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Abstract

Several authors have suggested that chaos theory, the study of nonlinear dynamics and the

application of the knowledge gained to natural and social phenomena, might yield insight into

substance-related disorders. In this article, we examine the dynamics of substance abuse by fitting a

nonlinear model to a time series of the amount of alcohol, which an adult male with a diagnosis of

substance abuse consumed on a daily basis. The nonlinear model shows a statistically superior fit when

compared to a linear model. We then use the model to explore a question that is pertinent to the

treatment of substance abuse, whether controlled drinking or abstinence is a preferred strategy for

maintaining sobriety.
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1. Introduction

Several authors have suggested that chaos theory, an interdisciplinary branch of science

that studies the dynamics of nonlinear mathematical systems and applies the knowledge

gained to phenomena in nature, might be of value in understanding substance-related

disorders (Ehlers, 1992; Hawkins & Hawkins, 1998; Skinner, 1989). In this report, we will
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apply a nonlinear mathematical model of substance abuse dynamics to the alcohol intake

patterns of an adult male in treatment for substance abuse.

2. A nonlinear model of substance abuse

It would not be difficult to create a linear model of substance abuse dynamics. This model

would be a straightforward linear regression, using successive points in time as variables, also

known as a linear autoregression (Hamilton, 1994):

DIt ¼ aþ bDIt�1 þ e ð1Þ

Eq. (1) says that any change in intake will tend to lead to a further change in the same

direction. In this model, increases will lead to further increases, a view consonant with much

popular and clinical wisdom (Alcoholics Anonymous, 1976; Doweiko, 1999).

However, this model treats all changes in intake as being equivalent in their influence on

the next time period. This seems to be an unreasonable assumption. For example, most

individuals who abuse alcohol have to fulfill the usual social responsibilities that come with

employment and family life (Doweiko, 1999). A slow increase in the intake of alcohol, say

1 oz/day, might continue for some time without noticeably affecting these responsibilities. On

the other hand, an increase of 16 oz/day is likely to immediately interfere with these

responsibilities and may also lead to an overdose and possible death if repeated (Doweiko,

1999). Thus, large increases in intake should be less sustainable than small increases.

A nonlinear model allows such a variation in response. The particular nonlinear model we

will propose is known as a self-exciting threshold autoregression model or SETAR (Hansen,

1997, 1999; Tong, 1990). A SETAR includes multiple regression lines with thresholds

between them. A SETAR with two regimes, such as we are proposing, is known as a

SETAR(2). The functional form of the SETAR(2) model that we will test is:

DIt ¼ a� bDIt�1 þ e, if DIt�1 � threshold value t

DIt ¼ c� dDIt�1 þ e, if DIt�1 > threshold value t ð2Þ
This model (Eq. (2)) will allow large increases to be less sustainable than small increases.

3. Methodology

When testing for the presence of nonlinear structure in a time series, the null hypothesis is

linear structure, in contrast to the typical null of no structure at all (Hansen, 1997, 1999). The

SETAR(2) model is therefore tested against a linear autocorrelation model with the same

number of time lags (Hansen, 1999).

However, since the threshold is not identified under the null hypothesis of linearity, the

asymptotic distribution of F under the null is unknown (Hansen, 1997). Because of this, a

parametric bootstrap procedure is used to construct the null distribution of F. In this
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procedure, residuals under both the null (linearity) hypothesis and alternative (SETAR(2))

hypothesis are simulated and used to construct a bootstrap F distribution (Hansen, 1997).

This, in turn, means that the relationship between F and P values will differ from that in a

standard F distribution table.1

4. Data

The data for this study were drawn from records of daily alcohol intake kept by a 40-year-

old, single, European–American male alcohol abuser and binge drinker with a family history

of alcoholism, over a period of 2041 days. The client’s alcohol intake pattern over the decade

preceding therapy was 1/2–1 pint of bourbon three to four times per week, and the time series

was a record of ounces of bourbon drunk per day.

Improvement in the client’s condition led to a visually evident nonstationarity in the time

series around the 800th recorded day. Around this time, the client’s alcohol consumption

lessened noticeably. Because we were interested in the most active period of the client’s

substance use, we analyzed the first 796 days of the intake record.

Analysis of this record showed a strong 7-day periodicity. Such a periodicity can obscure

underlying nonlinear patterns (Williams, 1997). We removed the periodicity by taking seven

means, one for all Sundays, a second for all Mondays, and so on, and then subtracted the

seven means from their corresponding days for the entire time series. We then took seven

standard deviations and divided each day by its standard deviation. Finally, we took a first

difference of the time series to create a record of daily changes.

5. Results

The results of the nonlinear time series analysis are detailed in Table 1.

A SETAR(2) model over two time lags showed a statistically superior fit when compared

to the null hypothesis of a linear autoregression model (r2=.24, F= 65.4, P=.00). Since the

model applies to a time series of changes in standard deviation units, the threshold between

regimes occurs at an increase of about 0.82 standard deviations; the confidence interval

around this threshold reaches from 0.54 to 1.11 standard deviations. One standard deviation

in this data set is approximately 7.5 oz, so the threshold occurs at an increase in intake level of

between 4.05 and 8.33 oz/day of whiskey; the best least-squares fit occurs at an increase of

6.15 oz/day of whiskey.

As predicted, the two regimes show very different autocorrelation structures. Below the

threshold, the 2 days previous to the current day are weakly negatively correlated with the

current day. Above the threshold, the day previous to the current day is strongly negatively

correlated with the current day. The implication is that either an increase or a decrease in

1 The program used to fit the models in this paper, along with several of the referenced papers and other work

on threshold autoregression models, can be found at http://www.ssc.wisc.edu/~bhansen/.
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consumption will tend to lead to a rebound effect; an increase in consumption will typically

lead to a decrease the next day, and vice versa. The strength of the rebound depends on the

strength and direction of the initial change.

6. Discussion

Single subject time series analysis is necessary for the investigation of nonlinear dynamics

(Kaplan & Glass, 1995; Williams, 1997) since combining different nonlinear time series will

yield a data set that is indistinguishable from random noise (Peak & Frame, 1994). That having

been said, it would be useful to obtain more single subject time series for nonlinear analysis,

and it is naturally unclear how far one can generalize the results of any single case study.

However, even an exploratory study such as this may yield insight into the dynamics of

substance abuse. In turn, these dynamics may play a role in the maintenance of abuse. Glass

and Mackey (1988, pp. 172–181) have referred to diseases in which dynamics play a fun-

damental role as ‘‘dynamical diseases.’’ If substance abuse is a dynamical disease, time series

studies such as this one are likely to be of value in both understanding and treating the problem.

To most social scientists and clinicians, it may not be immediately obvious how an

understanding of dynamics might affect our understanding of substance abuse. To dem-

onstrate that a dynamical view of alcoholism can be of interest, we will ask a question that is

pertinent to the treatment of alcohol abuse: Is controlled drinking or abstinence a preferable

strategy for maintaining sobriety?

At the core of the debate on controlled drinking vs. abstinence lies the question of whether

controlled drinking is likely to stay controlled (Doweiko, 1999). A dynamical model allows

us to address this by asking what will happen after an increase in intake of alcohol. If

increases tend to last then controlled drinking strategies are likely to fail, as successive lasting

increases raise the intake of alcohol to higher and higher levels.

For the sake of simplicity, we will assume that the fitted parameters of the model are the

true parameters. This gives us the following equation that governs changes in intake of

alcohol expressed in standard deviation units:

DIt ¼ 0:05� 0:29DIt�1 � 0:25DIt�2 þ e if It�1 � 0:82

DIt ¼ 0:77� 0:92DIt�1 þ 0:40DIt�2 þ e if It�1 > 0:82 ð3Þ

Table 1

Results of threshold autoregression estimated on first difference of daily intake of alcohol

Regime 1, It� 1� 0.82 Regime 2, It� 1>0.82

Parameter Value Standard error Value Standard error

Constant 0.05 0.03 0.77 0.28

Slope It� 1 � 0.29 0.05 � 0.92 0.16

Slope It� 2 � 0.25 0.04 0.40 0.11

Threshold estimate: 0.82. 95% Confidence interval: 0.54, 1.11. Joint r 2=.24. Bootstrap F= 65.4. P=.00.
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In order to use this equation to model the dynamics of substance abuse, we will assume an

initial increase in intake, feed that increase into Eq. (3), then take the output of the equation,

and put it back into the equation as input.

Let us assume that we have an initial increase in intake of 0.5 standard deviations,

approximately 3.5 oz. The change in intake during the next time period will be :

DIt ¼ 0:05� ð0:29 * 0:5Þ ¼ �0:095 ð4Þ

Thus, there is a small ‘‘rebound effect.’’ The increase is followed by a small decrease.

We now take the output value � 0.095 and feed it back into Eq. (4) as input. Our new

equation includes the initial increase as an influence that appears in the second time lag

DIt� 2. So, 2 days after the initial increase, the change will be:

DIt ¼ 0:05� ð0:29 *� 0:095Þ � ð0:25 * 0:5Þ ¼ �0:04745 ð5Þ

We could continue this process indefinitely, but the implication is already clear. An initial

increase will tend to be followed by a decrease, a rebound effect, but the decrease will be

much smaller than the initial increase, since the two multipliers in Eq. (5) are 0.29 and 0.25.

We can think of this as an effort at control that is only partly successful. If our subject

increases his consumption of alcohol, he will lower it a bit over the next few days but not

enough to compensate for the initial increase.

We can use the same process to model a larger increase, one that crosses the threshold.

Assume an increase of one standard deviation, about 7.5 oz of whiskey. In this case, the

change in intake during the next time period will be (Eq. (6)):

DIt ¼ 0:77� 0:92 * 1 ¼ �0:15 ð6Þ

The new value, � 0.15, lies below the threshold; thus, further fluctuations will conform to the

dynamics expressed in Eq. (7), with differing values for the variables:

DIt ¼ 0:05� ð0:29 *� 0:15Þ � ð0:25 * 1Þ ¼ �0:1565 ð7Þ

Again, the rebound is much smaller than the initial increase. A pattern of stable, controlled

drinking will be difficult to maintain.

7. Conclusion

To some extent, this analysis simply confirms conventional practice wisdom and research

(Doweiko, 1999). Such confirmation is of value; converging lines of evidence tend to

strengthen any scientific position. But, we believe that our analysis adds to the conventional

wisdom in at least one way, since it suggests a detailed model of relapse. In this model,

relapse includes both increases and decreases in intake, with the increases outweighing the

decreases. This is intriguing because such a pattern could be deceptive for both client and

practitioner. At any given time, it could look as if the client is making progress in bringing her
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or his problem under control, while over a sufficiently long period of time the problem would

be slipping out of control.
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