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a b s t r a c t

Mathematical models in ecology often need to incorporate spatial dependence to accurately

model real-world systems. We consider competitive Lotka–Volterra models modified to

include this spatial dependence through organization of the competing species into a one-

dimensional ring by an appropriate choice of the interaction matrix. We show that these

systems can exhibit complex dynamics, spatiotemporal chaos, and spontaneous symmetry

breaking. A high-dimensional, spatially homogeneous, nearest-neighbor example with

interaction strengths decreasing with distance is characterized including an analysis of

how the dynamics of the system vary with dimension. We also show the existence of

Lyapunov functions that arise from this method of including spatial dependence and how

they prohibit complex dynamics for certain regions of the parameter space. We utilize these

Lyapunov functions to reduce the required calculation time in brute-force searches of

parameter space. A short comparison is given to derived line systems including a contrast

between the eigenvalues of the two systems.
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1. Introduction

Mathematical models are often used in ecology to describe the

behavior of real-world systems (May, 1973; Freedman, 1987;

Takeuchi, 1996). A very general model, derived independently

by Lotka (1925) and Volterra (1926), allows different species to

interact through non-linear coupling

dxi
dt
¼ gixi 1�

XN
j¼1

ai jx j

0
@

1
A (1)

In this form gi represents the linear growth rate of species i and

A = (aij) is the interaction matrix with aij representing the

interaction of species i with species j (the interaction between

species is not necessarily symmetric, and in general aij 6¼ aji).

Without loss of generality one can set all gi = ai = 1. This is
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equivalent to measuring each population xi in terms of its

carrying capacity in the absence of other species, and the time

in units of inverse growth rate for each species (Coste et al.,

1979). The purely competitive version of this model requires

that all aij � 0 and has the benefit of constraining all popula-

tions xi to the interval (0,1), effectively bounding the solution

(Murray, 1989).

When considering real-world systems one may need to

incorporate some spatial dependence into the mathematical

model. Some work has been done in which the spatial system

is a Markov process on a lattice (Provada and Tsekouras, 2003)

or the system includes a stochastic variable (Neuhauser and

Pacala, 1999). High dimensional simulations on a 2-D lattice

using predator–prey systems have also been carried out;

however, these systems allow the type of species (either a

predator or a prey) at each lattice point to vary (Wilson et al.,
math.wisc.edu (J.A. Vano), sprott@physics.wisc.edu (J.C. Sprott).

d.

mailto:jcwildenberg@wisc.edu
mailto:jvano@math.wisc.edu
mailto:sprott@physics.wisc.edu
http://dx.doi.org/10.1016/j.ecocom.2005.12.001


e c o l o g i c a l c o m p l e x i t y 3 ( 2 0 0 6 ) 1 4 0 – 1 4 7 141

Fig. 1 – An example of how the interaction matrix can be

chosen to produce a spatially-dependent Lotka–Volterra

system. This ring has each (identical) species interacting

only with its neighbor species on each side. This six-

species ring will not admit periodicity or chaos due to the

presence of a Lyapunov function (see Section 4). However,

periodicity and chaos are possible through the addition of

more interaction terms.

Fig. 2 – The eigenvalues for Eq. (2) with condition (3) and

N = 100 exhibit a distorted trefoil shape. There are 10

eigenvalues with positive real parts (unstable directions)

and 90 with negative real parts (stable directions). This

implies that the equilibrium point at pi = 0.328407. . . for all

i is an index-10 spiral saddle.
1993). We use an explicitly deterministic model with mod-

ifications to the interaction matrix instead of changes to the

structure of the Lotka–Volterra equations. A straightforward

way to add this spatial dependence is to choose the interaction

matrix such that the species are aligned in some spatial

arrangement and therefore interact only with their near

neighbors. For example, it is possible to align the species in a

one-dimensional ring through specific organization of the

matrix A. The following example creates a ring with N

identical species (we only consider systems of identical

species, but this organization of the interaction matrix can

be used for any number of non-identical species). Begin by

choosing interaction coefficients for the first species (row 1 of

A) assuming that species two is immediately to the right of

species one, species N immediately to the left of species one,

etc. All species are identical, and to generate row i of A simply

shift the first row by (i � 1) as shown in Fig. 1 (i runs from 1 to N

and is assumed to wrap, e.g. xN + 1 = x1, to create periodic

boundary conditions). This organization of the interaction

matrix provides a method for incorporating spatial depen-

dence without using more complex reaction-diffusion strate-

gies, which modify the fundamental Lotka–Volterra equations

(Cantrell and Cosner, 2003). However, the resulting models are

not realistic if they do not exhibit complex dynamics. Many

parameter values result in the populations attracting to an

equilibrium point and are therefore not representative of real-

world systems, few of which are static. Some low-dimensional

ring systems have been studied which admit periodic orbits,

but these systems do not contain the quadratic self-interac-
tion term common to many Lotka–Volterra equations (Frach-

bourg et al., 1996).

A simple Lotka–Volterra ring system that exhibits explicit

spatial dependence and complex dynamics is

dxi
dt
¼ xið1� a�2xi�2 � a�1xi�1 � xi � a1xiþ1 � a2xiþ2Þ (2)

in which each species competes only with the two neighbors

on each side.

In real-world systems, species will rarely be capable of

recovery if their population drops too low. Here, we use a

threshold of 10�6 as the point at which a species is assumed to

become extinct (Ovaskainen and Hanski, 2003). A search to

maximize the largest Lyapunov exponent for N = 100, while

maintaining populations above the aforementioned threshold

to prevent extinction, resulted in a system with interaction

values

a�2 ¼ 0:451; a�1 ¼ 0:505; a1 ¼ 0:852; a2 ¼ 0:237 (3)

which are henceforth assumed for Eq. (2) unless otherwise

specified. The system is weakly chaotic with a largest Lyapu-

nov exponent l1ffi0:00394. The five largest Lyapunov expo-

nents are all positive, and the Kaplan–Yorke dimension

DKYffi11:28 (Kaplan and Yorke, 1979). There are 2N equilibria

including the coexisting equilibrium point given by

pi ¼
1PN

j¼1 ai j
¼ 1

a�2 þ a�1 þ 1þ a1 þ a2
(4)

for interaction matrices created with the above method (more

about these matrices in Section 4). Under conditions (3)

pi = 0.328407. . . for all i due to the homogenous nature of this

system. The interaction strength decreases with distance,

mirroring what one expects in most real-world spatial sys-

tems. The eigenvalues of the Jacobian expanded about the

coexisting equilibrium point indicate that there are 10
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unstable directions and 90 stable directions (Fig. 2). The equi-

librium is thus an index-10 spiral saddle (Sprott, 2003).

A simpler choice of parameters results in the model

dxi
dt
¼ xið1� axi�2 � xi � bxiþ1Þ (5)

which is described in-depth by Sprott et al. (2005b). This

system is very mathematically elegant, chaotic with a = b = 1

for N > 65, and works well to illustrate general properties of

Lotka–Volterra ring systems, but it is not a very realistic real-

world model due to its improbable connectivity. An extensive

search of homogeneous ring models with only one interaction

term (other than the self-interaction) has not shown chaos or

periodicity for any parameter values.
Fig. 4 – The dimensionality of the system N provides a

discrete bifurcation parameter: (a) the largest Lyapunov

exponent oscillates between negative values and zero at

low N and remains positive for N � 52; and (b) the

dimension of the attractor follows the largest Lyapunov
2. Routes to chaos

If we define a parameter s that multiplies all of the off-

diagonal elements in the interaction matrix of Eq. (2) we have

a variable to control the strength of the interactions around

the ring (s = 1 unless otherwise stated). At s = 0 the ring is

completely decoupled, and the systems acts as N indepen-

dent Verhulst (logistic) equations, while at s =1 there is

maximal competition and only one species can survive. A

scan over s reveals that this system has a very small periodic/

quasi-periodic region with one or more of its largest Lyapunov

exponents equal to zero, and a large chaotic region (Fig. 3).

The Hopf bifurcation, where the equilibrium point first

becomes unstable due to a complex conjugate pair of

eigenvalues having real parts exactly equal to zero, occurs

at s � 0.979 for N = 100 and varies with N as the eigenvalues

rotate about the trefoil shape (Marsden and McCracken, 1976;

Wildenberg et al., 2005). Varying the dimension N of the
Fig. 3 – The largest Lyapunov exponent plotted versus the

bifurcation parameter s for Eq. (2) (N = 100) shows almost

no periodic region (largest Lyapunov exponent equal to

zero). Above the Hopf bifurcation at s � 0.979 the system

quickly becomes chaotic at s � 0.985. At high values of s

(not shown) the extreme competition between species

causes some to go extinct. At the limit of high s only one

species will survive and the rest will die due to the

increased competition.

exponent, oscillating between an equilibrium point and a

two-torus for small N, and is not an integer when the

system is chaotic, indicating a strange attractor. A

regression line fitted to the chaotic cases follows the

equation Dfit = 0.11N S 0.01 with R = 0.95.
system provides a discrete route to chaos. The largest

Lyapunov exponent and dimensionality of the attractor

(non-integer values represent fractal structure) fluctuate at

lower dimensions (Fig. 4). For all N � 52 the system is chaotic,

and the dimension seems to increase linearly with N

according to the equation

Dfit ¼ 0:11N� 0:01 (6)

The dimension is slow to converge, and it is possible that a

longer calculation would have the intercept of Eq. (6) approach

zero.
3. Spatiotemporal patterns

Positive initial conditions with all xi identical for Eq. (2) with

conditions (3) attract to the coexisting equilibrium point.

These initial conditions lie on the 90-dimensional stable
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Fig. 5 – The magnitude of the spatial derivative jxi S xi S 1j
about the ring versus time for Eq. (2) with N = 100. The

spatiotemporal chaos ensures that the patterns seen in

the plot will never repeat. Although the equations

describing the system are homogenous, the solution is

heterogeneous and is an example of spontaneous

symmetry breaking.

Fig. 7 – Plots of the biomass, biodiversity, and a typical x(t)

for Eq. (2) and N = 100 exhibit chaotic fluctuations. The

primary oscillation of x1 occurs at a frequency vffi0:13. The

biomass seems to exhibit a power spectrum that

exponentially decreases with increasing frequency while

the biodiversity has a more broadband power spectrum

with a dominant component at vffi0:38. This results in the

biodiversity oscillating approximately three times for

every oscillation of x1.
manifold, which constitutes a set of measure zero in the

100-dimensional state space. Most non-identical positive

initial conditions approach the strange attractor. The

connectivity of the ring allows fluctuations of the species

populations to propagate and gives rise to spatiotemporal

patterns (Fig. 5). Here, the magnitude of the spatial

derivative, jxi � xi � 1j, is plotted over space and time and

serves to show the patterns while suppressing the oscilla-

tions that result from the tendency for neighboring species

to fluctuate out of phase. Such a plot illustrates spontaneous

symmetry breaking and results in a heterogeneous solution
Fig. 6 – The spatiotemporal cross-correlation function

plotted versus Di shows the propagation and dispersion

common to Lotka–Volterra ring systems. The plot is not

symmetric due to the asymmetry in the rows of the

interaction matrix, though there does seem to be a spatial

periodicity of Di = 6 in both directions.
to a system with homogenous equations (Turing, 1952;

Meinhardt, 1982; Brading and Castellani, 2003). One can also

view the spatiotemporal structure using the cross-correla-

tion formula

CðDi;DtÞ ¼
R
½xN=2ðtÞ � x�½xN=2þDiðtþ Dt� xÞ��dt

�� ��R
½xN=2ðtÞ � x�2

(7)

with

x ¼ lim
T!1

1
T

ZT

0

xN=2ðtÞdt (8)

the mean value of xi (Sprott et al., 2005b). Fig. 6 shows, for

N = 100, the dispersion at Dt = 0, 50, and 100. Only the even

values of i are plotted to suppress the fluctuations mentioned

above. Note that the dispersion is not symmetric in space due

to the asymmetry in the rows of the interaction matrix.

Another way to view the chaotic dynamics is through plots

of the biomass

M ¼ 1
N

XN
i¼1

xi (9)

and the biodiversity (Sprott, 2004)

D ¼ 1� 1
2ðN� 1Þ

XN
i¼1

xi
M
� 1

��� ��� (10)

as shown in Fig. 7. The most dominant frequency of the three

signals is the oscillation in x1 with vffi0:13. This value is close

to the linear frequency of the most unstable complex con-

jugate pair of eigenvalues for which vffi0:1592. The biomass

seems to exhibit a power spectrum that exponentially

decreases with increasing frequency while the biodiversity
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has a more broadband power spectrum with a dominant

component at vffi 0:38; oscillating approximately three times

for every oscillation in x1.
Fig. 8 – (a) The regions of parameter space for Eq. (5) (with

N = 100) where a Lyapunov function exists and therefore

the orbit must approach an equilibrium point (black) and

the regions where more complex dynamics are allowed

(light blue); and (b) the largest Lyapunov exponent over the

same region of parameter space. The black regions

represent parameter values where the orbit attracts to an

equilibrium point (largest Lyapunov exponent less than

zero). Notice how the region where complex dynamics is

forbidden by the existence of a Lyapunov function in (a)

closely matches the region where the orbit attracts to an

equilibrium point in the lower left of (b). The blue cross in

(b) shows a = b = 1.
4. Lyapunov functions

Suppose

X ¼

x1

x2

..

.

xN

0
BBB@

1
CCCA (11)

is an autonomous system given by Ẋ ¼ f ðXÞ with an equili-

brium point p such that f(p) = 0. If there exists a continuous

scalar function L(X) with continuous first partial derivatives in

a region D containing p with L(p) = 0 and L(X) > 0 for all other X

inD, and furthermore if the time derivative of L(X) with respect

to the system X

L̇ðXÞ ¼ rLðXÞẊ (12)

is negative semi-definite (L̇ðpÞ ¼ 0 and L̇ðXÞ � 0 for all other X

in D) then L(X) is a Lyapunov function and the equilibrium

point is stable. If L̇ðXÞ< 0 (negative definite) then the equili-

brium point is asymptotically stable (LaSalle and Lefschetz,

1961; Boyce and DiPrima, 2000). A negative definite derivative

implies that L(X) decreases along all orbits and in many sys-

tems may behave as an energy function. The existence of a

Lyapunov function with asymptotic stability prevents peri-

odic, quasi-periodic, and chaotic behavior in the system since

all orbits must attract to the equilibrium point (Xue-Zhi et al.,

1999; Pykh, 2001). Although it is difficult to determine the

explicit form of a Lyapunov function (even if its existence

can be shown), there have been some attempts to create

algorithms for Lyapunov function construction (Poincaré,

1881; Lakshmikantham et al., 1981).

Creation of a spatially-dependent competitive Lotka–

Volterra system with identical species via shifts of the rows

in the interaction matrix results in a circulant matrix (Davis,

1994). If we let C be the circulant matrix

C ¼

c0 c1 � � � cN�1

cN�1 c0 � � � cN�2

..

. ..
.

c1 c2 � � � c0

2
6664

3
7775 (13)

and g be the Nth root of unity, g ¼ ei2p=N, then the eigenvalues

of C are (Hofbauer and Sigmund, 1988)

lk ¼
XN�1

j¼0

c jg
k j for k ¼ 0; . . . ;N� 1 (14)

If C is an interaction matrix for a competitive Lotka-Volterra

system and ReðlkÞ> 0 for k 2 Z, 1 � k � N=2 then a Lyapunov

function exists, and the orbit of this system must attract

to the coexisting equilibrium point (Zeeman, 1997; van den

Driessche and Zeeman, 1998).

All interaction matrices created by the method described in

Section 1 are circulant, and thus for Eq. (5)

lk ¼ 1þ aei2pðN�2Þk=N þ bei2pk=N (15)
The system will not be periodic, quasi-periodic, or chaotic

if

ReðlkÞ ¼ 1þ acos
4pk

N

� �
þ bcos

2pk

N

� �
> 0 (16)

for all 1 � k � N=2. A plot of the regions where the Lyapunov

function exists in parameter space next to a plot over a and b of

the largest Lyapunov exponent clearly shows that a large

region where the orbit attracts to an equilibrium point can

be explained by this Lyapunov function (Fig. 8).

The extra terms in Eq. (2) complicate the eigenvalues

slightly but, utilizing some algebra,

lk ¼ 1þ a�2ei2pðN�2Þk=N þ a�1ei2pðN�1Þk=N þ a1ei2pk=N

þ a2ei4pk=N (17)

which implies that if

ReðlkÞ ¼ 1þ ða�2 þ a2Þcos
4pk

N

� �

þ ða�1 þ a1Þcos
2pk

N

� �
>0 (18)



e c o l o g i c a l c o m p l e x i t y 3 ( 2 0 0 6 ) 1 4 0 – 1 4 7 145

Fig. 9 – (a) The region of parameter space for Eq. (2) where

the Lyapunov function exists is shown in black (and the

orbit must attract to an equilibrium point) and the region

where complex dynamics is possible in light blue; and (b)

black areas are where the orbit attracts to the equilibrium

point. The black region in (a) closely matches the black

region in the lower left of (b). In these scans aS2 = 0.451

and a2 = 0.237. The blue cross in (b) indicates condition (3),

considered throughout the paper.

Fig. 10 – The eigenvalues for Eq. (5) exhibit a trefoil shape,

but those of the line system form a rotated Y at s = 1 and

N = 100. As the number of species in the lines increases,

the eigenvalues seem to approach those of the ring. This

may be due to the fact that an infinitely long line is

indistinguishable from a ring to those species far from the

ends.
for all 1 � k � N=2 then the orbit must attract to the coexisting

equilibrium point. Fig. 9 shows that, as with Eq. (5), a scan over

a�1 and a1 with a�2 = 0.451 and a2 = 0.237 for N = 100 reveals a

large region of parameter space where the orbit attracts to the

equilibrium point attributable to the existence of the Lyapu-

nov function.

As a result, since all spatially homogeneous Lotka–Volterra

systems have a circulant interaction matrix, a Lyapunov

function will exist for certain regions of the parameter space,

and any complex dynamics must occur outside those regions.

Note that the disappearance of this Lyapunov function is

equivalent to the Hopf bifurcation; however, the occurrence of

a Hopf bifurcation does not in general imply that a Lyapunov

function existed prior to the bifurcation. Similar analysis

shows that any spatial system with symmetric interactions

(ai � 1 = ai + 1, ai � 2 = ai + 2, etc.) has a Lyapunov function

regardless of the specific interaction values and thus cannot

exhibit complex dynamics (the actual requirement is com-

pletely symmetric interactions such that aij = aji for all i 6¼ j, but

spatial systems with symmetric interactions are a subset

(MacArthur, 1970; Pykh, 2001)). Another Lyapunov function
prevents only near-neighbor systems, such as the one in Fig. 1,

from exhibiting complex dynamics (Pykh, 2001). Lyapunov

functions are difficult to find, and other regions in Figs. 8 and 9

where the orbit attracts to an equilibrium point may be due to

the presence of different Lyapunov functions. Calculation of

the largest Lyapunov exponent for high-dimensional systems

requires significant computational resources, while a calcula-

tion of where a (known) Lyapunov function exists is trivial.

Therefore, knowledge of the explicit form of possible

Lyapunov functions may be used to expedite numerical

brute-force searches in parameter space.
5. Line systems

Complex dynamics also seem possible if the boundary condi-

tions are not periodic. A line can be created from a ring through

many methods including severing the ring through removal of

the interaction terms in the upper right and lower left corners of

the interaction matrix A, holding the populations of the end

species fixed, or reflecting the severed connections onto the

species of the opposite side. Although these systems are not

constrained by the Lyapunov function described above, there

are most likely different Lyapunov functions, and a numerical

scan of the parameter space reveals it to be more restricted than

the ring systems, resulting in a narrower range where complex

dynamics occur. This can be seen visually by comparing the

eigenvalues of Eq. (5) with those of a derived line system formed

by reflection of the interactions at the boundary. For the line

system the Hopf bifurcation will occur at a larger value of the

bifurcation parameter s, which effects the size of the eigenvalue

structure, as the most positive real part is less than that of the

ring system (Fig. 10). The figure also shows that as N gets large

the eigenvalues of the line approach those of the ring. This

may be due to the concept that an infinitely long line is
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indistinguishable from a ring to the species far from the ends

(Wildenberg et al., 2005).

The spatiotemporal patterns for the mirrored version of

Eq. (2) appear very similar to those in Fig. 5, but do not connect

at the top and bottom edges. It is probable that an increase in N

will cause the dynamics of these line systems to behave

similar to the ring system of equal dimension as the species far

from the ends will see the same topology as those in a ring.
6. Conclusion

Adding spatial dependence to a Lotka–Volterra system through

careful choice of the interaction matrix A = (aij) is relatively

simple; however, the existenceof a Lyapunov function prevents

complex dynamics in certain regions of parameter space

(reaction-diffusion Lotka–Volterra models also suffer from

Lyapunov function limitations (Fitzgibbon et al., 1997)). All of

the homogeneous spatial ring systems created with the above

method have a circulant interaction matrix, and the regions

where the Lyapunov function exists can be calculated. Knowl-

edge of these regions can aid in numerical searches of the

parameter space, drastically reducing the necessary computa-

tions. Despite this restriction of the parameter space these

spatial systems can exhibit complex dynamics and produce

interesting spatiotemporal patterns in their time series. It is

notable that at high dimension the chaoticity (the value of the

largest Lyapunov exponent) of the systems seems to lose its

dependence on the dimension (Sprott et al., 2005b). This

property may be useful when modeling systems where the

number of competing species varies without drastic changes in

the system’s overall dynamics. It is also important to note that

these systems appear to admit chaos regardless of their link

reciprocity value, a measure of bidirectional vs. unidirectional

connections within the system (Eq. (2) is perfectly reciprocal

while Eq. (5) is slightly areciprocal) (Garlaschelli and Loffredo,

2004). This increases the versatility of these models as they may

be used to represent the wide variety of topologies that are seen

in real-world systems.

Line systems also provide a model for studying possible real-

world systems. These systems admit chaos and periodicity,

though the parameter space where these complex dynamics

occur seems restricted compared to the ring systems. The

eigenvalues of these line systems appear to approach those of

the ring systems as the number of species in the line increases.

If it is necessary to allow the species’ properties to change

over time (a dynamic interaction matrix) then the method

described above can be used with an adaptation algorithm

(Sprott et al., 2005a) yielding deterministic models that behave

similar to the stochastic models of Neuhauser and Pacala

(1999). This spatial dependence can also be extended to higher

spatial dimensions (e.g. 2-D on the surface of a torus using a

different organization of the interaction matrix) resulting in

even more realistic models.
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