic for a different report. Orbits for
which the Lyapunov spectrum can be defined (in a numerical sense, Lyapunov exponents are
defined when they are convergent), yet at least one of the exponents is zero, are called non-
trivially num-partially hyperbolic. We must be careful making statements with respect to the
existence of zero Lyapunov exponents implying the existence of centre manifolds Ec because
zero exponents may not correspond to a manifold.

Lastly, we define a notion of denseness for a numerical context. There are several ways
of achieving such a notion—we will use the notion of a dense sequence.

Definition 14 (ε-dense). Given an ε > 0, an open interval (a, b) ⊂ R, and a sequence
{c1, . . . , cn}, {c1, . . . , cn} is ε-dense in (a, b) if there exists an n such that for any x ∈ (a, b),
there is an i, 1 � i < n, such that dist(x, ci) < ε.

In reality however, we will be interested in a sequence of sequences that are ‘increasingly’
ε-dense in an interval (a, b). In other words, for the sequence of sequences

c1
1, · · · , c1

n1

c2
1, · · · , c2

n2

...
...

...

where ni+1 > ni (i.e. for a sequence of sequences with increasing cardinality), the subsequent
sequences for increasing ni become a closer approximation of an ε-dense sequence.

Definition 15 (Asymptotically dense (a-dense)). A sequence Sj = {cj

1, . . . , c
j
nj

} ⊂ (a, b) of
finite subsets is asymptotically dense in (a, b), if for any ε > 0, there is an N such that Sj is
ε-dense if j � N .

8 Note, there is an important difference between the Lyapunov exponent contracting, which implies some sort of
convergence to a particular value, versus a negative Lyapunov exponent that implies a contracting direction on the
manifold or in phase space.
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For an intuitive example of this, consider a sequence S of k numbers where qk ∈ S, qk ∈ (0, 1).
Now increase the cardinality of the set, spreading elements in such a way that they are uniformly
distributed over the interval. Density is achieved with the cardinality of infinity, but clearly,
with a finite but arbitrarily large number of elements, we can achieve any approximation to a
dense set that we wish. There are, of course, many ways we can have a countably infinite set
that is not dense, and, as we are working with numerics, we must concern ourselves with how
we will approach this asymptotic density. We now need a clear understanding of when this
definition will apply to a given set. There are many pitfalls; for instance, we wish to avoid
sequences such as (1, 1

2 , 1
3 , . . . , 1

n
, . . .). We will, in the section that addresses a-density, state

the necessary conditions for an a-dense set for our purposes.

3. Conjectures

The point of this exercise is to begin to specify, in a computational framework, the variation
in Lyapunov exponents and hyperbolicity in a space of high-dimensional dynamical systems.
To achieve this goal, we will make four statements or conjectures that we will subsequently
support with numerical evidence. To begin, let us specify a condition that will be very valuable
to the formulation of our ideas.

Condition 1. Given a map (neural network) as defined in section 2.1.4, if the parameter s ∈ R1

is varied num-continuously, then the Lyapunov exponents vary num-continuously.

Since there are many counterexamples to this condition, many of our results rely upon our
ability to show how generally this condition applies in high-dimensional systems.

Definition 16 (Chain link set). Assume f is a mapping (neural network) as defined in section
2.1.4. A chain link set is denoted as

V = {s ∈ R | χj (s) �= 0 for all 0 < j � d and χj (s) > 0 for some j > 0}.
If χj (s) is continuous at its Lyapunov exponent zero-crossing, as we will show later (condition
(1)), then V is open. Next, let Ck be a connected component of the closure of V , V . It can be
shown that Ck ∩ V is a union of disjoint, adjacent open intervals of the form

⋃
i (ai, ai+1).

Definition 17 (Bifurcation link set). Assume f is a mapping (neural network) as defined in
section 2.1.4. Denote a bifurcation link set of Ck ∩ V as

Vi = (ai, ai+1). (26)

Assume the number of positive Lyapunov exponents for each Vi ⊂ V remains constant. If,
upon a monotonically increasing variation in the parameter s, the number of positive Lyapunov
exponents for Vi is greater than the number of positive Lyapunov exponents for Vi+1, V is said
to be LCE decreasing. Specifically, the endpoints of the Vi are the points where there exist
Lyapunov exponent zero crossings. We are not particularly interested in these sets; however,
we are interested in the collection of endpoints adjoining these sets.

Definition 18 (Bifurcation chain subset). Let V be a chain link set, and Ck a connected
component of V . A bifurcation chain subset of Ck ∩ V is denoted as

Uk = {ai} (27)

or equivalently

Uk = ∂(Ck ∩ V ). (28)
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Figure 2. An intuitive diagram for chain link sets, V , bifurcation link sets, Vi , and bifurcation
chain sets, U , for an LCE decreasing chain link set V .

For the purposes of this work, we will consider a bifurcation chain subset U such that a1

corresponds to the last zero crossing of the least positive exponent and an will depend upon the
specific case and dimension. For comparison with later figures a1 ∼ 0.5 and an ∼ 6; in higher-
dimensional networks, an ∼ 6 will correspond to a much higher n than for a low-dimensional
network. For an intuitive picture of what we wish to depict with the above definitions, consider
figure 2.

We can now state the conjectures and an outline of what we will test and why those tests
will verify our claims.

Conjecture 1 (Hyperbolicity violation). Assume f is a mapping (neural network) as defined
in section 2.1.4 with a sufficiently large number of dimensions, d. There exists at least one
bifurcation chain subset U .

The intuition arises from a straightforward consideration of the neural network
construction in section 2.1.4. From the consideration of our specific neural networks and
their activation function, tanh(), it is clear that variation of the scaling parameter, s, on the
variance of the interaction weights ω forces the neural networks from a linear region through
a non-linear region and into a binary region. This implies that, given a neural network that is
chaotic for some value of s, upon the monotonically increasing variation of s from zero, the
dynamical behaviour will begin at a fixed point, proceed through a sequence of bifurcations,
become chaotic and eventually become periodic. If the number of positive Lyapunov exponents
can be shown to increase with the dimension of the network and if the Lyapunov exponents can
be shown to vary relatively continuously with respect to parameter variation with increasing
dimension then there will be many points along the parametrized curve such that there will exist
neutral directions. The ideas listed above provide the framework for computational verification
of conjecture (2). We must investigate conjecture (1) with respect to the subset U becoming
a-dense in its closure and the existence of very few (ideally a single) connected components
of V .

Conjecture 2 (Existence of a codimension ε bifurcation set). Assume f is a mapping
(neural network) as defined in section 2.1.4 with a sufficiently large number of dimensions, d,
and a bifurcation chain set U as per conjecture (1). The two following statements hold and
are equivalent:

(i) In the infinite-dimensional limit, the cardinality of U will go to infinity, and the length
max |ai+1 −ai | for all i will tend to zero on a one-dimensional interval in parameter space.
In other words, the bifurcation chain set U will be a-dense in its closure, U .
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Figure 3. The top drawing represents various standard pictures from transversality theory. The
bottom drawing represents an idealized version (in higher dimensions) of transversality catering to
our arguments.

(ii) In the asymptotic limit of high dimension, for all s ∈ U and for all f at s, an arbitrarily
small perturbation δs of s will produce a topological change. The topological change
will correspond to a different number of global stable and unstable manifolds for f at s

compared with f at s + δ.

Assume M is a Cr manifold of topological dimension d, and N is a submanifold of M .
The codimension of N in M is defined by codim(N) = dim(M) − dim(N). If there exists a
curve p through M such that p is transverse to N and codim(N) � 1, then there will not exist
an arbitrarily small perturbation to p such that p will become non-transverse to N . Moreover,
if codim(N) = 0 and p

⋂
N ⊂ int(N) then there does not even exist an arbitrarily small

perturbation of p such that p intersects N at a single point of N , i.e. the intersection cannot
be made non-transverse with an arbitrarily small perturbation.

The former paragraph can be more easily understood from figure 3 where we have drawn
four different circumstances. The first circumstance, the curve p1 ∩N , is an example of a non-
transversal intersection with a codimension 0 submanifold. This intersection can be perturbed
away with an arbitrarily small perturbation of p1. The intersection, p2 ∩ N , is a transversal
intersection with a codimension 0 submanifold, and this intersection cannot be perturbed away
with an arbitrarily small perturbation of p2. Likewise, the intersection, p1 ∩ O, which is
an example of a transversal intersection with a codimension 1 submanifold, cannot be made
non-transverse or null by an arbitrarily small perturbation of p1. The intersection p2 ∩ O is a
non-transversal intersection with a codimension 1 submanifold and can be perturbed away with
an arbitrarily small perturbation of p2. This outlines the avoidability of codimension 0 and 1
submanifolds with respect to curves through the ambient manifold M . The point is that non-
null, transversal intersections of curves with codimension 0 or 1 submanifolds cannot be made
non-transversal with arbitrarily small perturbations of the curve. Transversal intersections of
curves with codimension 2 submanifolds, however, can always be removed by an arbitrarily
small perturbation due to the existence of a ‘free’ dimension. A practical example of such
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would be the intersection of a curve with another curve in R3—one can always pull apart the
two curves simply by ‘lifting’ them apart.

In the circumstance proposed in conjecture (2), the set U (Ñ in figure 3) will always have
codimension d because U consists of finitely many points; thus, any intersection with U can
be removed by an arbitrarily small perturbation. The point is that, as U becomes a-dense in
Ū , p3

⋂
Ū = 0 becomes more and more unlikely, and the perturbations required to remove

the intersections of p3 with U (again, Ñ as in figure 3 ) will become more and more bizarre.
For a low-dimensional example, think of a ball of radius r in R3 that is populated by a finite
set of evenly distributed points, denoted Si , where i is the number of elements in Si . Next fit
a curve p through that ball in such a way that p does not hit any points in Si . Now, as the
cardinality of Si becomes large, if Si is a-dense in the ball of radius r , for the intersection of p

with Si to remain null, p will need to become increasingly kinky. Moreover, continuous, linear
transformations of p will become increasingly unlikely to preserve p ∩ Si = 0. It is this type
of behaviour with respect to parameter variation that we are arguing for with conjecture (2).
However, figure 3 should only be used as an tool for intuition—our conjectures are with respect
to a particular interval in parameter space and not a general curve in parameter space, let alone
a family of curves or a high-dimensional surface. Conjecture (2) is a first step towards a more
complete argument with respect to the above scenario. For more information concerning the
origin of the above picture, see [82] or [83]. With the development of more mathematical
language, it is likely that this conjecture can be specified with the notion of prevalence.

To understand roughly why we believe conjecture (2) is reasonable, first take condition
(1) for granted (we will expend some effort showing where condition (1) is reasonable).
Next assume there are arbitrarily many Lyapunov exponents near 0 along some interval of
parameter space and that the Lyapunov exponent zero-crossings can be shown to be a-dense
with increasing dimension. Further, assume that on the aforementioned interval, V is LCE
decreasing. Since varying the parameters continuously on some small interval will move
Lyapunov exponents continuously, small changes in the parameters will guarantee a continual
change in the number of positive Lyapunov exponents. One might think of this intuitively
relative to the parameter space as the set of Lyapunov exponent zero-crossings forming a
codimension 0 submanifold with respect to the particular interval of parameter space. However,
we will never achieve such a situation in a rigorous way. Rather, we will have an a-dense
bifurcation chain set U , which will have codimension 1 in R with respect to topological
dimension. As the dimension of f is increased, U will behave more like a codimension 0
submanifold of R. Hence the metaphoric language, codimension ε bifurcation set. The set U

will always be a codimension one submanifold because it is a finite set of points. Nevertheless,
if U tends towards being dense in its closure, it will behave increasingly like a codimension
zero submanifold. This argument will not work for the entirety of the parameter space, and thus
we will show where, to what extent, and under what conditions U exists and how it behaves
as the dimension of the network is increased.

Conjecture 3 (Periodic window probability decreasing). Assume f is a mapping (neural
network) as defined in section 2.1.4 and a bifurcation chain set U as per conjecture (1). In
the asymptotic limit of high dimension, the length of the bifurcation chain sets, l = |an − a1|,
increases such that the cardinality of U → m where m is the maximum number of positive
Lyapunov exponents for f . In other words, there will exist an interval in parameter space (e.g.
s ∈ (a1, an) ∼ (0.1, 4)) where the probability of the existence of a periodic window will go to
zero (with respect to Lebesgue measure on the interval) as the dimension becomes large.

This conjecture is somewhat difficult to test for a specific function since adding inputs
completely changes the function. Thus, the curve through the function space is an abstraction



1822 D J Albers and J C Sprott

which is not afforded by our construction. We will save a more complete analysis (e.g. a search
for periodic windows along a high-dimensional surface in parameter space) of conjecture (3)
for a different report. In this work, conjecture (3) addresses a very practical matter, for it implies
the existence of a much smaller number of bifurcation chain sets. The previous conjectures
allow for the existence of many of these bifurcation chains sets, U , separated by windows of
periodicity in parameter space. However, if these windows of periodic dynamics in parameter
space vanish, we could end up with only one bifurcation chain set—the ideal situation for our
arguments. We will not claim such; however, we will claim that the length of the set U we are
concerning ourselves with in a practical sense will increase with increasing dimension, largely
due to the disappearance of periodic windows on the closure of V . With respect to this report,
all that needs to be shown is that the window sizes along the path in parameter space for a
variety of neural networks decreases with increasing dimension. From a qualitative analysis,
it will be somewhat clear that the above conjecture is reasonable.

If this paper were actually making statements we could rigorously prove; conjectures (1),
(2) and (3) would function as lemmas for conjecture (4).

Conjecture 4. Assume f is a mapping (neural network) as defined in section 2.1.4 with a
sufficiently large number of dimensions, d, a bifurcation chain set U as per conjecture (1) and
the chain link set V . The perturbation size δs of s ∈ Cmax , where Cmax is the largest connected
component of V , for which f |Ck

remains structurally stable, goes to zero as d → ∞.

Specific cases and the lack of density of structural stability in certain sets of dynamical
systems has been proved long ago. These examples were, however, very specialized and
carefully constructed circumstances and do not speak of the commonality of structural stability
failure. Along the road to investigating conjecture (4) we will show that structural stability
will not, in a practical sense, be observable for a large set of very high-dimensional dynamical
systems along certain, important intervals in parameter space even though structural stability
is a property that will exist on that interval with probability one (with respect to Lebesgue
measure). This conjecture might appear to contradict some well-known results in stability
theory. A careful analysis of this conjecture, and its relation to known results, will be discussed
in sections 7.1.4 and 7.3.1.

The larger question that remains, however, is whether conjecture (4) is valid on high-
dimensional surfaces in parameter space. We believe this is a much more difficult question
with a much more complicated answer. A highly related problem of whether chaos persists in
high-dimensional dynamical systems is partially addressed in [65].

4. Numerical errors and Lyapunov exponent calculation

The Lyapunov exponents are calculated by equation (21) using the well-known and standard
techniques given in [41, 84–86]. We employ the modified Gram–Schmidt orthogonalization
technique because it is more numerically stable than the standard Gram–Schmidt technique.
Moreover, the orthonormalization is computed at every time step. The results are not altered
when we use other orthonormalization algorithms (see [87] for a survey of different techniques).
The explicit calculation of LCEs in the context we utilize is discussed well in [88]. Numerical
error analysis for the Lypaunov exponent calculation has been studied in various contexts;
see [89] or [90] for details. Determining errors in the Lyapunov exponents is not an exact
science; for our networks such errors vary a great deal in different regions in s space. For
instance, near the first bifurcation from a fixed point can require up to 100 000 or more iterations
to converge to an attractor and 500 00 more iterations for the Lyapunov spectrum to converge.
The region of parameter space we study here has particularly fast convergence.
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Figure 4. LE spectrum versus iteration for individual networks with 32 neurons and 16 (left, only
the largest 8 are shown) and 64 (right) dimensions.

Figure 5. Close-up of LE spectrum versus iteration: 32 neurons, 64 dimensions.

Consider figure 4, depicting plots of the Lyapunov spectrum versus the first 10000
iterations for two networks with 16 and 64 dimensions. After approximately 3000 time steps,
all the large transients have essentially vanished, and aside from a slight variation (especially
on a time-scale that is long compared with a single time-step) the exponents appear to have
converged. For the case with 16 dimensions, the exponents also appear to have converged.
The resolution for the network with 64 dimensions is not fine enough to verify a distinction
between exponents; thus, consideration of figure 5 demonstrates clearly that the exponents
converge within the inherent errors in the calculation and are entirely distinct for greater than
5500 time steps. It is worth noting that there are times when very long term transients occur in
our networks. These transients would not be detectable from the figures we have presented, but
these problem cases usually exist only near bifurcation points. For the cases we are considering,
these convergence issues do not seem to affect our results9 (see chapter 10 of [35] for more
information).

9 When an exponent is very nearly zero it can tend to fluctuate above and below zero, but it is always very near zero.
Thus, although it might be difficult to resolve zero exactly—which is to be expected—the exponent is clearly very
near zero which is all that really matters for our purposes.



1824 D J Albers and J C Sprott

0

 0.02

 0.04

 0.06

 0.08

 0.1

0  1000  2000  3000  4000  5000

M
ea

n 
de

vi
at

io
n 

fr
om

 th
e 

m
ea

n 
LE

Iterations

"d=16"

0

 0.02

 0.04

 0.06

 0.08

 0.1

0  1000  2000  3000  4000  5000

M
ea

n 
de

vi
at

io
n 

fr
om

 th
e 

m
ea

n 
LE

Iterations

"d=64"

Figure 6. Mean deviation from the mean of the largest and most negative Lyapunov exponent per
time-step for an ensemble of 1000 networks with 32 neurons and 16 (left) and 64 (right) dimensions.

Figures 4 and 5 provide insight into how the individual exponents for individual networks
converge; we now must establish the convergence of the Lyapunov exponents for a large set
of neural networks and present a general idea of the numerical variance (εm) in the Lyapunov
exponents. We will achieve this by calculating the Lyapunov spectrum for an individual
network for 5000 time steps, calculating the mean of each exponent in the spectrum, for
each time step calculating the deviation of the exponent from the mean of that exponent and
repeating the procedure for 1000 networks taking the mean of the deviation from the mean
exponent at each time step. Figure 6 represents the analysis in the former statement. This
figure demonstrates clearly that the deviation from the mean exponent, even for the most
negative exponent (which has the largest error), drops below 0.01 after 3000 time steps. The
fluctuations in the largest Lyapunov exponent lie in the 10−3 range for 3000 time steps. Figure 6
also substantiates three notions: a measurement of how little the average exponent strays from
its mean value; a measurement of the similarity of this characteristic over the ensemble of
networks and a general intuition with respect to the accuracy of our exponents, εm < 0.01 for
5000 time steps.

5. Numerical arguments for preliminaries

Before we present our arguments supporting our conjectures we must present various
preliminary results. Specifically, the num-continuity of the Lyapuonv exponents, the a-density
of Lyapunov exponent zero-crossings, and the existence of arbitrarily many positive exponents
given an arbitrarily large dimension.

5.1. num-continuity

Testing the num-continuity of Lyapunov exponents will be two-fold. First, we will need to
investigate, for a specific network f , the behaviour of Lyapunov exponents versus variation of
parameters. Second, indirect, yet strong evidence of the num-continuity will also come from
investigating how periodic window size varies with dimension and parameters. It is important
to note that when we refer to continuity, we are referring to a very local notion of continuity.
Continuity is always in reference to the set upon which something (a function, a mapping,
etc) is continuous. In the analysis below, the neighbourhoods upon which continuity of the
Lyapunov exponents are examined are plus and minus one parameter increment. This is all
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Figure 7. LE spectrum: 32 neurons, 4 dimensions, s ∈ [0 : 20].

that is necessary for our purposes, but this analysis cannot guarantee strict continuity along,
say, s ∈ [0.1, 10], but rather continuity along little linked bits of the interval [0.1, 10].

5.1.1. Qualitative analysis. Qualitatively, our intuition for num-continuity comes from
examining hundreds of Lyapunov spectrum plots versus parameter variation. In this vein,
figures 7 and 8 present the difference between low and higher dimensional Lyapunov spectra.

In figure 8, the Lyapunov exponents look continuous within numerical errors (usually
±0.005). Figure 8 by itself provides little more than an intuitive picture of what we are
arguing. As we will be making arguments that the Lyapunov spectrum will become smoother,
periodic windows will disappear, and so on, with increasing dimension, figure 7 shows a
typical graph of the Lyapunov spectrum versus parameter variation for a neural network with
32 neurons and 4 dimensions. The contrast between figures 8 and 7 intuitively demonstrates
the increase in continuity we are claiming.

Although figures 7 and 8 shows that, as the dimension is increased, the Lyapunov exponents
appear to be a more continuous function of s, the figures alone do not verify num-continuity.
In fact, note that pathological discontinuities have been observed in networks with as many
as 32 dimensions. The existence of pathologies for higher dimensions is not a problem we
are prepared to answer in depth; it can be confidently said that as the dimension (number of
inputs) is increased, the pathologies appear to become vanishingly rare (this is noted over our
observation of several thousand networks with dimensions ranging from 4 to 256).

5.1.2. Quantitative and numerical analysis. Begin by considering the num-continuity of two
particular networks while varying the s parameter. Figure 9 depicts the mean difference in each
exponent between parameter values summed over all the exponents. The parameter increment
is δs = 0.01. The region of particular interest is between s = 0 and 6. Considering this range,
it is clear that the variation in the mean of the exponents versus variation in s decreases with
dimension. The 4-dimensional network not only has a higher baseline of num-continuity but it
also has many large spikes that correspond to the appearance of large qualitative changes in the
dynamics. As the dimension is increased, considering the 64-dimensional case, the baseline of
num-continuity is decreased, and the large spikes disappear. The spikes in the 4-dimensional
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Figure 9. num-continuity (mean of |χi(s) − χi(s + δs)| for each i) versus parameter variation: 32
neurons, 4 (left) and 64 (right) dimensions.

case can be directly linked to the existence of periodic windows and bifurcations that result
in a dramatic topological change. This is one verification of num-continuity of Lyapunov
exponents. These two cases are typical, but it is clear that the above analysis, although
persuasive, is not adequate for our needs. We will thus resort to a statistical study of the
above plots.

The statistical support we have for our claim of increased num-continuity will again focus
on the parameter region between s = 0 and 6, the region in parameter space near the maxima of
entropy, Kaplan–Yorke dimension and the number of positive Lyapunov exponents. Figure 10
considers the num-continuity for parameter values of 0–6. The points on the plot correspond
to the mean (for a few hundred networks) of the mean exponent change between parameter
values or

µd = 1

Z

Z∑
k=1

∑d
i=1 |χk

i (s) − χk
i (s + δs)|

d
, (29)

where Z is the total number of networks of a given dimension. Figure 10 clearly shows that
as the dimension is increased, for the same computation time, both the mean exponent change
versus the parameter variation per network and the standard deviation of the exponent change
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Figure 10. Mean num-continuity, num-continuity of the largest and the most negative Lyapunov
exponent of many networks versus their dimension. The error bars are the standard deviation about
the mean for the networks considered.

decrease substantially as the dimension is increased10. Of course the mean change over all
the exponents allows for the possibility for one exponent (possibly the largest exponent) to
undergo a relatively large change while the other exponents change very little. For this reason,
we have included the num-continuity of the largest and the most negative exponents versus
parameter change. The num-continuity of the largest exponents is very good, displaying a
small standard deviation across many networks. The error in the most negative exponent is
inherent to our numerical techniques (specifically the Gram–Schmidt orthogonalization). The
error in the most negative exponent increases with dimension but is a numerical artefact. This
figure yields strong evidence that in the region of parameter space where the network starts
at a fixed point (all negative Lyapunov exponents), grows to having the maximum number of
positive exponents and returns to having a few positive exponents, the variation in any specific
Lyapunov exponent is very small.

There is a specific relationship between the above data and definition 12; num-Lipschitz is
a stronger condition than num-continuity of Lyapunov exponents. The mean num-continuity
at n = 32, d = 4

|χj (s + δnum) − χj (s)| < kδnum (30)

|0.02| < k|0.01|, (31)

yielding k = 2 which would not classify as num-Lipschitz contracting, whereas for n = 32,
d = 128 we arrive at

|χj (s + δnum) − χj (s)| < kδnum (32)

|0.004| < k|0.01|, (33)

which yields k = 0.4 < 1 which does satisfy the condition for num-Lipschitz contraction.
Even more striking is the num-continuity of only the largest Lyapunov exponent; for n = 32,
d = 4 we get

|χj (s + δnum) − χj (s)| < kδnum (34)

|0.015| < k|0.01|, (35)
10 The mean num-continuity for d = 4 and d = 128 is 0.015 ± 0.03 and 0.004 ± 0.003, respectively. The mean
num-continuity of the largest exponent for d = 4 and d = 128 is 0.01 ± 0.03 and 0.002 ± 0.004, respectively. The
discrepancy between these two data points comes from the large error in the negative exponents at high dimension.
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which yields k = 1.5, while the n = 32 d = 128 case is

|χj (s + δnum) − χj (s)| < kδnum (36)

|0.002| < k|0.01|, (37)

which nets k = 0.2. As the dimension is increased, k decreases; and thus num-continuity
increases. As can be seen from figure 10, the num-continuity is achieved rather quickly as the
dimension is increased; the Lyapunov exponents are quite continuous with respect to parameter
variation by 16 dimensions. For an understanding of an asymptotic limit of high dimension,
consider figure 11. As the dimension is increased, the log2 of the dimension versus the log2(kχ1)

yields the scaling k ∼ √
(2/d); thus, as d → ∞, kχ1 → 0, which is exactly what we desire

for continuity in the Lyapunov exponents versus parameter change.

5.1.3. Relevance. Conjectures (1), (2) and (4) are all fundamentally based on condition (1).
For the neural networks, all we need to establish conjecture (1) is the num-continuity of the
Lyapunov exponents, the existence of the fixed point for s near 0, the periodic orbits for s → ∞
and three exponents that are, over some region of parameter space, all simultaneously positive.
The n-continuity of Lyapunov exponents implies, within numerical precision, that Lyapunov
exponents both pass through zero (and do not jump from positive to negative without passing
through zero) and are zero within numerical precision.

5.2. a-density of zero crossings

Many of our arguments will revolve around varying s in a range 0.1–6 and studying the
behaviour of the Lyapunov spectrum. One of the most important features of the Lyapunov
spectrum we will need is a uniformity in the distribution of positive exponents between 0 and
χmax. As we are dealing with a countable set, we will refrain from any measure theoretic notions
and instead rely on the a-density of the set of positive exponents as the dimension is increased.
Recall the definition of a-dense (definition (15)), the definition of a bifurcation chain subset
(definition (18)), which corresponds to the set of Lyapunov exponent zero crossings, and the
definition of a chain link set (definition (16)). Our conjectures will make sense if and only if,
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Figure 12. Positive LE spectrum for typical individual networks with 32 neurons and 16 (left) and
64 (right) dimensions.

as the dimension is increased, the bifurcation chain subsets become ‘increasingly’ dense or
a-dense in the closure of the chain link set (V̄ ). The notion of an a-dense bifurcation chain set
in the closure of the chain link set as the dimension which is increased provides us with the
convergence to density of non-hyperbolic points we need to satisfy our goals.

5.2.1. Qualitative analysis. To see qualitatively why we believe the a-density of Lyapunov
exponent zero-crossings (a-dense bifurcation chain set in the closure of the chain link set)
over a particular region of parameter space exists, consider the 16-dimensional case shown in
figure 12. Begin by splitting the s variation into two regions RI = [0, 0.5], and RII = [0.5, 10].
We then partition RII using the bifurcation link sets and collect the zero crossings in the
bifurcation chain sets. We want the elements of the bifurcation chain sets to be spaced evenly
enough so that, as the dimension goes to infinity, variations in s on the chain link set will lead
to a Lyapunov exponent zero-crossing (and a transition from Vi to Vi±1)11. Considering region
II 12, we wish for the distance along the s axis between Lyapunov exponent zero-crossings
(elements of the bifurcation chain subset) to decrease as the dimension is increased. If, as the
dimension is increased, the Lyapunov exponents begin to ‘bunch-up’ and cease to be at least
somewhat uniformly distributed, the rest of our arguments will fail. For instance, in region
two of the plots in figure 12, if the Lyapunov exponents were ‘clumped’, there will be many
holes where variation of s will not imply an exponent crossing. Luckily, considering the 64-
dimensional case given in figure 12, the spacing between exponent zero-crossings decreases as
the dimension is increased (consider the region [0.5, 4]), and there are no point accumulations
of exponents. It is also reassuring to note that even at 16 dimensions, and especially at
64 dimensions, the Lyapunov exponents are distinct and look num-continuous as previously
asserted. The above figures only show two networks; if we want a more conclusive statement,
we will need statistical arguments.

5.2.2. Quantitative and numerical analysis. Our analysis that specifically targets the a-
density of Lyapunov exponent zero crossings focuses on an analysis of plots of the number of
positive exponents versus the s parameter.

11 Recall, the bifurcation chain sets will not exist when the zero crossings are not transverse.
12 We will save region I for a different report. For insight into some of the dynamics and phenomena of region I ,
see [37].
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Figure 13. Number of positive LEs for typical individual networks with 32 neurons and 32 (left)
and 128 (right) dimensions.
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Figure 14. Mean distance between the first 10 zero crossings of LEs for many networks with 32
neurons and 16, 32, 64 and 128 dimensions.

Qualitatively, the two examples given in figure 13 (both of which typify the behaviour for
their respective number of neurons and dimensions) exemplify the a-density for which we are
searching. As the dimension is increased, the plot of the variation in the number of positive
exponents versus s becomes more smooth13, while the width of the peak becomes more narrow.
Thus, the slope of the number of positive exponents versus s between s = s∗ (s∗ is s where
there exists the maximum number of positive Lyapunov exponents) and s = 2 drops from −3
at d = 32 to −13 at d = 128. Note the more negative the slope, the less the variation in s

required to force a zero-crossing; this implies a-density of zero-crossings. We will not take
that line of analysis further, but rather will give brute force evidence for a-density by directly
noting the mean distance between exponent zero-crossings.

From figure 14, it is clear that as the dimension of the network is increased, the mean
distance between successive exponent zero-crossings decreases. Note that measuring the
mean distance between successive zero-crossings both in an intuitive and brute force manner
verifies the sufficient condition for the a-density of the set of s values for which there exist

13 This increase in smoothness is not necessarily a function of an increased number of exponents. A dynamical system
that undergoes massive topological changes upon parameter variation will not have a smooth curve such as in figure 13,
regardless of the number of exponents.
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zero-crossings of exponents. The error bars represent the standard deviation of the length
between zero-crossings over an ensemble (several hundred for low dimensions and on the
order of a hundred for d = 128) of networks. For the cases where the dimension was
16 and 32, the s increment resolution was δs = 0.01. The error in the zero-crossing
distance for these cases is, at the smallest, 0.02, while at its smallest, the zero-crossing
distance is 0.49; thus, resolution of 0.01 in s is sufficient to adequately resolve the zero-
crossings. Such is not the case for 64- and 128-dimensional networks. For these cases we
were required to increase the s resolution to 0.005. The zero-crossings of a few hundred
networks considered were all examined by hand; the distances between the zero-crossings
were always distinct, with a resolution well below that necessary to determine the zero-crossing
point. The errors were also determined by hand, noting the greatest and least points for the
zero-crossing. All the zero-crossings were determined after the smallest positive exponent,
which became positive, hit its peak value, i.e. after approximately 0.75 in the d = 16 case of
figure 12.

5.2.3. Relevance. The a-density of zero-crossings of Lyapunov exponents provides the most
important element in our arguments of conjectures (1) and (2); combining num-continuity
with a-density will essentially give our desired results. If continuity of Lyapunov exponents
increases, and the density of zero crossings of exponents increases over a set U ∈ R1 of
parameter space, it becomes clear that we will have both hyperbolicity violation and, upon
variation of parameters in U , we will have the topological change we are claiming. Of course,
small issues remain, but these will be dealt with in the final arguments.

5.3. Arbitrarily large number of positive exponents

For our a-density arguments to work, we need a set whose cardinality is asymptotically a
countably infinite set (such that it can be a-dense in itself) and we need the distance between
the elements in the set to approach zero. The latter characteristic was the subject of the previous
section; the former subject is what we intend to address in this section.

5.3.1. Qualitative analysis. The qualitative analysis of this can be seen in figure 13; as
the dimension is increased, the maximum number of positive Lyapunov exponents clearly
increases.

5.3.2. Quantitative analysis. Figure 15 depicts the number of positive Lyapunov exponents
versus dimension, from which it is clear that as the dimension is increased, the number of
positive exponents increases in a nearly linear fashion 14. Further, this plot is linear to as
high a dimension as we could compute enough cases for reasonable statistics. This scaling
is dependent on the number of neurons in that an increase in N increases the slope (for more
information see [34]).

5.3.3. Relevance. The importance of the increasing number of positive exponents with
dimension is quite simple. For the a-density of exponent zero crossing to be meaningful in the
infinite-dimensional limit, there must also be an arbitrarily large number of positive exponents
that can cross zero. If, asymptotically, there is a finite number of positive exponents, all of our
claims will be false; a-density requires a countably infinite set.

14 Further evidence for such an increase is provided by considering the Kaplan–Yorke dimension versus d. Such
analysis yields a linear dependence, DK−Y ∼ d/2.
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4 ).

6. Numerical arguments for conjectures

6.1. Decreasing window probability

With the num-continuity and a-density arguments already in place, all the evidence required
to show the length of periodic windows along a curve in parameter space is already in place.
We will present some new data, but primarily we will clarify exactly what the conjecture says.
We will also list the specifics under which the conjecture applies in our circumstances.

6.1.1. Qualitative analysis. Qualitative evidence for the disappearance of periodic windows
amidst chaos is evident from figures 7, 8 and 12; the periodic windows that dominate the
4-dimensional network over the parameter range s = 0–10 are totally absent in the 64-
dimensional network. It is important to note that for this conjecture, as well as all our
conjectures, we are considering the s parameter over ranges no larger than 0–10. We will
avoid, for the most part, the ‘route to the chaos’ region (s near zero), as it yields many complex
issues that will be saved for another paper [36, 38]. We will instead consider the parameter
region after the lowest positive exponent first becomes positive. We could consider parameter
ranges considerably larger, but for s very large, the round-off error begins to play a significant
role, and the networks become binary. This region has been briefly explored in [37]; further
analysis is necessary for a more complete understanding [91].

6.1.2. Quantitative and numerical analysis. The quantitative analysis will involve arguments
of two types; those that are derived from data given in sections 5.1 and 5.2 and those that follow
from statistical data regarding the probability of a window existing for a given s along an interval
in R.

The conjecture we are investigating claims that as the dimension of a dynamical system
is increased, periodic windows along a one-dimensional curve in parameter space vanish in
a significant portion of parameter space for which the dynamical system is chaotic. This is,
of course, highly dependent upon the region of parameter space one is observing. For our
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purposes, we will generally be investigating the region of s parameter space between 0.1 and
10; however, sometimes we will limit the investigation to s between 2 and 4. Little changes
if we increase s until the network begins behaving as a binary system due (quite possibly) to
the round-off error. However, along the transition to the binary region, there are significant
complications which we will not address here. As the dimension is increased, the main concern
is that the lengths of the bifurcation chain sets must increase such that there will exist at least
one bifurcation chain set that has a cardinality approaching infinity as the dimension of the
network approaches infinity.

Our first argument is based directly upon the evidence of num-continuity of Lyapunov
exponents. From figure 10 it is clear that as the dimension of the set of networks sampled is
increased, the mean difference in Lyapunov exponents over small (δs = 0.01) s parameter
perturbation decreases. This increase in num-continuity of the Lyapunov exponents with
dimension over the parameter range is a direct result of the disappearance of periodic windows
from the chaotic regions of parameter space. This evidence is amplified by the decrease in the
standard deviation of the num-continuity versus dimension (of both the mean of the exponents
and the largest exponent). This decrease in the standard deviation of the num-continuity of
the largest Lyapunov exponent allows for the existence of fewer large deviations in Lyapunov
exponents (large deviations are needed for all the exponents to suddenly become less than or
equal to zero).

We can take this analysis a step further and simply calculate the probability of an s value
having a periodic orbit over a given interval. Figure 16 shows the probability of a periodic
window existing for a given s on the interval (2, 4) with δs = 0.001 for various dimensions.
There is a power law in the probability of periodic windows—the probability of the existence of
a periodic window decreases approximately as 1/d. Moreover, in high-dimensional dynamical
systems, when periodic windows are observed on the interval (2, 4), they are usually large.
In other words, even though the probability that a given s value will yield a periodic orbit for
d = 64 is 0.02, it is likely that the probability is contained in a single connected window,
as opposed to the lower dimensional scenario where the probability of window occurrence is
distributed over many windows. We will save further analysis of this conjecture for a different
report ( [65]), but hints as to why this phenomenon is occurring can be found in [92].

6.1.3. Relevance. Decreasing window probability inside the chaotic region provides direct
evidence for conjecture (3) along a one-dimensional interval in parameter space. We will use
the decreasing periodic window probability to help verify conjecture (2) since it provides the
context we desire with the num-continuity of the Lyapunov spectrum. Our argument requires
that there exists at least one maximum in the number of positive Lyapunov exponents with
parameter variation. Further, that maximum must increase monotonically with the dimension
of the system. The existence of periodic windows causes the following problems: periodic
windows can still yield structural instability—but in a catastrophic way; periodic windows
split up the bifurcation chain sets which, despite not being terminal to our arguments, provide
many complications with which we do not contend. However, we do observe a decrease in
periodic windows, and with the decrease in the (numerical) existence of periodic windows
comes the decrease in the number of bifurcation chain sets; i.e. l = |an − a1| is increasing yet
will remain finite.

6.2. Hyperbolocity violation

We will present two arguments for hyperbolicity violation—or nearness to hyperbolicity
violation of a map at a particular parameter value, s. The first argument will consider the
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Figure 16. Log2 of the probability of periodic or quasi-periodic windows versus log2 of dimension.
The line Pw = 2.16d−1.128 is the least squares fit of the plotted data.

fraction of Lyapunov exponents near zero over an ensemble of networks versus variation in s.
If there is any hope of the existence of a chain link set with bifurcation link sets of decreasing
length, our networks (on the s interval in question) must always have a Lyapunov exponent
near zero. The second argument will come implicitly from a-density arguments presented in
section 5.2. To argue for this conjecture, we only need the existence of a neutral direction15,
or, more accurately, at least two bifurcation link sets, which is not beyond reach.

6.2.1. Qualitative analysis. A qualitative analysis of hyperbolocity violation comes from
combining the num-continuity of the exponents in figure 8 and the evidence of exponent zero
crossings from figures 13 and 10. If the exponents are continuous with respect to parameter
variation (at least locally) and they start negative, become positive and eventually become
negative, then they must be zero (within numerical precision) for at least two points in the
parameter space. It happens that the bifurcation chain link sets are LCE decreasing from i to
i + 1, which will provide additional, helpful structure.

6.2.2. Quantitative and numerical analysis. The first argument, which is more of a necessary
but not sufficient condition for the existence of hyperbolicity violation, consists of searching
for the existence of Lyapunov exponents that are zero within the allowed numerical errors.
With num-continuity, this establishes the existence of exponents that are numerically zero.
For an intuitive feel for what numerically zero means, consider the oscillations in figure 13
of the number of positive exponents versus parameter variation. It is clear that as they cross
zero there are numerical errors that cause an apparent oscillation in the exponent16. There is a
certain fuzziness in numerical results that is impossible to remove. Thus, questions regarding
exponents being exactly zero are ill-formed. Numerical results of the type presented in this
paper need to be viewed in a framework similar to physical experimental results. With this in
mind, we note the significance of the exponents near zero. To do this, we calculate the relative

15 By neutral direction we mean a zero Lyapunov exponent; we do not wish to imply that there will always exist a
centre manifold corresponding to the zero Lyapunov exponent.
16 It is possible that there exist Milnor style attractors for our high-dimensional networks or at least multiple basins
of attraction. As this issue seems to not contribute, we will save this discussion for a different report.
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Figure 17. Mean fraction of LEs near zero (0 ± 0.01) for networks with 32 neurons and 32 or 64
dimensions (averaged over 100 networks).

number of Lyapunov exponents numerically at zero compared with the ones away from zero.
All this information can be summarized in figure 17, which addresses the mean fraction of
exponents that are near zero.

The cut-off for an exponent being near zero is ±0.01, which is approximately the expected
numerical error in the exponents for the number of iterations used. There are four important
features to notice about figure 17: (i) there are no sharp discontinuities in the curves; (ii)
there exists an interval in parameter space such that there is always at least one Lyapunov
exponent in the interval (−0.01, 0.01), and the length of that parameter interval is increasing
with dimension; (iii) the curves are concave—implying that exponents are somehow leaving
the interval (−0.01, 0.01) and (iv) there is a higher fraction of exponents near zero at the same
s value for higher dimension. The first property is important because holes in the parameter
space where there are no exponents near zero would imply the absence of the continuous
zero crossings we will need to satisfy conjecture (2). To satisfy conjecture (1) we only need
three exponents to be near zero and undergo a zero crossing for the minimal bifurcation chain
subset17 to exist. There are clearly enough exponents on average for such to exist for at least
some interval in parameter space at d = 32, e.g. for (0.1, 0.5). For d = 64 that interval is
much longer—(0.1, 1). Finally, if we want the chain link set to be more connected and for
the distance between elements of the bifurcation chain subset to decrease, we will need the
fraction of exponents near zero for the fixed interval (−0.01, 0.01) for a given interval in s to
increase with dimension. This figure does not imply that there will exist zero-crossings, but it
provides the necessary circumstance for our arguments.

The second argument falls out of the a-density and num-continuity arguments. We know
that as the dimension is increased, the variation of Lyapunov exponents versus parameter
variation decreases until, at dimension 64, the exponent varies continuously within numerical
errors (and thus upon moving through zero, the exponent moves through zero continuously).
We also know that on the interval in parameter space A = [0.1, 6], the distance between
exponent zero crossings decreases monotonically. Further, on this subset A, there always
exists a positive Lyapunov exponent, thus implying the existence of a bifurcation chain set
whose length is at least 5.9. Extrapolating these results to their limits in infinite dimensions,

17 The minimal bifurcation chain subset requires at least two adjoining bifurcation link sets to exist.
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the number of exponent crossings on the interval A will monotonically increase with dimension.
As can be seen from figure 14, the exponent zero-crossings are relatively uniform with the
distance between crossings decreasing with increasing dimension. Considering figure 12, the
exponent zero crossings are also transverse to the s axis. Thus, the zero-crossings on the
interval A, which are exactly the points of non-hyperbolocity we are searching for, become
dense. This is overkill for the verification of the existence of a minimal bifurcation chain set.
This is strong evidence for both conjectures (1) and (2). It is worth noting that hitting these
points of hyperbolocity violation upon parameter variation is extremely unlikely under any
uniform measure on R as they are a countable collection of points.18 Luckily, this does not
matter for either the conjecture at hand or for any of our other arguments.

6.2.3. Relevance. The above argument provides direct numerical evidence of hyperbolocity
violation over a range of the parameter space. This is a strong evidence supporting conjecture
(1). It does not yet verify conjecture (2), but it sets the stage because we have shown that there
is a significant range over which hyperbolocity is violated. The former statement speaks of
conjecture (4) also; a full explanation of conjecture (4) requires further analysis, which is the
subject of a discussion in the final remarks.

6.3. Hyperbolocity violation versus parameter variation

We are finally in a position to consider the final arguments for conjecture (2). To complete this
analysis, we need the following pieces of information:

(i) the maximum number of positive exponents to go to infinity,
(ii) a region of parameter space for which a-density of Lyapunov exponent zero crossings

exists; i.e. we need an arbitrarily large number of adjoining bifurcation link sets (such that
the cardinality of the bifurcation chain set becomes arbitrarily high) such that for each Vi ,
the length of Vi , l = |bi − ai |, approaches zero,

(iii) num-continuity of exponents to increase as the dimension increases.

The a-density, num-continuity and the arbitrary numbers of positive exponent arguments
we need have, for the most part, been provided in previous sections. In this section we will
simply apply the a-density and num-continuity results in a manner that suits our needs. The
evidence for the existence of a single maximum in the number of positive exponents, a mere
convenience for our presentation, is evident from section 5.3. We will simply rely on all our
previous figures and the empirical observation that, as the dimension is increased above d = 32
for networks that have the typical num-continuity (which includes all networks observed for
d � 64), there exists a single, global maximum in the number of positive exponents versus
parameter variation.

6.3.1. Qualitative analysis. The qualitative picture we are using for intution is that of
figure 12. This figure displays all the information we wish to quantify for many networks;
as the dimension is increased, there is a region of parameter space where the parameter
variation needed to achieve a topologically different (by topologically different, we mean
a different number of global stable and unstable manifolds) attractor decreases to zero. Based
on figure 12 (and hundreds of similar plots), we claim that this parameter range exists for at
least 0.5 � s � 6.

18 When considering parameter values greater than the point where the smallest exponent becomes positive, the zero
crossings seem always to be transverse. For smaller parameter values—along the route to chaos, a much more
complicated scenario ensues.
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6.3.2. Quantitative and numerical analysis. Let us now complete our arguments for
conjecture (2). For this we need a subset of the parameter space, B ⊂ R1, such that some
variation of s ∈ B will lead to a topological change in the map f in the form of a change in the
number of global stable and unstable manifolds. Specifically, we need B = ⋃

Vi = V , where
Vi and Vi+1 share a limit point and are disjoint. Further, we need the variation in s needed
for the topological change to decrease monotonically with dimension on V . More precisely,
on the bifurcation chain set, U , the distance between elements must decrease monotonically
with increasing dimension. We will argue in three steps: first, we will argue that, for each f

with a sufficiently large number of dimensions, there will exist an arbitrarily large number of
exponent zero crossings (equivalent to an arbitrarily large number of positive exponents); next
we will argue that the zero crossings are relatively smooth and finally, we will argue that the
zero crossings form an a-dense set on V —or on the bifurcation chain set, l = |bi − ai | → 0
as d → ∞. This provides strong evidence supporting conjecture (2).

Assuming a sufficiently large number of dimensions, verification of conjecture (1) gives
the existence of the bifurcation chain set and the existence of the adjoining bifurcation link sets.
The existence of an arbitary number of positive Lyapunov exponents and thus an arbitrarily
large number of zero-crossings follows from section 5.3. That the bifurcation chain set has
an arbitrarily large number of elements, #U → ∞ is established by conjecture (3) because,
without periodic windows, every bifurcation link set will share a limit point with another
bifurcation link set. From section 5.1, the num-continuity of the exponents persists for a
sufficiently large number of dimensions; thus, the Lyapunov exponents will cross through
zero. Finally, section 5.2 tells us that the Lyapunov exponent zero-crossings are a-dense; thus,
for all ci ∈ U , |ci − ci+1| → 0, where ci and ci+1 are sequential elements of U . For our work,
we can identify U as U ⊂ [0.5, 6]. We could easily extend the upper bound to much greater
than 6 for large dimensions (d � 128). How high the upper bound can be extended will be
discussed in further work. It is useful to note that the bifurcation link sets are LCE decreasing
with increasing s. This is not necessary to our arguments, but it is a nice added structure that
aids our intuition. The LCE decreasing property exists due to the existence of the single, global
maximum in the maximum number of positive Lyapunov exponents followed by an apparent
exponential decrease in the number of positive Lyapunov exponents.

6.3.3. Relevance. The above arguments provide direct evidence of conjectures (2) and (4)
for a one-dimensional curve (specifically an interval) in parameter space for our networks.
This evidence also suggests the persistence of chaos in high-dimensional networks with
perturbations on higher-dimensional surfaces in parameter space. Finally, despite the
seemingly inevitable topological change upon minor parameter variation, the topological
change is quite benign.

7. Fitting everything together

Having finished with our specific analysis, we now put our work in the context of other work,
both of a more mathematical and a more practical and experimental nature. In this spirit, we
will provide a brief summary of our arguments followed by a discussion of how our results
mesh with various theoretical results from dynamical systems and turbulence.

7.1. Summary of arguments

7.1.1. Periodic window probability decreasing: conjecture 3. The conjecture that the prob-
ability of periodic windows for a given s value along an interval in parameter space decreases
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with increasing dimension upon the smallest positive Lyapunov exponent becoming positive
is initially clear from considering the Lyapunov spectra of neural networks versus parameter
variation for networks of increasing size (figures 7 and 8). We show that as the dimension is
increased, the observed probability of periodic windows decreases inversely with increasing
dimension. This analysis is independent of the num-continuity analysis, and the results from
the analysis of num-continuity and periodic window probability decrease reinforce each other.
The mechanism that this conjecture provides is the lengthening of the bifurcation chain set.

Further investigations of this phenomenon will follow in a later report. For other related
results see [35, 65, 92–94].

7.1.2. Hyperbolicity violation: conjecture 1. The intuition for this conjecture arises from
observing that for high-dimensional systems, there exists at least one Lyapunov exponent that
starts negative, becomes positive, then becomes negative again; thus, if it behaves numerically
continuously, it must pass through zero for some parameter value s.

To verify this conjecture, we presented two different arguments. The first argument was a
necessary but not sufficient condition for hyperbolicity violation. We show that over a sizeable
interval in parameter space there exists a Lyapunov exponent very near zero, and the fraction
of the total number of Lyapunov exponents that are near zero increases over a larger interval
of parameter space as the dimension is increased. The second argument was based on the
a-density of exponent zero crossings, the num-continuity of the exponents as the dimension
increased and the increasing number of positive exponents with dimension. Both arguments
together help imply an interval of parameter space such that on that interval the number of
parameter values such that hyperbolicity is violated is increasing.

It is important to note that it is possible that hyperbolicity can be violated along the orbit.
If hyperbolicity is violated along the orbit for a measurable set of values, but the mean of each
of the exponents averaged along the orbit is non-zero, then the diagnostics in this paper will
be inconclusive. Insight into hyperbolicity violation along a given orbit can be obtained by
considering a histogram of the exponents and observing whether the tails of the distributions
of the exponents near zero overlap zero. Such an analysis is done on a case by case basis.
Because this paper represents a statistical study, we have reserved such an analysis for another
paper.

7.1.3. Existence of codimension-ε bifurcation set: conjecture 2. The intuition for this
argument follows from observing that the peak in the number of positive Lyapunov exponents
tends toward a spike of increasing height and decreasing width as the dimension is increased.
This, with some sort of continuity of exponents, argues for a decrease in distance between
exponent zero crossings.

Summarizing the arguments regarding conjecture (2), with increasing dimension we have
increased num-continuity of Lyapunov exponents; increasing number of positive Lyapunov
exponents and a-density of Lyapunov exponent zero crossings (thus all the exponents are
not clustered on top of each other). Thus, on a finite set in parameter space, there is an
arbitrary number of exponents that move smoothly from negative values to positive values
and back to negative values. Further, these exponents are relatively evenly spaced. Thus, the
set in parameter space for which hyperbolicity is violated is increasingly dense; and with an
arbitrary number of violations available, the perturbation of the parameter required to force a
topological change (a change in the number of positive exponents) becomes small.

Further evidence of continuous topological change is provided by the smooth variation of
the plot of the Kaplan–Yorke dimension versus s that corresponds to figure 13 [35].
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7.1.4. Non-genericity of structural stability: conjecture 4. As previously mentioned, it could
appear that our results contradict Robbin [3], Robinson [4] and Mañé [5]. We will discuss
specifically how our results fit with theirs in section 7.3.1. In the current discussion, we
interpret our results in a numerical context.

We claim to have found a subset of parameter space that, in the limit of infinite dimensions,
has dense hyperbolicity violation. This could be interpreted to imply that we have located a
set for which strict hyperbolicity does not imply structural stability because the C1 changes in
the parameter give rise to topologically different behaviour. The key issue is that in numerical
simulations, there do not exist infinitesimals or infinite-dimensional limits19. Rather, we can
speak as to how behaviour arises and how limits behave along the path to the ideal. We
have found a subset of parameter space that can approximate (with unlimited computing)
arbitrarily closely a set for which hyperbolicity will not imply structural stability. Thus, an
experimentalist or a numerical scientist might see behaviour that apparently violates the results
of Robbin [3], Robinson [4] and Mañé [5]; yet it will not be strictly violating those theorems.
The key point of this conjecture is that we can observe apparent violation of the structural
stability conjecture, but the violation (on a Lebesgue measure zero set) occurs as smooth, not
catastrophic, topological change. (In section 7.3.1 we will further discuss our results as they
relate to those of Robbin [3], Robinson [4] and Mañé [5].)

7.2. Fitting our results in with the space of Cr functions: how our network selection method
affects our view of function space

The act of performing a numerical experiment induces a measure on whatever is being
experimented upon. A measure, in a very general sense, provides a method of determining
the volume that a set occupies in its ambient space (for a formal treatment, see [95]). Usually
that method provides a specific mechanism of measuring lengths of a covering interval. Then,
the entire space is covered with the aforementioned intervals, and their collective volume is
summed. One of the key issues is how the intervals are weighted. For instance, considering
the real line with the standard Gaussian measure imposed upon it; the interval [−1, 1] contains
the majority of the volume of the entire interval [−∞, ∞]. Our method of weighting networks
selects fully connected networks with random Gaussian weights. Thus, in the limit of high
dimension and large number of neurons, very weakly connected networks will be rare because
the Gaussian statistics of the weights will be dominant. Likewise, fully connected networks
where all the weights have the same strength (up to an order of magnitude) will also be
uncommon. One can argue whether or not the measure we utilize realistically represents
the function space of nature, but those arguments are fundamentally ill-formed because they
cannot be answered without either specific information about the natural system with which
our framework is being compared or the existence of some type of invariant measure. The
best hope for specifying connections between natural systems, other computational models
and a neural network construction such as the point presented here is using the aforementioned
notion of prevalence. Nevertheless, the product measure we impose does cover the entire space
of neural networks noted in section 1, although all sets do not have equal likelihood of being
selected, and thus our results must be interpreted with this in mind.

A second key issue regards how the ambient space is split into intervals or, in a numerical
sense, how the grain of the space is constructed. We will again introduce a simpler case for
purposes of illustration, followed by a justification of why the simpler case and our network
framework are essentially equivalent. Begin with Rn and select each coordinate (vi) in the

19 Note that in previous sections we do use words like, ‘in the infinite-dimensional limit’. It is for reasons such as
these (and many others) that we are only putting forth conjectures and not theorems; this distinction is not trivial.
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vector v = {v1, v2, · · · , vn} ∈ Rn from a normal, i.i.d. distribution with mean zero, variance
one. Next, suppose that we are attempting to see every number and every number combination.
This will be partially achieved by the random number selection process mentioned above,
and it is further explored by sweeping the variance, i.e. selecting a scalar s ∈ R, 0 � s

and sweeping s over the positive real line, sv. This establishes two meshes, one for the
individual vectors, which is controlled by how finely the s parameter is varied, and another
mesh that controls how the initial coordinates are selected. These two combined meshes
determine the set of combinations of coordinates that will be observed. If one considers
how this affects vector selection in, say, R3, for simplicity, both in the initial vector selection
and in the vector sweeping, it is clear how R3 will be carved out. The point is that we can
directly associate how we carve up our neural network function space with how we carve up
the neural network weight space. To understand how our neural network selection process
works, simply associate v with the vectors in the ω matrix and s with the scaling parameter
s. This keeps the view of our function space largely in standard Euclidean space. Of course
there is the last remaining issue of the amplitude terms, the β. Apply the same type of
analysis to the β as for the ω. Of course, initially it would seem that the scaling parameter
is missing, but note that multiplying the β by s, in our networks, is essentially equivalent
to multiplying the ω by s. To understand this, consider the one-dimensional network, with
one neuron:

xt = β0 + β1 tanh(sω0 + sω1(β0 + β1 tanh(sω0 + sω1xt−1))). (38)

It is clear from this that inserting s inside tanh will sweep the β, but inserting s outside the
squashing function will miss sweeping the ω0 bias term.20 What this all amounts to is a
heuristic construction of a probe space (relative to the measures on the parameter space) for
embeddings of Cr dynamical systems using neural networks. More formal constructions are
topics of current work.

Summarizing, it should be clear that the measures we utilize will capture the entire space
of neural networks we are employing. Yet, it should also be clear that we will not select each
network with equal probability. Moreover, the measure we impose is a product measure,
not a joint probability measure where there is a co-dependence between the parameters.
This hopefully has a significant impact on our conclusions and results—for there is too
much diversity in natural systems to be caught by a single measure on a space of universal
approximators. A complete connection between network structure and dynamics, in an
understandable language, is yet out of reach (as opposed to, say, for spherical harmonics),
but this is a current direction of research. Various research programs for quantifying
various spaces of neural networks and their dynamics by the measures on the weights are
currently underway using tools such as information geometry [53, 96]. Nevertheless, we
claim that our framework gives a complete picture of the space of Cr maps of compact
sets to compact sets with the Sobolev metric from the perspective of a particular product
measure.

7.3. Our results related to other results in dynamical systems

As promised throughout, we will now connect our results with various theorems and conjectures
in the field of dynamical systems. This will hopefully help put our work in context and increase
its understandability.

20 Recalling section 2.1.4, we actually do a little more with the β than we mention here; the previous argument is simply
meant to give a (mathematically imprecise) picture of how our experiment carves out the space of neural networks.
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7.3.1. Structural stability theory and conjecture 4. It is now time to address the apparent
conflict between our observations and the structural stability theorems of Robbin [3], Robinson
[4] and Mañé [5]. We would like to begin by noting that we do not doubt the validity or
correctness of any of these results. In fact, any attempt to use our techniques and results
to provide a counter example to the theorems of Robbin, Robinson or Mañé involves a
misunderstanding of what our methods do and imply.

In conjecture (4) we claim, in an intuitive sense, that along a one-dimensional curve in
parameter space, our dynamical systems are hyperbolic with Lebesgue measure one. Yet, we
can still find subsets that are measure zero, yet a-dense, for which our dynamical systems are
partially hyperbolic rather than hyperbolic. The motivation for the above statement roughly
derives from thinking of a turbulent fluid. In this circumstance, the number of unstable
manifolds can be countably infinite, and upon varying, say, the viscosity, from very low to very
high, one would have a countable number of exponents becoming positive over a finite length
of parameter space. Yet, all the limits of this sort and all the intuition about what will happen
in the infinite-dimensional limit are just ideas. There are limits to what we can compute; there
do not exist infinite-dimensional limits or infinitesimals in numerical computing, and aside
from the existence of convergence theorems, we are unable to draw conclusions beyond what
the data say. Thus, our results do not provide a counter-example to the stability conjecture.
Rather, a key point of our results is that we do observe, in a realistic numerical setting, structural
instability upon small parameter variation. It is useful to think instead of structural stability as
an open condition on our parameter space whose endpoints correspond to the points of structural
instability—the points of bifurcations in turbulence. These disjoint open sets are precisely the
bifurcation link subsets, Vi , for which the map f is structurally stable. As the dimension
is increased, the lengths of the Vi decrease dramatically and may fall below numerical
or experimental resolution. Thus, the numerical or experimental scientist might observe
topological variation in the form of a variation in the number of positive Lyapunov exponents
upon parameter variation in systems that should be (and technically are) structurally stable
according to the work of Robbin, Robinson and Mañé; i.e. the scientist might observe structural
instability. This is the very practical difference between numerical computing and the world of
strict mathematics. (Recall we were going to connect structural stability theory closer to reality;
the former statement is as far as we will go in this paper.) The good news is that even though
observed structural stability might be lost, it is lost in a very meek manner—the topological
changes are very slight, just as seems to be observed in many turbulent experimental systems.
Further, partial hyperbolicity is not lost, and the dynamically stable characteristics of stable
ergodicity seem to be preserved; although, we obviously cannot make a strict mathematical
statement.

Thus, rather than claiming our results are contrary to those of Robbin [3], Robinson [4], and
Mañé [5], our results speak to both what might be seen of those theorems in high-dimensional
dynamical systems and how their results are approached upon increasing the dimension of a
dynamical system.

It is worth noting that, given a typical 64-dimensional network, if we fixed s at such a
point that there was an exponent zero crossing, we believe (based on preliminary results) that
there will exist many perturbations of other parameters that leave the exponent zero crossing
unaffected. However, these perturbations are apparently of very small Lebesgue measure and
of a small codimension set in parameter space, i.e. we believe we can find, in the construction
we use, perturbations that will leave the seemingly transversal intersection of an exponent
with 0 at a particular s value unchanged; yet, these parameter changes must be small. A very
interesting question is whether the same could be said if the measure on the weight space was
a joint rather than a product measure.
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7.3.2. Stable ergodicity. In this study we are particularly concerned with the interplay,
along a parametrized curve, of how often partial hyperbolicity is encountered versus strict
hyperbolicity. It should be noted that if a dynamical system is hyperbolic, it is partially
hyperbolic. All the neural networks we considered were at least partially hyperbolic; we found
no exceptions. Many of the important questions regarding partially hyperbolic dynamical
systems lie in showing the conditions under which such systems are stably ergodic. We will
now discuss this in relation to our results and methods.

Pugh and Shub [60] put forth the following conjecture regarding partial hyperbolicity and
stable ergodicity.

Conjecture 5 (Pugh and Shub [60] conjecture 3). Let f ∈ Diff2
µ(M) where M is compact.

If f is partially hyperbolic and essentially accessible then f is ergodic.

The strongest result that has been shown to date regarding their conjecture is in [97].

Theorem 3 (Stable ergodicity theorem (theorem 0.1 [97])). Let f be C2, volume preserv-
ing, partially hyperbolic and centre bunched. If f is essentially accessible then f is ergodic
and, in fact, has the Kolmogorov property.

A diffeomorphism is partially hyperbolic if it satisfies the conditions of definition (7).
Ergodic behaviour implies that, upon breaking the attractor into measurable sets, Ai , for f

applied to each measurable set for enough time, f n(Ai) will intersect every other measurable set
Aj . This implies a weak sense of recurrence; for instance, quasi-periodic orbits, chaotic orbits,
and some random processes are at least colloquially ergodic. More formally, a dynamical
system is ergodic if and only if almost every point of each set visits every set with positive
measure. The accessibility property simply formalizes a notion of one point being able to reach
another point. Given a partially hyperbolic dynamical system, f : X → X such that there is
a splitting on the tangent bundle T M = Eu ⊕ Ec ⊕ Es , and x, y ∈ X, y is accessible from
x if there is a C1 path from x to y whose tangent vector lies in Eu ∩ Es and vanishes finitely
many times (these paths are denoted u-s-paths). The diffeomorphism f is centre bunched
if the spectra of Tf (as defined in section 2.2) corresponding to the stable (T sf ), unstable
(T uf ) and (T cf ) central directions lie in thin, well separated annuli (see [97] for the most
recent and general formulation; the radii of the annuli are technical and are determined by
the Hölder continuity of the diffeomorphism). Lastly, let us note that a dynamical system is
called stably ergodic if, given f ∈ Diff2

µ(M) (again M compact), there is a neighbourhood,
f ∈ Y ⊂ Diff2

µ(M), such that every g ∈ Y is ergodic with respect to µ.
The current proofs of the Pugh–Shub stable ergodicity theorem require the dynamical

system to be Lebesgue measure preserving—or non-dissipative. The primary technique of the
proofs is to very carefully select a positive measure set and then very carefully move it along
the u-s-paths in such a way that all the positive measure sets are visited while the original set
retains positive measure. Doing this hinges on absolute continuity with respect to Lebesgue
measure on the orbit with respect to both the stable and unstable manifolds. Needless to say,
it is difficult to prove that a dissipative dynamical system is ergodic. But, while the arguments
hinge on absolute continuity on both the stable and unstable manifolds, it is believed that the
results do not. The results from this paper reinforce this viewpoint. One tactic of weakening the
area-preserving condition is to consider partially hyperbolic dynamical systems with negative
(or positive) central exponents along the orbit (e.g. modified Pesin theory). In this vein, using
theorems 10 and 11 and corollary 12 of [79], it can be concluded that partially hyperbolic
dynamical systems with negative central exponents and with a particular SRB-like measure
(see [79] for details) will be ergodic.

Numerical verification of ergodicity can be somewhat difficult because the modeller would
have to watch each point and verify that eventually the trajectory returns very close to every
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other point on the orbit (i.e. it satisfies the Birkoff hypothesis). Doing this for a few points is, of
course, possible; but doing it for a high-dimensional attractor for any sizable number of points
can be extremely time consuming. For d high enough, we observe a single SRB measure. This
can be seen in figure 8 where every s value has a different initial condition. If this is a robust
result, and using results from Burns et al [79], if the central exponents can be shown to be neg-
ative, ergodicity will follow. Because we have not studied the exponents along the orbit in this
work, we cannot use this argument to claim that ergodicity is existent and stable in the ensemble
of systems we studied. Checking the accessibility criterion seems to pose similar problems; in
fact, it is hoped that accessibility is the sufficient recurrence condition for ergodic behaviour.
Thus, it should be no surprise that accessibility would be difficult to check numerically (it has
been shown to be C1 dense [98]). However, in essence, ergodicity is a notion capturing indivis-
ibility of the attractor relative to a measure. The key point is that all positive measure sets are
visited by all orbits with probability one. The most obvious, and it is thought, the primary means
of splitting up an attractor is the existence of neutral directions or zero Lyapunov exponents
(see the ‘stacked Anosov’ in [7] for a simple example). Considering figures 8, 9 and 12, and
the overall argument presented, it is clear that the persistence of zero exponents with respect to
parameter change in the systems we study is unlikely. Moreover, figures 4–6 demonstrate that
quantities dependent upon the SRB measures for calculation converge in the uniform manner
expected of an ergodic system. Of course, showing that one has explored all the variations
inside the neighbourhood (f ∈)Y ⊂ Diff2

µ(M) is impossible; thus, claiming that we have, in
a mathematically rigorous way, observed stable ergodicity as the predominant characteristic
would be premature. However, generalizing our results using notions of prevalence is a topic of
current work and does not seem out of reach. What we can say is that we have never observed a
dynamical system, within our construction, that is not on a compact set and is not partially hy-
perbolic; moreover, systems seemed to become more stably ergodic as the dimension increased.
Thus, our results provide evidence that the conjecture of Pugh and Shub, which does not require
area preservation or absolute continuity with respect to the stable and unstable manifolds, is on
track. For more information with respect to the mathematics discussed above, see [7, 19, 59].

Comparing conjecture (5) with theorem (3), the required extra hypothesis for the proof
of the theorem is only centre bunching of the spectrum of Tf . It is likely that the centre
bunching hypothesis has been weakened as far is it can be for the current arguments. As it
stands, the spectra that we observe, which are strongly reminiscent of what might be expected
in turbulent-like dynamics, do appear to satisfy the current centre bunching criterion.21 We
cannot comment on its necessity. Moreover, considering similar numerical work done by
others, and vaguely combining the circular law ([22–24]) with matrix product results ( [99]),
it is likely that the centre bunching criterion as it stands is not crucial for dissipative systems.

7.3.3. Palis’s conjectures. Palis [9] stated many stability conjectures based upon the last
thirty years of developments in dynamical systems that we wish to relate to the results in the
present paper [9].

Conjecture 6 (Global conjecture on the finitude of attractors and their metric
stability [9]).

(I) Denseness of finitude of attractors—there is a Cr (r � 1) dense set D of dynamics such
that any element of D has finitely many attractors whose union of basins of attraction has
total probability;

21 It is worth noting that in section 31 of Landau and Lifshitz’s fluid mechanics book [100], they give physical reasons
why one might expect a centre bunching type of spectrum or at least a finite number of exponents near zero, in turbulent
fluids.
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(II) Existence of physical (SRB) measures—the attractors of the elements in D support a
physical measure;

(III) Metric stability of basins of attraction—for any element in D and any of its attractors, for
almost all small Cr perturbations in generic k-parameter families of dynamics, k ∈ N ,
there are finitely many attractors whose union of basins is nearly (Lebesgue) equal to the
basin of the initial attractor; such perturbed attractors support a physical measure;

(IV) Stochastic stability of attractors—the attractors of elements of D are stochastically stable
in their basins of attraction;

(V) For generic families of one-dimensional dynamics, with total probability in parameter
space, the attractors are either periodic sinks or carry an absolutely continuous invariant
measure.

In the portion of parameter space we examine, multiple attractors are exceedingly rare,
thus yielding support for (I). This can be seen in figures 8, 9 and 12 where the initial conditions
were not held fixed, yet the exponents varied continuously—leading to the conclusion that
for such systems there is only one attractor. However, if the dynamics we observe are indeed
turbulent-like, this is not surprising since turbulent systems rarely, if ever, exhibit multiple SRB
measures. Item (II) is supported by figures 4–6 that show convergence of measure-dependent
quantities. Claim (III) is particularly intriguing given the construction we utilize because of the
potential of using neural networks as a probe space for the embeddings defined in section 2.1.5,
thus utilizing the notions of prevalence to quantify (III) in a computational setting.

The next conjecture of Palis is directly related to the problems addressed in this work.

Conjecture 7 (Palis [9] conjecture II). In any dimension, the diffeomorphisms exhibiting
either a homoclinic tangency or a (finite) cycle of hyperbolic periodic orbits with different
stable dimensions (heterodimensiopnal cycle) are Cr dense in the complement of the closure
of the hyperbolic ones.

Let us decompress this and then discuss how our results fit with it. Begin by defining the space of
d-dimensional Cr diffeomorphisms as X. Next, break that space up as follows: A = {x ∈ X|x
exhibits a homoclinic tangency or a finite cycle of hyperbolic periodic orbits with different
stable dimensions } and B = {x ∈ X|x is hyperbolic }. Thus B is the set of hyperbolic,
aperiodic diffeomorphisms, and A is the set of periodic orbits or partially hyperbolic orbits.
The conjecture states that A is dense in the complement of the closure of B; thus, A can be dense
in B. With respect to our results, the partially hyperbolic diffeomorphisms (diffeomorphisms
with homoclinic tangencies) can be dense within the set of hyperbolic diffeomorphisms. Our
conjectures claim to find a subset of our one-dimensional parameter space such that partially
hyperbolic diffeomorphisms will, in the limit of high dimensions, be dense. In other words,
our work not only agrees with Palis’s conjecture II (and subsequently his conjecture III), but
our work provides evidence confirming Palis’s conjectures. Of course, we do not claim to
provide mathematical proofs but rather strong numerical evidence supporting Palis’s ideas.

7.4. Final remarks

Finally, let us briefly summarize:

Statement of results 2 (Summary). Assuming our particular conditions and our particular
space of Cr dynamical systems as per section 1, there exists a collection of bifurcation link
subsets (V ) such that, in the limit of countably infinite dimensions, we have numerical evidence
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for the following.

Conjecture 1: on the above-mentioned setV , strict hyperbolicity will be violated a-densely.
Conjecture 2: on the above-mentioned set V , the number of stable and/or unstable

manifolds will change under parameter variation below numerical precision.
Conjecture 3: on the above-mentioned set V , the probability of the existence of a periodic

window for a gives s on a specific parameter interval decreases inversely with dimension.
Conjecture 4: on the above-mentioned set V , hyperbolic dynamical systems are not

structurally stable within numerical precision with measure one with respect to Lebesgue
measure in parameter space.

In a measure-theoretic sense, hyperbolic systems occupy all the space, but the partially
hyperbolic dynamical systems (with non-empty centre manifolds) can be a-dense on V .
Intuitively, if there are countable dimensions—thus countable Lyapunov exponents, then one
of two things can happen upon parameter variation:

(i) there would have to be a persistent homoclinic tangency—or some other sort of non-
transversal intersection between stable and unstable manifolds that is persistent to
parameter changes;

(ii) there can be, at most, countably many parameter points such that there are non-transversal
intersections between stable and unstable manifolds.

We claim to observe (ii). We also see that for our networks, each exponent in the spectrum
converges to a unique (within numerical resolution) value over a variety of initial conditions.
This confirms both the usefulness and validity of our techniques and provides strong evidence
for the prevalence of ergodic-like behaviour. Further, upon parameter variation, the ergodic
behaviour is seemingly preserved; thus, we also have strong evidence of a prevalence of stable
ergodic behaviour under parameter variation.
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