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Abstract

A mathematically simple example of a high-dimensional (many-species) Lotka–Volterra model that exhibits spatio-

temporal chaos in one spatial dimension is described. The model consists of a closed ring of identical agents, each com-

peting for fixed finite resources with two of its four nearest neighbors. The model is prototypical of more complicated

models in its quasiperiodic route to chaos (including attracting 3-tori), bifurcations, spontaneous symmetry breaking,

and spatial pattern formation.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The Lotka–Volterra model [1,2] is widely used to study the dynamics of interacting species in ecology and elsewhere

[3] and has even been implemented with analog electronics [4]. One form of such a system has N species (or agents) with

population xi for i = 1 to N that compete for a fixed finite set of resources according to
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where ri is the linear growth rate of the ith species, and aij is the extent to which species j competes for the resources of

species i. Eq. (1) can be viewed as the first approximation in a Taylor-series expansion for a wide class of nonlinear

models [5] with the highly desirable feature that solutions are asymptotically bounded (0 6 xi 6 1) when aij P 0. The

biologically realistic and most interesting examples of Eq. (1) have chaotic solutions for very large N with sparse aij
matrices whose nonzero elements correspond to spatially nearby neighbors.

An exhaustive numerical search suggests that the simplest such example is of the form
dxi
dt

¼ xið1� axi�2 � xi � bxiþ1Þ ð2Þ
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in which all species are identical and the boundary conditions are periodic (x�1 = xN�1, x0 = xN, and xN+1 = x1). Eq. (2)

is a simple example of a circulant aij matrix [6]. Setting ri = 1 and aii = 1 does not sacrifice any generality since it cor-

responds to measuring time in units of the inverse growth rate of the (identical) species and x in units of the carrying

capacity of each species in the absence of the others. In this paper we take a = b = s, for which chaos occurs at s = 1

provided N is sufficiently large. The quantity s is a useful bifurcation parameter that measures the coupling between

species, with s = 0 corresponding to the system decoupling into N independent Verhulst equations [7] whose solutions

are asymptotic to xi = 1 for all i, and s! 1 corresponding to severe competition in which only a single species survives.

This system has 2N equilibria of which only the one with xi = 1/(a + b + 1) for all i corresponds to coexistence. The

coexisting equilibrium has all xi positive, and the system is dissipative for a + b > �1 with a rate of state-space contrac-

tion given by �N/(a + b + 1) for N > 2. Thus for s > �0.5, we expect the system to have attractors, as appears to be the

case from numerical tests.
Fig. 1. Eigenvalues of the coexisting equilibrium with N = 100 and s = 1.

Fig. 2. A one-dimensional ring of species interacting according to Eq. (2).
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The complex eigenvalues of the coexisting equilibrium with N = 100 and s = 1 are shown in Fig. 1. The trefoil shape

is typical of other values of N and s. This case has 16 unstable directions (eigenvalues with positive real parts), two neu-

tral directions (real parts that are zero) with a frequency of x = 1/3, and 82 stable directions (real parts that are neg-

ative). All but two of the eigenvalues (at �1 and �1/3) are complex conjugate pairs. Thus the equilibrium for this case is

an index-16 spiral saddle. Animated versions of Fig. 1 with s = 0.888 (near the Hopf bifurcation point) and N varying

from 1 to 400, and with N = 100 and s varying from 0 to 1.15 are available on the Web [8].

This system can be considered as a homogeneous one-dimensional ring of identical agents, each experiencing com-

petition from its nearest neighbor on the right and from its second nearest neighbor on the left as shown in Fig. 2. While

this behavior is perhaps not very biologically realistic, the resulting dynamics share many of the features of more com-

plicated and hence more realistic heterogeneous models, and thus it warrants study because of its elegant simplicity and

apparent generality.
2. Routes to chaos

The system in Eq. (2) provides an opportunity to explore the routes to chaos in a high-dimensional spatial Lotka–

Volterra model. For s = 1 and 1 6 N 6 100, the route is conveniently quantized as indicated in Fig. 3, which shows the

largest Lyapunov exponent k1 [9] and the Kaplan–Yorke dimension DKY [10]. The largest Lyapunov exponent is a mea-

sure of the sensitivity to initial conditions, with a positive value signifying chaos. The dimension is a measure of the

complexity of the attractor or the number of active variables, with integer values corresponding to periodicity (for

DKY = 1) or quasiperiodicity (for DKY P 2) and noninteger values corresponding to strange (fractal) attractors

[11,12]. From this information as well as calculations of the eigenvalues of the coexisting equilibrium, state-space plots,

and Poincaré sections, the attractor type has been identified and catalogued in Table 1. The route is a rather compli-

cated sequence of quasiperiodic solutions with equilibria, limit cycles, 2-tori, and 3-tori prior to the onset of chaos. In
Fig. 3. Largest Lyapunov exponent and Kaplan–Yorke dimension for Eq. (2) with s = 1.



Table 1

Route to chaos for increasing N with a = b = 1 in Eq. (2)

N Attractor D Comment

1 Equilibrium 0

2 Equilibrium 0

3 Invariant loop 1 Hopf, x = 1/
p
3

4 Equilibrium 0 Hopf, x = 1/3

5 Equilibrium 0

6 Invariant loop 1 Hopf, x = 1/
p
3

7 Limit cycle 1

8 Equilibrium 0 Hopf, x = 1/3

9 Invariant loop 1 Hopf, x = 1/
p
3

10 2-torus 2

11 2-torus 2

12 Equilibrium 0 Hopf–Hopf, x = 1/3, 1/
p
3

13 2-torus 2

14 2-torus 2

15 2-torus 2

16 3-torus 3

17 2-torus 2

. . . . . . . . . All 2-tori

45 2-torus 2

46 3-torus 3

47 2-torus 2

48 2-torus 2

49 2-torus 2

50 3-torus 3

51 3-torus 3

52 2-torus 2

53 2-torus 2

54 3-torus 3 Highly crinkled torus

. . . . . . . . . All 3-tori

58 3-torus 3

59 Chaotic 4.2022. . .
60 Chaotic 4.0381. . .

61 3-torus 3

62 3-torus 3

63 Chaotic 6.5480. . .
64 Chaotic 6.1306. . .

65 3-torus 3

66 Chaotic 4.4777. . .

. . . . . . > 4 All chaotic
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this table and the graphs that follow, the equations were solved using a fourth-order Runge–Kutta method with a fixed

step size of 0.05, although most of the quoted values were confirmed using a step size of 0.01.

Some of the N values (3, 4, 6, 8, 9, and 12) happen to lie exactly on Hopf bifurcation points [13] as evidenced by pairs

of complex eigenvalues with zero real parts. The ones at N = 4 and 8 have imaginary parts of x = 1/3. The one at N = 12

has two pairs of complex eigenvalues with zero real parts and x = 1/3 and 1=
ffiffiffi
3

p
, and thus it is a Hopf–Hopf, codimen-

sion-2 bifurcation. The ones at N = 3, 6, and 9 are attractors in N � 2 dimensions of the state space, but are invariant

loops (neutrally stable) in the remaining two dimensions, with an amplitude that depends on the initial conditions and a

linear frequency x ¼ 1=
ffiffiffi
3

p
.

The case N = 16 is an especially simple and elegant example of an attracting 3-torus in an autonomous dissipative

system [14,15]. The case N = 54 is a highly crinkled 3-torus, very close to the onset of chaos. The absence of 4-tori is

consistent with the theorem of Ruelle and Takens [16], which states that such systems are structurally unstable with

respect to arbitrarily small C1 perturbations, whereas 3-tori are unstable only for C2 perturbations. A Ck perturbation

is one whose derivatives up to order k are less than e for any e.
Chaos onsets at N = 59 followed by several quasiperiodic windows (3-tori) before becoming permanently chaotic for

NP 66, with a very slowly increasing largest Lyapunov exponent and a linearly increasing attractor dimension. For



Fig. 4. Largest Lyapunov exponent for Eq. (2) with N = 100 showing the quasiperiodic route to chaos that is typical of high-

dimensional systems.
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N = 100, the largest Lyapunov exponent is k1 ffi 0.00777, and the Kaplan–Yorke dimension is DKY ffi 11.3171. The sys-

tem with N = 100 is hyperchaotic with four positive Lyapunov exponents, whose sum K ¼
P4

k¼1kk ffi 0.0164 is a mea-

sure of the entropy [17].

For larger N, the Lyapunov exponent appears to saturate at a value around k1 ffi 0.01, while the Kaplan–Yorke

dimension continues to increase linearly. A linear least-squares fit over the range 71 6 N 6 104 gives DKY =

0.1356N � 2.25. If this scaling holds for arbitrarily large N, the system provides a simple method for producing a

strange attractor with a rather precisely controlled high dimension. The dimension of the attractor is approximately

equal to the number of unstable eigenvalues of the coexisting equilibrium as shown in Fig. 1. Chaos also occurs for

values of N as small as 7 with s = 1.4, for which k1 ffi 0.00315 and DKY ffi 3.255, and for N = 10 with s = 1.3, for which

k1 ffi 0.00316 and DKY ffi 3.659.

This general route to chaos is typical of other similar high-dimensional systems, including fully-connected Lotka–

Volterra models and artificial neural networks [18,19], and it is not sensitive to the chosen bifurcation parameter.

For example, holding N fixed at 100 and varying s gives a quasiperiodic route as shown in Fig. 4. In this case, the first

Hopf bifurcation occurs at s ffi 0.888916012261, and chaos onsets at s ffi 0.916. For values of N greater than 100, the

value of s at which the Hopf bifurcation occurs oscillates slightly but appears to asymptote to a value close to the value

at N = 100 in the limit of large N. Similarly, the onset of chaos appears to asymptote to a value of about s ffi 0.90 in the

limit of large N, although this detail warrants further study.

For N = 100, there is a quasiperiodic window spanning the approximate range 1.1047 < s < 1.1151. For s = 1.11, the

attractor appears to be a crinkled 3-torus from the double Poincaré section, and there are three Lyapunov exponents

that are very close and oscillating about zero, with two others that are very small but apparently slightly negative, in

addition to the 95 that are significantly negative. The quasiperiodic attractor apparently coexists with a chaotic one and

has a relatively small basin of attraction. This window disappears as N increases. In this figure, s is increased slowly

without reinitializing the variables for each new s, and thus the plot is not unique because of the existence of multiple

attractors for some values of s, especially near the onset of chaos.

The case with N = 10 also exhibits a quasiperiodic route to chaos with increasing s, progressing from an equilibrium

to a limit cycle (with a Hopf bifurcation at s ffi 0.894427191) to a 2-torus to chaos at s ffi 1.25. This route to chaos is very

different from that observed in most low-dimensional systems such as the logistic map and the Lorenz attractor, where

the period-doubling route to chaos is common, although it sometimes occurs in low-dimensional systems such as the

time-delayed logistic map [20]. The route is a consequence of the trefoil shape of the eigenvalue spectrum as shown

in Fig. 1, in which the first eigenvalues to become unstable are necessarily a complex conjugate pair.
3. Spatiotemporal patterns

Initial conditions with all xi identical and positive have solutions that attract to the equilibrium at xi = 1/(a + b + 1).

For a = b = 1 and N = 100, these points lie on an 82-dimensional stable manifold of the saddle point equilibrium, which

is nevertheless a set of measure zero in the 100-dimensional state space. Most other initial conditions approach a strange

attractor for s = 1 and NP 66.



Fig. 5. Spatiotemporal plot of jxi+1 � xij from Eq. (2) with N = 480 and s = 1.
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Fig. 5 shows a spatiotemporal plot of the attractor for s = 1 and N = 480, in which the value of jxi+1 � xij is plotted
at each point using a 16-level gray scale with black corresponding to zero and white to 1.0. The quantity plotted was

chosen because it well exhibits the spatiotemporal structure and suppresses the small-scale spatial periodicity that re-

sults from adjacent neighbors tending to oscillate with opposite phase. There are obvious structures that propagate

in the +i direction with a typical velocity of the order di/dt ffi 1/8.

This plot illustrates spontaneous symmetry breaking [21–23] since spatially heterogeneous solutions occur in a sys-

tem whose equations are spatially homogeneous. The structure is not a remnant of the random initial conditions and

occurs even for highly ordered initial conditions off the stable manifold. Such plots offer a lesson to ecologists and oth-

ers who instinctively assume that there must be a cause for the particular spatial heterogeneities observed in natural

systems.

By contrast, spatiotemporal plots (not shown) for cases that are temporally periodic (such as N = 100 and s = 0.9

where the solution is a limit cycle), exhibit spatial periodicity with propagating waves.

Another way to view the spatiotemporal structure is through the spatiotemporal cross-correlation function
CðDi;DtÞ ¼
R
½xN=2ðtÞ � �x�½xN=2þDiðt þ DtÞ � �x�dt

�� ��R
½xN=2ðtÞ � �x�2 dt

ð3Þ
Fig. 6. Spatiotemporal cross-correlation function with N = 100 and s = 1 showing propagation and dispersion.
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where
�x ¼ lim
T!1

1

T

Z T

0

xN=2ðtÞdt ¼
1

aþ bþ 1
ð4Þ
is the mean value of xi and is equal to 1/3 for all i when s = a = b = 1. The correlation function is plotted versus i in Fig.

6 with s = 1 and N = 100 for Dt = 0, 50, and 100. This plot shows how the structure propagates and disperses, such that

after a time of Dt = 100, very little correlation remains. The propagation velocity is consistent with di/dt ffi 1/8, and the

correlation time is consistent with the inverse of the entropy, which is about 1/K ffi 61 for this case.
4. Temporal behavior

Fig. 7 shows the temporal behavior of the biomass
M ¼ 1

N

XN
i¼1

xi ð5Þ
biodiversity [24]
D ¼ 1� 1

2ðN � 1Þ
XN
i¼1

xi
M

� 1
��� ��� ð6Þ
and a typical xi for the case with N = 100 and s = 1, illustrating the chaotic dynamics. The biomass fluctuates slightly

about the equilibrium with M = 1/(2s + 1), and the biodiversity remains relatively high but has variations on the order

of 10%. The biomass and the individual xi values have a temporal average of 1/(2s + 1) as indicated in Eq. (4). Fluc-

tuations in the biomass and biodiversity are suggestive of sporadic volatility and punctuated equilibria [25].

There are a number of dominant frequencies evident in the various signals, the most obvious of which is the oscil-

lation in x1 at a frequency of x ffi 1/3, which is the order of the linear frequency of the most unstable eigenvalue of the

coexisting equilibrium as shown in Fig. 1, for which x ffi 0.4834456. By contrast, the biomass and biodiversity have a

more broadband power spectrum, although they have a dominant component at x ffi 1, which is most evident if the low

frequencies are suppressed by taking the time derivative of the signals.
Fig. 7. Total biomass, biodiversity, and a typical x(t) versus time for Eq. (2) with N = 100 and s = 1.
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5. Discussion

The system described here may be a minimal high-dimensional hyperchaotic Lotka–Volterra model in the sense of

being the algebraically simplest such system. It is apparently prototypical of more complicated models [26] and easily

generalized to arbitrary dimension. It was motivated more by its elegant simplicity than by its realism as a model of any

particular natural dynamical system. However, there may be situations in which agents are disinclined to compete with

their nearest neighbors, who might for example be close relatives, and instead compete most strongly with the second

nearest neighbors, at least in one direction.

The system is mathematically interesting because it can produce such a wide range of dynamical behaviors including

equilibria, invariant loops, limit cycles, 2-tori, 3-tori, and strange attractors, with well-defined bifurcation points and

linear frequencies. Solutions are automatically bounded in the range [0,1] for all agents, and most cases have a single

attractor, implying that initial conditions are arbitrary. It is suitable for studying temporal transients, routes to chaos,

dimensionality scaling, synchronization, structural stability, and robustness. Its spatiotemporal nature allows it to ex-

hibit self-organization, pattern formation, and spontaneous symmetry breaking.

The model can be extended to more realistic two (or even three) spatial dimensions by weakly coupling many iden-

tical one-dimensional rows of these systems, forming a torus in space. It can be generalized to the case a 5 b. Finally, it

is very useful for studying the effect of network architecture on the dynamics since (for a = b = 1) all connected nodes

have identical unit strength, and the connections can thus be rearranged without regard to their magnitude. The system

is ripe for further study.
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