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Abstract
The occurrence of chaos in basic Lotka–Volterra models of four competing
species is studied. A brute-force numerical search conditioned on the largest
Lyapunov exponent (LE) indicates that chaos occurs in a narrow region of
parameter space but is robust to perturbations. The dynamics of the attractor
for a maximally chaotic case are studied using symbolic dynamics, and the
question of self-organized critical behaviour (scale-invariance) of the solution
is considered.

PACS numbers: 05.45.Gg, 82.39.Rt, 89.75.Fb, 87.23.−n

1. Introduction

Originally derived by Volterra in 1926 to describe the interaction between a predator species
and a prey species [1] and independently by Lotka to describe a chemical reaction [2], the
general Lotka–Volterra model is the starting point for a wide variety of models in ecology,
biology, economics, chemistry, physics, etc [3]. The natural processes to which the models
are typically applied usually exhibit aperiodic fluctuations. On the other hand, the models,
although widely studied, usually have static or periodic solutions. In those few instances
where chaos is observed in the models, it has not been extensively explored. We consider here
the simplest form of such a system in which N species (or agents in a financial model) with
population xi for i = 1 to N compete for a finite set of resources according to

dxi

dt
= rixi


1 −

N∑
j=1

aij xj


 . (1)

Here the ri represents the growth rate of species i and aij represents the extent to which
species j competes for resources used by species i. Equation (1) can also be viewed as the first
approximation in a Taylor-series expansion for a wide class of models [4], and so it is rather
more general than it might at first appear.
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Imposing the additional conditions

ri > 0, (2a)

aij � 0 (2b)

leads to models for competitive species in which each species or agent competes for a finite set
of resources. These conditions also ensure that all solutions with non-negative initial conditions
have the highly desirable feature that they remain bounded and asymptotically approach the
region 0 � xi � 1.

In 1976 Smale [5] demonstrated that, under conditions (2a) and (2b), any asymptotic
dynamic behaviour is possible for populations of five or more species, i.e. N � 5. In
contrast, Hirsch [6–11] has demonstrated that considerable structure remains in the solutions.
In particular, there exists a closed invariant set C which is homeomorphic to the (N – 1)-
dimensional simplex �N−1 = {xi : xi � 0,

∑
xi = 1} which is a global attractor for every

point (excluding the origin) in the domain D = {xi : xi � 0}. The set C is known as the
carrying simplex since it ‘carries’ all of the asymptotic dynamics of equation (1), and its
existence significantly reduces the possible asymptotic dynamics. For example, for three or
fewer species, i.e. N � 3, no chaotic solutions are possible, and hence models with four
species, i.e. N = 4, are the simplest examples where chaotic behaviour is possible.

In this paper, we explore the occurrence of chaotic solutions for a four-species competitive
Lotka–Volterra model. To begin, without loss of generality, we can reduce the 20-dimensional
parameter space of ri and aij as follows. By measuring the population of each species in units
of its carrying capacity (as measured in the absence of the other species), the self-interactions
terms aii can be set to 1. By measuring time in units of the inverse growth rate of species 1, the
growth rate r1 of species 1 can be set to 1. In the remaining 15-dimensional parameter space
we employ a brute-force numerical search to seek out parameter values that exhibit chaotic
solutions. While such solutions appear to be relatively rare in this vast parameter space, values
such as

ri =




1

0.72

1.53

1.27


 , aij =




1 1.09 1.52 0

0 1 0.44 1.36

2.33 0 1 0.47

1.21 0.51 0.35 1


 (3)

can be found that produce chaotic solutions and appear to be robust to small perturbations of
the parameters.

The case above represents an attempt to maximize the largest LE relative to the geometric
mean of the growth rates (r1r2rrr4)

1/4, subject to the constraint that none of the variables xi falls
below 0.001, which in a real ecology mitigates against a species becoming extinct. In addition,
three of the matrix elements whose values were small were fixed at zero. The corresponding
largest LE is λ1 ≈ 0.020 3, and the sum of all the exponents is

∑
λi ≈ −1.283 4, implying a

predictability horizon on the order of 50 growth times of a typical species and strong dissipation.
It is interesting to note that the chaotic solutions found in such brute-force searches all

appear to exploit the same mechanism used by Arneodo et al to construct chaotic three-
dimensional predator–prey Lotka–Volterra systems [12] and four-dimensional competitive
Lotka–Volterra systems [13]. However, since our search was not constrained to cases with all
ri equal, we are able to exhibit chaotic solutions in settings in which each of the four species
has its own distinct growth rate. Thus we believe that the system studied here is the simplest
example of chaos in a realistic competitive Lotka–Volterra model and that it is near maximally
chaotic for such a system with only four species.
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2. Summary of lower-dimensional dynamics

One interesting feature of the Lotka–Volterra system in equation (1) is that if the population
of any species vanishes, i.e. if xi = 0, then that species will remain extinct and the remaining
species will follow a lower-dimensional Lotka–Volterra system, i.e. equation (1) with a smaller
N . Thus the boundary of the set of N coexisting species is made up of sets of N −1 coexisting
species, which is again made up of sets of N − 2 coexisting species, and so on. As such, it is
useful to review what is known about the Lotka–Volterra systems in equation (1) with a small
number of species.

For the single-species case, i.e. N = 1, equation (1) reduces to the Verhulst equation [14]

dx

dt
= x(1 − x)

and solutions for all initial conditions x(0) > 0 are asymptotic, as t → ∞, to the stable
equilibrium at x = 1.

In the two-species case, i.e. N = 2, there is a coexisting equilibrium at the fixed point

x1 = (1 − a12)/(1 − a12a21),

x2 = (1 − a21)/(1 − a12a21).

If both a12 and a21 are less than 1, this fixed point is stable, and all initial conditions
asymptotically approach not only the closed, invariant, attracting, one-dimensional carrying
simplex but also the fixed point. If either a12 or a21 is greater than 1, this fixed point is a
saddle point, and all non-negative initial conditions (other than the fixed points) asymptotically
approach the closed, invariant, attracting, one-dimensional carrying simplex (which is the
unstable manifold of the coexisting fixed point) and flow, by the principle of competitive
exclusion [15], towards the boundary with one species approaching extinction.

For three species, if condition (2b) is relaxed, chaotic solutions of equation (1) are possible
for appropriate choices of aij [12]. However, under the competition hypothesis (2b) the
presence of the closed, invariant, attracting, two-dimensional carrying simplex implies, by
the Poincare–Bendixson theorem [16], that the only asymptotic dynamics are fixed points,
periodic orbits [17–19] or limit cycles [20] consisting of boundary fixed points connected by
heteroclinic orbits (e.g. with r1 = r2 = r3 = 1, a12 = a23 = a31 = α, a13 = a21 = a32 = β

and α + β = 2).
In the case of four species, Arneodo et al [13] have demonstrated how one might construct a

chaotic solution with parameters satisfying conditions (2a) and (2b) by using the transformation
described by Coste et al [21], to embed a chaotic three-dimensional Lotka–Volterra system [12]
(which does not satisfy conditions (2a) and (2b)) into a four-dimensional Lotka–Volterra
system. In choosing the embedding they can ensure conditions (2a) and (2b). While this
construction does produce an example of a four-species system with chaotic orbits, it does
not address questions such as the prevalence of these chaotic ecologies or even their existence
for unequal species growth rates, and it does not produce a maximally chaotic solution, all of
which are addressed here.

3. Preliminary analysis

3.1. Equilibria and eigenvalues

For the remainder of the paper we consider the four-species case described in equation (3).
There are 2N = 16 equilibrium points corresponding to taking either xi = 0 or (1−∑

aij xj ) =
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0 for i = 1, . . . , N . The former represents an equilibrium where species i is extinct while the
latter represents one in which species i coexists with the other species.

The origin x1 = x2 = x3 = x4 = 0 is a repelling equilibrium with Jacobian matrix
dẋi

dxj
= ri for i = j and dẋi

dxj
= 0 for i �= j . In contrast, let x̄ denote the equilibrium point at

which all species coexist with

x̄ ≈




0.3013

0.4586

0.1307

0.3557


 . (4)

This fixed point is an index-2 spiral saddle whose Jacobian matrix

dẋi

dxj

= −aij rixi

has eigenvalues 0.0414 ± 0.1903i, −0.3342 and −1.0319.
We label the remaining 14 equilibrium points with the letter Q, using subscripts to denote

which species are present (e.g. the equilibrium point at the origin is denoted simply by Q and
the one at x̄ is Q1234). These equilibria can be classified as follows.

1. For the four equilibrium points that have only one species alive (Q1, Q2, Q3 and Q4) the
population of the single alive species is at its carrying capacity, i.e. xi = 1. These four
equilibria are all saddle points.

2. Of the six equilibrium points with exactly two species alive, three (Q12,Q14 and Q24) have
one of their xi values negative and hence cannot be reached by a trajectory that starts with
all xi positive (i.e. they lie outside of D), while the remaining three (Q13, Q23 and Q34)

lie on the boundary of D.
3. Of the four equilibrium points with exactly three species alive, only one (Q124) does not

have negative xi values. It is an index-1 spiral saddle.

With the exception of the origin, the eight boundary equilibrium points (Q1, Q2, Q3,
Q4,Q13, Q23, Q34 and Q124), along with the coexisting fixed point x̄, all lie in the carrying
simplex which is homeomorphic to a tetrahedron as in figure 1. Furthermore, the four faces of
the tetrahedron correspond to the two-dimensional carrying simplexes that arise in the three-
dimensional Lotka–Volterra equations when x1 = 0, x2 = 0, x3 = 0 or x4 = 0, respectively.
Figure 2 illustrates the dynamics that take place on these two-dimensional carrying simplexes.
Note that the observed dynamics within the three-dimensional carrying simplex is very
reminiscent of the chaotic three-dimensional Lotka–Volterra system constructed by Arneodo
et al [12].

3.2. Chaotic attractor

Figure 3 shows that the attractor projected onto x1x2x3 space is nearly two-dimensional
with a folded-band structure reminiscent of the Rössler attractor [23], and figure 4 shows
a representative portion of the time series of the four variables.

The LEs [24, 25] for this orbit are 0.0203, 0, −0.2748 and −1.0289, which implies a
Kaplan–Yorke dimension [26] of DKY = 2.074. The correlation dimension of Grassberger
and Procaccia [27] was estimated using the extrapolation method of Sprott and Rowlands [28]
with the result D2 = 2.066 ± 0.086, in good agreement with the Kaplan–Yorke dimension.

For the parameters in equation (3), the only attractor for initial conditions xi(0) > 0 is
the one in figure 3, and thus its basin of attraction is the entire domain of strictly positive
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Figure 1. Carrying simplex for equation (1) with parameters in equation (3).

Figure 2. The dynamics on the boundary of the carrying simplex in figure 1. The tetrahedron has
been unfolded and laid flat for better viewing.

populations (i.e. xi > 0 for all i). However, some initial conditions cause x3 to become very
small for a long time before approaching the chaotic attractor, which in a real ecology would
likely result in the permanent extinction of that species (and the suppression of chaos). Once
on the attractor, the value of x3 (the variable with the smallest minimum) never falls below
0.0019.

3.3. Homoclinic orbit

The stable and unstable manifolds originating from the coexisting equilibrium point x̄ appear to
intersect tangentially, resulting in a homoclinic connection which is shown in figure 5 projected
onto the x1x2 plane. Given the non-generic nature of a tangential intersection, it is difficult to
verify these numerics, but the figure clearly suggests that there is at least one initial condition
on the unstable manifold of the equilibrium that returns along the stable manifold to within the
resolution of the plot. There is no reason to expect the equilibrium point to lie on the attractor,
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Figure 3. Attractor projected onto x1x2x3 space.

Figure 4. Time series for each species (vertical scale is 0 to 1).

but the trajectory on the attractor comes very close (a Euclidean distance of <1 × 10−4)
to the equilibrium point, and hence the homoclinic connection also lies approximately on
the attractor. This circumstance is probably no accident and is a consequence of choosing the
parameters to maximize the largest LE. The eigenvalues of the equilibrium satisfy the Shilnikov
condition [22] for the existence of chaos since the magnitudes of the real eigenvalues (0.3342
and 1.0319) are greater than the magnitude of the real part of the complex eigenvalue (0.0414).

3.4. Bifurcations

The routes to chaos were examined by introducing a bifurcation parameter s that multiplies the
off-diagonal elements of the aij matrix in equation (1), aij → saij for i �= j . This parameter
can be viewed as a measure of the species coupling since s = 0 decouples the equations into a
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Figure 5. Homoclinic connection projected onto the x1x2 plane.

nonlinear system of N independent Verhulst equations which are asymptotic to xi = 1 for all
i. For s = 1, the chaotic solution described in section 3.2 is obtained. As s → ∞, competition
becomes increasingly severe, and all but the species with the highest growth rate (i = 3) die.
Figure 6 shows a bifurcation diagram for successive maxima of x1 for increasing s over the
range 0.8 < s < 1.4 and the corresponding largest LE.

The coexisting equilibrium x̄ becomes unstable through a Hopf bifurcation at s ≈ 0.8185,
producing a limit cycle that undergoes successive period doublings, culminating in chaos.
The homoclinic tangency appears to occur when the equilibrium point (which moves with s)
lies on the attractor (at s ≈ 1.000 1, rather than precisely at s = 1.0). This value of s was
determined by lengthy calculations of the trajectory on the attractor for various values of s

and determining that there was a minimum approach of the trajectory to the equilibrium point
and that on either side of this minimum the value of x̄1 has a different sign. This condition
corresponds approximately to the value at which the largest Lyapunov has its maximum value.
Chaos persists with embedded periodic windows until about s ≈ 1.216, where an inverse
period-doubling cascade begins. Q124 is stable in the small window s ≈ 1.04 to s ≈ 1.12,
while Q34 becomes stable at s ≈ 1.08, and its basin of attraction expands until it touches
the growing limit cycle in a boundary crisis at s ≈ 1.31. The bifurcation diagram exhibits
hysteresis in that once s is increased to a point where Q34 is the only attractor (1.31 < s < 1.4),
the trajectory remains at that attractor until s is lowered below 1.08 andQ34 is unstable (not
shown). What appears to be a second lower branch of the bifurcation diagram that onsets
around s = 0.96 in figure 6 is just a harmonic of the dominant frequency where the attractor
develops an additional local maximum in x1.

While figure 6 displays a sequence of attractors for a particular route through parameter
space and for a particular choice of initial conditions, it does not address the possibility of
multiple coexisting attractors or identify all the global bifurcations that might occur even along
this route. Figure 7 shows a method for finding coexisting attractors in the range 0.8 < s < 1.4
and their bifurcations. It consists of defining a measure, in this case the sum of the variances
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Figure 6. (a) Bifurcation diagram showing successive maxima of x1 as the coupling variable s is
increased and (b) the corresponding largest LE.

�σ 2
i of the four variables, where

σ 2
i = lim

t→∞
1

t

∫ t

0
(xi − x̄i )

2.

The assumption is that distinct attractors are highly unlikely to have exactly the same value
of this or most any other such measure. The measure will not work if there are certain
symmetries in the system, but such symmetries are unlikely given the asymmetric parameters
in equation (3). A Monte Carlo search of the space of several thousand initial conditions in
the range 0 < xi(0) < 1 revealed ranges of s where the measure takes on multiple distinct
values, indicating coexisting attractors, including coexisting limit cycles at s = 1.06875 and
a limit cycle coexisting with the strange attractor at s = 1.2375. A by-product of the method
is quantifying the size of the respective basins of attraction by keeping track of the relative
probabilities of the different values of the measure.

4. Symbolic dynamics

To understand better the dynamics of this system, we break the phase space (xi � 0) into
24 = 16 chambers corresponding to regions where xi is increasing/decreasing and track which



Chaos in low-dimensional Lotka–Volterra models 2399

Figure 7. This Monte Carlo scan over the space of initial conditions attempted to locate coexisting
attractors in the range 0.8 < s < 1.4. The average variance of each variable was calculated along
every orbit and summed. Significant differences in the variances for a single value of the bifurcation
parameter s indicated multiple attractors. The fixed point Q124 is stable in the window s ≈ 1.04
to s ≈ 1.12, while Q34 becomes stable at s ≈ 1.08 and is the only attractor for 1.31 < s < 1.4.
Hysteresis occurs as the orbit remains at Q34 even if s is lowered below 1.31 until Q34 becomes
unstable. At s = 1.068 75 there are coexisting limit cycles and at s = 1.237 5 the strange attractor
coexists with a limit cycle, indicated by the single points (∗).

Table 1. Labelling scheme for chambers. A 0 denotes ẋi > 0 while a 1 denotes ẋi < 0.

Symbol ẋ1 ẋ2 ẋ3 ẋ4

A 0 0 0 0
B 1 0 0 0
C 0 1 0 0
D 1 1 0 0
E 0 0 1 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

N 1 0 1 1
O 0 1 1 1
P 1 1 1 1

transitions are observed. Using 0 to denote an increasing value, 1 to denote a decreasing value
and taking x1 as the least significant bit and x4 as the most significant bit, we can order the 16
chambers and label them sequentially from A to P (see table 1).

Two chambers, namely chamber (A), which contains the origin, and chamber (P), the
unbounded chamber containing the point at infinity, have all orbits exiting and thus do not
appear in any of the transitions observed on the attractor. The remaining 14 chambers can be
broken into two categories: eight of which have either three species increasing and one species
decreasing (e.g. B, C, etc) or three species decreasing and one species increasing (e.g. H, L,
etc) and six of which have two species increasing and two decreasing (e.g. D, F, etc). There are
a total of 8×3 = 24 transitions possible from the former chambers and 6×4 = 24 transitions
from the latter, giving a total of 48 possible transitions.

Numerically, the trajectory on the attractor only visits 12 of the 16 chambers and undergoes
20 of the possible 48 transitions, as shown in figure 8.
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Figure 8. Graph of symbolic dynamics of the attractor. The observed probabilities of the transitions
are also indicated.

Armed with a symbolic dynamic, one can compute the average Shannon entropy (ASE),
which is a measure of rate of loss of information from a dynamic system and determines
whether the system is random or regular. The ASE will be positive for random dynamics and
zero for regularity. We denote an orbit (transition sequence) as On = (AnAn−1 . . . A1), where
Ai may be any of the allowed symbols, and the probability of a particular orbit as P(On). The
ASE is given by

ASE = lim
n→∞ Ln ≡ lim

n→∞


−1

n

∑
On

P (On) ln(P (On))


 . (5)

If the symbolic dynamics are created from a partition of phase space that maximizes the ASE,
then the ASE converges to the Kolmogorov–Sinai entropy (KSE) of the system [29]. The
KSE for chaotic systems is equal to the sum of the positive LEs (LE) according to Pesin’s
identity [30, 31]. This equivalence is intuitive. (KSE)−1 measures the approximate number
of symbols before the system is unpredictable and (LE)−1 measures the approximate time
before the system is unpredictable. When normalized by the average time between transitions,
the two measures are equivalent.

For weakly chaotic systems, LE � 1, the ASE converges very slowly and poses a difficult
computational problem. An equivalent expression [32] that converges more quickly than
equation (5) for systems that exhibit a memory shorter than the time represented by n symbols
is

ASE = lim
n→∞ �n ≡ lim

n→∞[(n + 1)Ln+1 − nLn]. (6)

Calculation of equation (5) to a sequence length n = 82 converged to an ASE of 0.0178
as shown in figure 9. This ASE value is 13% lower than the sum of positive LEs, 0.0203,
implying that our symbolic dynamic does not maximize the ASE of the system, and hence the
ASE is not equal to the KSE. A phase-space encoding scheme works well for maps where the



Chaos in low-dimensional Lotka–Volterra models 2401

Figure 9. The plot of �n showing convergence to 0.0178, a close approximation to the ASE for
the symbolic dynamics.

transition rate is constant, but it needs to be modified for flows. We believe that choosing a
symbolic dynamic that includes time structure would maximize the ASE for this system, but
computational challenges accompanying this change have prevented a direct verification. The
convergence of the ASE to a positive value is nevertheless an indication of chaos.

The seeming convergence of the ASE near a sequence length n = 82 is fortunate because
this is the limit of our computational ability. In an effort to lessen further the computational load
for computing the ASE, other approaches are possible. Figure 8 indicates that the transition
(CGOMN) can be reduced to (CN), and (NFBDC) to (NC), without loss of information. The
only chamber to which C transitions is G, the only chamber to which G transitions is O,
etc. It turns out that these two transition sequences happen very frequently and constitute a
significant portion of any sequence. If one removes the redundant transitions, the (GOM) in
(CGOMN) and (FBD) in (NFBDC), a sequence that once had length n = 82 is now shorter. A
reduced sequence of length n′ = 82 has an actual length of n > 82 before reduction, and we
now have the computational ability to handle longer sequences and therefore larger chunks of
information.

After removing the redundant transitions from the symbol sequence, the ASE converged
to the same value of 0.0178, confirming our intuition that entropy is a measure of information.
Since no information was lost in removing the redundant symbols, the entropy did not change.

5. Self-organized criticality

One curious feature of the model is that it exhibits a power-law variation of various quantities,
implying a scale-invariance as would characterize self-organized criticality [33]. For example,
consider the volatility defined as

ν(t) =
(∑

ẋi (t)∑
xi(t)

)2

.

Here the denominator is the total biomass (or stock market average in a financial model),
and the numerator is its rate of change. The volatility is large when the biomass is rapidly
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Figure 10. Probability distribution function of volatility showing a power-law scaling (arbitrary
scales).

changing, and small otherwise. Figure 10 shows a plot of the probability distribution function
dP(ν)/dν versus v obtained by following the trajectory for a time of about 105 with a step size
of 0.01 (107 points) from a single initial condition and collecting the values in bins of constant
logarithmic width (a factor of 2 in ν). The slope is nearly constant on a log–log scale with a
value of about −0.77 over some five decades of v. Other quantities such as power spectral
density also show a power law, although typically over a more narrow range. The apparent
occurrence of self-organized criticality in this system warrants further investigation.

6. Prevalence of chaos

Chaotic solutions are relatively rare in the vast parameter space of possible species
characteristics. For example, choosing the growth rates ri and the off-diagonal terms of
the competition matrix aij randomly from an exponential distribution with mean 1.0 produces
chaotic solutions (as evidenced by a LE greater than 0.001) in only about one in a hundred
thousand cases for N = 4. Figure 11 shows the distribution of largest LEs for a large collection
of such systems. The most probable dynamic is one in which the largest LE is small and
negative. Most solutions result in the death of one or more species, reducing the dimension
to a value where chaos is not possible or more rarely, a coexisting static equilibrium or stable
limit cycle, perhaps after a period of transient chaos. For N > 4, the probability of finding a
chaotic solution by randomly guessing is smaller still.

7. Summary and conclusions

The results presented here represent a case study of chaos in a simple Lotka–Volterra model
of four species competing for a common fixed resource. It represents a highly exceptional
example in which the solutions are chaotic. If we are to believe that solutions of this type
are relevant to natural systems, such as in ecology or finance, there must be a more efficient
mechanism for evolving such solutions out of the myriad of possibilities. There is no lack of
candidates. It may be that chaotic solutions arise naturally as a result of evolution in which
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Figure 11. Probability of the largest LE, showing the rarity of chaos.

species are constantly changing their characteristics [34]. The numerical method used to find
and optimize the solution presented here is one possibility. It involves a variant of simulated
annealing, in which the parameter space is sampled randomly, but each time a solution is found
with a LE larger than one previously found, the search is centred on a Gaussian neighbourhood
of that point, and the neighbourhood size is slowly decreased. Once a chaotic solution is found,
it is relatively robust to perturbations of modest size as figure 6 attests.

Although this method works satisfactorily for N = 4, it does not scale very well to the high
N values typical of natural systems. Instead, it is possible to employ a deterministic rule, in
which species adapt by selectively lowering those matrix elements that contribute most strongly
to their extinction whenever their population drops below some threshold, while at the same
time raising all the other values to represent adaptive learning of the surviving species [35].
This method has been used to produce chaotic systems with N as large as 400. A characteristic
of these systems is that they exhibit coexistence with weakly chaotic dynamics (sometimes
called the ‘edge of chaos’). Interesting questions about such systems include whether self-
organized criticality is common and whether the networks evolve towards one that is scale-free
in the sense that the connection strengths have a power-law distribution. These issues warrant
further study.
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