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Abstract: A variant of the Hénon map is described in which the linear term is replaced by
one that involves a much earlier iterate of the map. By varying the time delay, this map can be
used to explore the transition from low-dimensional to high-dimensional dynamics in a chaotic
system with minimal algebraic complexity, including a detailed comparison of the Kaplan-Yorke
and correlation dimensions. The high-dimensional limit exhibits universal features that may
characterize a wide range of complex systems including the spawning of multiple coexisting
attractors near the onset of chaos.
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1. Introduction

The behavior of low-dimensional chaotic maps and flows has been extensively studied

and characterized [1]. Hence, much of the interest in nonlinear dynamics is now turning

to an understanding of the high-dimensional complex systems that characterize most of

the real world. The intuition that has arisen from the study of low-dimensional systems

does not necessarily extend to high-dimensional systems whose behavior is often quite

different and in some ways simpler.

The goal of this paper is to explore the transition from low-dimensional to high-

dimensional dynamics in a particularly simple example of an iterated map that is a variant

of the familiar Hénon map [2]. The dynamics will be governed by a single parameter whose

value determines the dimension of the system and hence its complexity. The system is

algebraically minimal in that it has a single (quadratic) nonlinearity and a single linearity.
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2. Delayed Hénon map

The system considered here is the time-delayed Hénon map given by

xn = 1− ax2
n−1 + bxn−d (1)

For d = 2, this map is the familiar two-dimensional dissipative Hénon map whose solutions

are chaotic for typical values of a = 1.4 and b = 0.3. This system can also be viewed as

a quadratic map with time-delayed linear feedback in which d is a measure of the delay

time, such as might be encountered in a chaos control scheme [3].

For d = 1, the map is equivalent to the one-dimensional logistic map [4]

yn = Ayn−1(1− yn−1)

as is evident from the transformation

y = ax/A + 1/2− b/2A

with the condition

A2 − 2A + (2b− b2 − 4a) = 0

from which it follows that a given choice of the parameters a and b maps into A according

to

A = 1±
√

1− 2b + b2 + 4a (2)

3. Fixed Points

Equation (1) has fixed point solutions at

x± =
b− 1

2a
± 1

2a

√
(b− 1)2 + 4a

These fixed points are born simultaneously in a saddle-node (blue-sky) bifurcation [5] at

a = – (b – 1)2/4 with the smaller one (x−) initially unstable and the larger one (x+)

initially stable. Thus for fixed b, the quantity a can be used as a bifurcation parameter

to take the system from a stable fixed point into chaos, analogous to the A in the logistic

map as suggested by Eq. (2).

4. Regions of Various Dynamical Behaviors

Figure 1 shows the regions of various dynamical behaviors for Eq. (1) in the ab-plane

as determined numerically for various values of d. For this purpose, the initial conditions

were taken as the mean of the two fixed points x0 = (b – 1)/2a, and the regions of chaos

were identified by calculating the largest Lyapunov exponent using a variant of the Wolf

algorithm [6]. There is no guarantee that a different initial condition would not produce

a different dynamic in the various regions, but a full study of the basins of attractions for
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every (a, b, d) combination is computationally infeasible and unessential for the purposes

of this paper (however, see Section 7 below where it is shown that multiple coexisting

attractors are common only near the onset of chaos).

From plots such as Fig. 1, it was determined that the values a = 1.6 and b = 0.1,

as shown by the dotted lines in the figure, give chaotic solutions for all d ≥ 1. These

values are close to the largest value of b for which chaos exists for fixed a (the actual

value is closer to a = 1.5933 and b = 0.10834). For much of what follows, these values

will be assumed except where describing the routes to chaos, in which case b will be fixed

at 0.1 and a varied over the range 0 to 2. For d = 1, according to Eq. (2), this choice

corresponds to varying A in the logistic map from 1.9 to 3.968164416. . . , with the value

of a = 1.6 corresponding to A = 3.685144316. . . , which coincidentally is very near the

Misiurewicz point [7] at A = 3.678573510. . . where two chaotic bands coalesce into one.

5. Attractors

Figure 2 shows the attractors for the system in Eq. (1) with a = 1.6 and b = 0.1 for

several values of d. The global structure is dominated by the quadratic map as expected

for the small value of b [8], but the dimension of the attractor clearly increases with

increasing d. This increase can be quantified by calculating the Kaplan-Yorke dimension

DKY [9] from the spectrum of Lyapunov exponents as shown in Fig. 3 along with three

of the Lyapunov exponents. Linear least-squares fits to these results over the range

1 ≤ d ≤ 100 give

DKY
∼= 0.192d + 0.699

λ1
∼= 0.354− 2.3× 10−5d

For these values of a and b, there is a single positive Lyapunov exponent (no hyper-

chaos), and the sum of the exponents is Σλi = log|b| = –2.302585093. . . for all d ≥
2. Consequently, the other Lyapunov exponents tend to cluster at small negative values

(λi ∼ –2.65/d for 2 ≤ i ≤ d) in the limit of large d. The actual mean at d= 100 is –0.0268

with a standard deviation of ±0.0049.

The metric entropy, which by Pesin’s identity [10] is the sum of the positive Lyapunov

exponents, is one measure of the complexity and is identical to λ1 and nearly independent

of d [11]. The single positive Lyapunov exponent is presumably a consequence of the fact

that all the stretching and folding occur along a single direction in the d-dimensional

state space. Note that all the exponents in this paper are base-e.

Because of the very smooth and predictable near linear variation of the attractor

dimension with d, this system provides a perfect opportunity for a critical comparison of

the Kaplan-Yorke dimension with the correlation dimension. Figure 3 includes data with

error bars for the correlation dimension DC [12] determined by the extrapolation method

of Sprott and Rowlands [13]. Such an extrapolation is crucial for accurately calculating
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these high correlation dimensions. A linear least-squares fit to the correlation dimension

data over the range 1 ≤ d ≤ 35 gives

DC
∼= 0.189d + 0.560

which suggests that DC
∼= 0.981DKY – 0.126 in keeping with the theoretical expectation

[14-16] of

DC ≤ DI = DKY

where DI is the information dimension. Similar behavior has been reported in an exten-

sive survey of 3-dimensional chaotic systems by Chlouverakis and Sprott [17], and the

results here can be viewed as an extension of that work up to d = 35. Such a careful

comparison of these two dimensions over such a wide range is apparently a new result.

6. Routes to Chaos

It is well known that the logistic map and the Hénon map exhibit a period-doubling

route to chaos as shown in the left panel of Fig. 4 for d = 2 and b = 0.1. Also typical

of low-dimensional maps is the existence of dense stable periodic windows in the chaotic

regime as evidenced by the negative value of λ1 and a Kaplan-Yorke dimension of zero.

By contrast, the high-dimensional case in the right panel of Fig. 4 with d = 100

and b = 0.1 shows a much smoother transition into chaos and a complete absence of

periodic windows, although there are several period doublings before the onset of chaos.

A curious feature is the oscillation between simple chaos (with λ2 < 0) and hyperchaos

(with λ2 > 0) with increasing a in the chaotic (λ1 > 0) regime. The high-dimensional

case also shows a lack of superstable orbits where λ1 is infinitely negative. The absence

of periodic windows for large d thus relates more to the dimension of the attractor than

to the presence of hyperchaos in contrast to the conjecture by Thomas, et al. [18].

Similar behavior has been observed in delay differential equations [19], convection models

governed by partial differential equations [20], lattices of coupled logistic maps [21, 22],

artificial neural networks [23], and competitive Lotka-Volterra models [24].

The detailed behavior of this case near the onset of chaos is shown in Fig. 5. At a value

of a = 1.10, the system has already period-doubled twice and exhibits a 4-cycle. When

a reaches about 1.10893 without further period doubling, a Neimark-Sacker bifurcation

[25, 26] occurs, leading to the appearance of a drift ring (a 2-torus in the corresponding

flow) as evidenced by λ1 = 0 and DKY = 1. The drift ring undergoes successive period

doublings, followed by a finite region of chaos with λ1 > λ2 = 0 beginning about a

= 1.13577 before the onset of hyperchaos with λ1 > λ2 > 0. One of the Lyapunov

exponents tends to remain at zero even after the onset of chaos, suggesting the existence

of a neutrally stable global manifold even in the presence of chaos and hyperchaos.

The route to chaos is exhibited differently by the attractors in Fig. 6. The plot of xn

versus xn−50 in the upper left is a zoom into the vicinity of one of the points in the four-

cycle just after the Neimark-Sacker bifurcation occurs. The succession of images shows
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a circular drift ring growing to a rectangular shape and then period-doubling before the

onset of chaos. The bifurcations of the drift ring to periods 2, 4, and 8 occur at a ∼=
1.12991, 1.134524, and 1.1357040, respectively, implying a Feigenbaum number of 3.91 ±
0.01, which is similar to but possibly different from the value of δ = 4.669201609. . . for

unimodal maps with a quadratic maximum [27]. Note that the plots indicate a homoclinic

tangle [28] near the corners of the rectangle as the onset of chaos is approached.

7. Global Bifurcations

The study of global bifurcations and multiple attractors in high-dimensional systems

is still in its infancy [29, 30]. The system described here provides an opportunity to study

such bifurcations in a particularly simple mapping. For this purpose, we characterize an

attractor by a single scalar value

〈r2〉 = lim
N→∞

1

N

N∑
n=1

(xn − xref )
2 (3)

which is the mean square deviation (the variance) of the attractor from the reference

point xref projected onto one axis of the time-delay embedding space. Except for a set

of measure zero, any choice of xref will give a unique and different value of 〈r2〉 for each

attractor. For fixed parameters and many different initial conditions, multiple coexisting

attractors will be indicated by values of 〈r2〉 that cluster around distinct values. With

two different reference points, even the small potential degeneracy could be resolved by

plotting the respective values in a plane, with each attractor having values that cluster

near a point in the plane. Abrupt changes in the value or slope of 〈r2〉 as a parameter is

varied will indicate a discontinuous (catastrophic or subcritical) or continuous (subtle or

supercritical) bifurcation, respectively. For the study here, the reference point was taken

as xref = b/2a (the minimum of the parabola in Eq. (1)) and initial conditions were

chosen from a normal random distribution with mean xref and variance 1.0, although

other choices give similar results.

Figure 7 shows 〈r2〉 versus a for b = 0.1 and b = 0.3 with d = 100. For the smaller

value of b, there is a single attractor for all values of a, but for b = 0.3, there is a range of

a from about 0.4 to 0.8 where multiple attractors coexist, and they are most numerous

near the onset of chaos. Figure 8 shows the relative probability for 8000 cases with

various values of 〈r2〉 for 0.6 < 〈r2〉 < 0.73 with a = 0.7, b = 0.3, and d = 100, indicating

the presence of at least seven distinct attractors. A closer examination indicates that

each of these seven cases is really a cluster of distinct but similar attractors, totaling at

least sixteen cases. Some of these attractors have very small basins of attraction since

they occur infrequently or have very similar values of 〈r2〉, which makes it difficult to be

confident that they are distinct.

Figure 9 shows four of the most common of these coexisting attractors. Three of them

are weakly chaotic (λ1 ∼ 0.002), but the one in the upper right is a period-4 drift ring

with λ1 < 10−8 (and presumably zero). Some of the attractors, such as the two at the
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bottom of Fig. 9, look almost identical but are clearly distinct, as evident by the very

different values of 〈r2〉 and the largest Lyapunov exponent.

This behavior may represent a new route to chaos through “attractor spawning.”

Figure 7 indicates that these attractors appear gradually as their basins of attraction

grow slowly or as they gradually separate from one another. The attractors coalesce into

a single strange attractor once the chaos is fully developed, and all bounded orbits then

have initial conditions that lie within its basin of attraction.

Of course Eq. (3) is only one of many possible ways to characterize an attractor.

The largest Lyapunov exponent λ1 could serve as another, and its value for each of

the four attractors is shown in Fig. 9. However, it is more difficult to calculate, and

it tends to converge more slowly. Furthermore, it would be useless for distinguishing

quasiperiodic attractors (tori) since they all have λ1 = 0. The full spectrum of Lyapunov

exponents could also be used to characterize an attractor, but that would be even more

computationally demanding.

8. Summary

Simple systems such as the one described here are useful for exploring the tran-

sition from low-dimensional and high-dimensional chaotic systems. The characteristic

intricate bifurcation structure and periodic windows in the midst of chaos gives way to

a smoother variation and more robust behavior as the dimension increases, especially in

the chaotic regime. The Kaplan-Yorke dimension increases linearly with system dimen-

sion, but the largest Laypunov exponent and metric entropy remain relatively constant.

The correlation dimension is a relatively constant fraction of about 98% of the Kaplan-

Yorke dimension. The period-doubling route to chaos that is common at low dimension

transitions to a quasiperiodic route as the dimension increases. A method for identifying

global bifurcations is described, and it shows the existence of a large number of coexisting

attractors near the onset of chaos, suggesting a new route to chaos in high-dimensional

systems.
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[2] M. Hénon, A two-dimensional mapping with a strange attractor, Comm. Math. Phys.
50 (1976) 69-77.

[3] T. Buchner and J. J. Zebrowski, Logistic map with a delayed feedback: Stability of a
discrete time-delay control of chaos, Phys. Rev. E 63 (2001) 016210 [7 pages].

[4] R. May, Simple mathematical models with very complicated dynamics, Nature 261
(1976) 45-67.

[5] R. H. Abraham and C. D. Shaw, Dynamics: the geometry of behavior, Part 4:
bifurcation behavior, Aerial Press, Santa Cruz, CA, (1988).

[6] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Determining Lyapunov
exponents from a time series, Physica D 16 (1985) 285-317.

[7] M. Misiurewicz, Absolutely continuous measures for certain maps of an interval, Publ.
Math. I.H.E.S. 53 (1981) 17-51.

[8] G. Rowlands, Non-linear Phenomena in Science and Engineering, Horwood, Chichester
(1990).

[9] J. Kaplan and J. Yorke, Chaotic behavior of multidimensional difference equations, In
Functional differential equations and approximations of fixed points, Lecture Notes in
Mathematics, Vol. 730 (ed. H. –O. Peitgen and H. –O. Walther), pp. 228-237, Springer,
Berlin (1979).

[10] Ya. B. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, Russian
Mathematical Surveys 32 (1977) 55-114.

[11] E. F. Manffra, H. Kant, and W. Just, Periodic orbits and topological entropy of
delayed maps, Phys. Rev. E. (2001) 046203 [6 pages]

[12] P. Grassberger and I. Procaccia, Characterization of strange attractors, Phys. Rev.
Lett. 50 (1983) 346-349.

[13] J. C. Sprott and G. Rowlands, Improved correlation dimension calculation,
International Journal of Bifurcation and Chaos 11 (2001) 1861-1880.

[14] J. D. Farmer, E. Ott, and J. A. Yorke, The dimension of chaotic attractors, Physica
D 7 (1983) 153-180.

[15] L. -S. Young, Dimension, entropy, and Lyapunov exponents in differentiable
dynamical systems, Physica A 124 (1984) 639-646.

[16] F. Ledrappier and L. -S. Young, The metric entropy of diffeomorphisms, Annals of
Mathematics 2 (1985) 509-574.

[17] K. E. Chlouverakis and J. C. Sprott, A comparison of correlation and Lyapunov
dimensions, Physica D 200 (2004) 156-164.

[18] R. Thomas, V. Basios, M. Eiswirth, T. Kruel, and O. E. Rössler, Hyperchaos of
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Fig. 1 Regions of dynamical behaviors for Eq. (1) for various values of the time delay.
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Fig. 2 Attractors for the system in Eq. (1) with a = 1.6 and b = 0.1 for various values of the
time delay.
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Fig. 3 Kaplan-Yorke dimension and Lyapunov exponents for the system in Eq. (1) with a =
1.6 and b = 0.1 versus time delay.
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Fig. 4 Kaplan-Yorke dimension and Lyapunov exponents for the system in Eq. (1) with b = 0.1
showing the route to chaos at low dimension (d= 2) and high dimension (d = 100).
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Fig. 5 Kaplan-Yorke dimension and a few of the largest Lyapunov exponents for the system in
Eq. (1) with b = 0.1 and d = 100 showing in more detail the onset of chaos.



32 Electronic Journal of Theoretical Physics 3, No. 12 (2006) 19–35

Fig. 6 Attractors for the system in Eq. (1) with b = 0.1 and d = 100 showing period doubling
of a drift ring approaching the onset of chaos.
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Fig. 7 Global bifurcations and multiple attractors for two values of b with d = 100.
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Fig. 8 Relative probability of different values of 〈r2〉 for a = 0.7, b = 0.3, and d = 100, indicating
the existence of at least seven distinct attractors.
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Fig. 9 Four coexisting attractors for a = 0.7, b = 0.3, and d = 100 near the onset of chaos.


