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Results regarding probable bifurcations from fixed points are presented in the context
of general dynamical systems (real, random matrices), time-delay dynamical systems
(companion matrices), and a set of mappings known for their properties as universal
approximators (neural networks). The eigenvalue spectrum is considered both numeri-
cally and analytically using previous work of Edelman et a/. Based upon the numerical
evidence, various conjectures are presented. The conclusion is that in many circum-
stances, most bifurcations from fixed points of large dynamical systems will be due to
complex eigenvalues. Nevertheless, surprising situations are presented for which the
aforementioned conclusion does not hold, e.g., real random matrices with Gaussian
elements with a large positive mean and finite variance.
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1. INTRODUCTION

Determination of the types of random matrices that constitute a physically relevant
set depends markedly on the field of study. From the perspective of those interested
in quantum mechanical phenomena (e.g., nuclear physics), one might be led to
believe that random matrices that are not unitary or Hermitian are of no particular
physical interest.?®3 However, if one were interested in dynamics a la Poincaré,
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where an understanding of the derivative along an orbit is of utmost importance and
where Lyapnov exponents are the key quantities of interest; then matrices of prime
concern are real random matrices from the general linear group (the dissipative
case) or the special linear group (the non-dissipative case). The interest in real
random matrices arises because they form the linear portion of the derivative or the
tangent space of a dynamical system at a given point along a trajectory.(!:37:42:45.46)
From a dynamical reconstruction perspective, where time-series data are used,!)
it is companion matrices and thus polynomials with random coefficients that are of
interest. Because we are concerned with dynamical systems in general, specifically
probabilities of bifurcations from fixed points and the factors that determine those
probabilities, we will focus on real random matrices with various distributions
followed by a practical construction using “universal approximators” with random
weights.

To place the current study in context, consider first the following background.
Doyon et al.'® argued that the most likely first bifurcation and route to chaos given
a particular set of dynamical systems was that of the Ruelle-Takens quasi-periodic
route to chaos based upon the random matrix results of Girko®? (for other useful
versions of this random matrix result see Edelman,"® Bai,(!?) and Kanzieper®®).
Likewise, Sompolinsky et al.**) showed that as the dimension of a dynamical
system is increased, the location of the bifurcation from a fixed point decreased
toward zero; and the routes to chaos region of parameter space subject to parameter
variation decreased in length. Doyon ef al. and Sompolinsky et al. both considered
neural networks with a single hidden layer (a single layer of neurons) whose input
layer was entirely replaced by its output layer at each time-step (i.e., “vector”
neural networks). However, Sompolinsky ef al. considered the continuous-time
case where as Doyon et al. worked in discrete time—both constructions yielded
a similar set of conclusions. Utilizing the local chaos hypothesis of Amari'”) as
well as the addition of Gaussian noise to the inputs, Moynot et al.*? rigorously
outlined and proved a mean-field theory for the aforementioned vector networks.
In previous publications(® the authors considered time-delay neural networks such
as those presented in the work of Hornik et al. 3! that have been found to be uni-
versal approximators (i.e., they can approximate C” (» > 0 mappings and their
derivatives on compact, metrizible sets) and also came to some similar conclusions
despite the significant differences in the constructions. Differences of note include
the fact that the local chaos hypothesis does not apply to the time-delay neural
networks and the form of the derivative matrix (1 — jet) is a companion matrix
rather than a full matrix which has a significant effect on analytical arguments that

or unitary character, is of no immediate physical interest, for their eigenvalues may lie anywhere on
the complex plane.” He later asserts that these matrices are, nevertheless, of interest in their own
right.
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can be made. In Ref. 4 the authors claimed that as the dimension of the dynamical
system is increased, flip, fold, or any bifurcations due to real eigenvalues, and
strong resonance bifurcations will be vanishingly rare and the route to chaos from
a fixed point in parameter space will consist of periodic orbits with high-period
(>4) and quasi-periodic orbits. The basic idea of the above arguments follows from
the matrix theory of Girko,?" Edelman,'> Bai,'” and Kanzieper®® and is the
following: given a square matrix whose elements are real random variables drawn
from a distribution with a finite sixth moment,* in the limit of infinite dimensions,
the normalized spectrum (or eigenvalues) of the matrix will converge to a uniform
distribution on the unit disk in the complex plane. For matrices of finite dimension,
the measure of the eigenvalues on the unit disc is not absolutely continuous with
respect to Lebesgue measure. Nevertheless, if the Jacobian of the map at the “first”
bifurcation point (i.e., the bifurcation from the fixed point) is a high-dimensional
matrix whose elements have a finite sixth moment, it is reasonable that the bifurca-
tion would be of type Naimark-Sacker (via a complex eigenvalue) instead of a flip
or fold (via a real eigenvalue), with probability approaching unity as the dimension
goes to infinity. Of course this intuition does not directly apply to the time-delay
circumstance because the derivative matrix is not full; thus, for this circumstance
the theory of zeros of random polynomials of Edelman et al.('®) is more directly
applicable.

Each of the studies mentioned above consist of a statistical sampling of a space
of mappings via a weight structure imposed upon those mappings. In a sense, it is
a statistical sampling of the effects that the weight matrices have on the dynamics.
The evidence discussed in the former paragraph leads to at least three important
questions: how robust are the results with respect to the measures imposed upon the
weight matrices; given that there do exist observable period-doubling bifurcations
in high-dimensional dynamical systems, how does this occur given the random
matrix style arguments; and how can these results be connected and compared with
real world systems—what are the links with the natural world? Addressing the first
two questions is a matter of carefully studying how the results from random matrix
theory apply specifically to what has been observed computationally. Discussion
of the third issue lies with providing a construction that yields comparison with
real-world data.

As we will see, the distributions and perturbations of the distributions of
the elements of random matrices can have profound and surprising effects on
a bifurcation sequence while having negligible effects regarding the generality
of the proven theorems. Thus, perturbations of the weight distributions of the

4While nearly all random distributions have a finite sixth moment, there are important distributions
that do not have a finite sixth moment; a notable example of a distribution without finite sixth moment
is the Levy probability distribution.
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computationally studied systems can be made in such a way that significantly
alters the conclusions of the random matrix arguments as applied to bifurcation
theory. This will provide answers to why and how period-doubling sequences can
be observed in high-dimensional systems. This of course does not marginalize the
results discussed above; it only qualifies them, for despite the effects we observe,
the former results remain quite general.

An issue that we will not outrightly address in this work is the effect of the ele-
ments of the Jacobians being iid, or independent, versus Jacobians whose elements
are correlated. In this study, we impose an iid weight structure and observe the out-
come and consequences of these weight structures. This imposes effects on what
is observed. For instance, when identifying Gaussian matrices with the Jacobian,
the trace of the Jacobian is mean zero with variance that scales like d'/2; thus, there
are conservative systems (trace zero), and an equal number of expanding and con-
tracting dynamical systems (positive and negative traces respectively). However,
because we are only observing fixed point behavior, this will likely have little effect.
But, the point is, the distribution defines what is observed. We could instead impose
conditions, such as a negative trace on the Jacobian, which will (likely) induce cor-
relations between the weights, and then observe the implications. One particular
implementation of this would be to train neural networks on data, thus inducing cor-
relations between parameters. The most important issue, however, is understanding
how, and for what systems, the correlations matter. To achieve an understanding of
this, it is likely both of the aforementioned techniques will need to be implemented
and compared. Thus, this paper can serve as a first step towards understanding how,
when, and for what natural systems, correlations between elements of the Jacobian
matter.

We will begin with a general study of linear dynamical systems at fixed
points. Generically, all dynamical systems at stable fixed points can be thought of
as linear maps via the implicit function theorem. We will identify the Jacobian
of the aforementioned dynamical systems with random matrices with various
distributions. We will follow this approach, adopting the framework of random
polynomials which can be likened to companion matrices. The linear part of the
derivative of time-delay dynamical systems is that of a companion matrix. Thus,
we will study linear, time-delay dynamical systems subject to weight distributions
of the coefficients of the characteristic polynomial. The final framework we will
use—which was begun in Ref. 6—is that of scalar, time-delay neural networks
that are commonly used to reconstruct a dynamical system from empirical, time-
series data. This will begin to forge a connection with natural systems because
networks such as the ones we study can be used to fit other data sets, and the
weight distributions of the trained networks can be compared with those from
more theoretical distributions.
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2. CONSTRUCTION

Begin with the space of discrete-time, C" (r > 0, » € N) dynamical sys-
tems that map compact subsets (attractors) U C RY (with boxdim(U) = D) to
themselves, with a single real parameter given by:

F:RxU—->U (1)

This is an infinite-dimensional (function) space that admits no sensible measure
and thus no direct means of making statements regarding probability. While the
notion of prevalence®>334% was invented to address this problem, we will refrain
from using this notion and will instead impose measures on function spaces by
considering explicit forms of mappings.

Generic dynamical systems with a single parameter have three codimension
one’ bifurcations, A, € R = £1 (fold and flip bifurcations) and [Ay.x| € C = 1
(Naimark—Sacker bifurcations).*®-> Most of the higher codimension bifurcations
are combinations of these three codimension one bifurcations occurring simulta-
neously. In this paper, to determine the bifurcation type we always begin with an
initial condition, compute the fixed point, and then calculate the eigenvalues of
the Jacobian at the fixed point.

2.1. Discrete-Time Dynamical Systems
Consider the space of mappings defined by
xr = Fr(x,—1) = €Ax,—1 + €G(x;-1) (2)

where 4 € R, ¢ € R is non-negative, and G € C” is non-linear and represents
the higher order terms. For € small, it suffices to consider only x, = Fr(x,_;) =
€ Ax,_1; we will denote this space as T(R"). Imposing a measure on the elements
of A imposes a measure 7(R"). This construction allows both the ability to put a
sensible measure on a space of dynamical systems at fixed points that can undergo
bifurcations and the ability to use random matrix theory to make probabilistic
statements regarding bifurcation probabilities.

2.2. Discrete-Time, Time-Delay Dynamical Systems

As previously mentioned, many time-dependent natural systems are studied
via time-series data. That time-series data can be used to reconstruct a dynamical
system is addressed in Ref. 48; we will discuss this in more depth in Sec. 2.3.1.
Note that discrete-time, time-delay dynamical systems, denoted 7;;(R"), can be

3 The number representing the codimension of the bifurcation is the same as the number of parameters
for which a bifurcation point occurs simultaneously.
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written in the form given in 2 but with special constraints put on 4. Specifically,
we consider fto be explicitly defined:

Verr = fOr oo Yiea) 3
where fis C” and y; € R. For such systems, “4” is a companion matrix given by

aq ar as .. Ag—y  ag—1 ag
1 0 0 ... 0 0 0
Dfrx)=|0 1 0 0 0 0

o o0 o ... O 1 0
where the a;’s are associated with the partial derivatives a; = af%’k Imposing a
measure on the a;’s imposes a measure on 7;;(R") in the standard way.

2.3. Universal Approximators

To study C” in a more general setting it is useful to consider a set of functions
that can universally approximate a properly chosen time-delay map (f) of F (we
will discuss this more in Sec. 2.3.1). This approximation can be done with the
space of discrete-time, time-delay, feedforward neural networks given by:

n d
x; = Bo+ Z Bitanh | sw;o + s Za),«jx,,j @)

i=1 j=1

which is a map from R to R. Here n is the number of hidden units (neurons),
d is the number of time lags which determines the system’s input (embedding)
dimension, and s is a scaling factor on the connection weights w;;. The initial
condition is (xy, x2, .. ., X4), and the state at time ¢ is (x;, X;41, - . . , X;4-4—1). The
approximation theorems of Ref. 31 and well known time-series embedding results
Refs. 48, 52 together establish an equivalence via an embedding (given properly
chosen weight distributions) between this class of neural networks and the general
dynamical systems of interest here.)

Each neural network can be associated with a point in the parameter space.
Thus, imposing a probability measure on parameter space imposes a measure on
the space of neural networks. We sample the (n(d + 1) 4 1)-dimensional parame-
ter space taking (i) B; € [0, 1] uniformly distributed and rescaling them to satisfy
Y7, B? = n, (ii) w;; as normally distributed with zero mean and unit variance,
and (iii) the initial x; € [—1, 1] as uniform. We will focus largely on behavior
types as a function of the parameter s, which can be interpreted as the standard
deviation of the w weight matrix, and the embedding dimension d. Note that for
x ~ 0, tanh(x) is nearly linear. Thus, choosing s to be small forces the dynamics
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to be mostly linear, yielding fixed-point behavior. Increasing s yields a route to
chaos.*% Due to this, s provides a bifurcation parameter that sweeps from linear
to highly nonlinear parameter regimes. In this paper we will, however, only con-
sider the networks up to the first bifurcation. Because scalar neural networks are
discrete-time, time-delay mappings, the local derivatives are companion matrices.
For the space of mappings we consider, the a;’s are given as:

ay = = Z Biswigsech? | swig + s Z WijXe—j )

8xtk
j=1

2.3.1. Neural Network Approximation Theory

To understand how the neural networks in our study fit into the dynamical
systems framework, we must consider two questions: (i) is there an equivalence
between time-delay dynamical systems and non-time-delayed dynamical systems;
and (ii) what are the approximation capabilities of neural networks?

The answer to the first issue given by Takens—and more tailored to our
construction, by the results of Sauer et al. *®—is yes with certain constraints on
the non-time-delayed dynamical system, /. Namely, the box-counting dimension
of the set of periodic orbits of period p, (4,) must be less than £, and DF, must
have distinct eigenvalues. These constraints are likely satisfied since we do not
consider portions of parameter space that easily yield periodic orbits.

The relationship of general time-delay dynamical systems is given in Fig. 1,
in which F is a C” dynamical system, £ : U — R is a “measurement function,”
(E is a C* map) embedding g : U — R?¥*! is explicitly given by:

g2(x)) = (E(x,), E(F(x,)), ..., E(F*(x,))) (6)

In a colloquial, experimental sense, F just keeps track of the observations from the
measurement function £, and, at each time step, shifts the newest observation into
the 2d + 1 tuple and sequentially shifts the scalar observation at time # (y;) of the
2d + 1 tuple to the ¢t — 1 position of the 2d + 1 tuple. In more explicit notation,
F is the following mapping:

(yls s y2d+1) = ()’27 e Y2d+1, g(F(g_l(yl» s y2d+1)))) (7)

where, again, F = go Fog™!

The response to the question regarding the approximation capabilities of
neural networks is significantly more complicated due to two particular issues—
the networks have only finitely many parameters, and the induced measure on the
weights of the neural networks determines what phenomena will be fit stably. That
networks we consider have finitely many parameters implies there will never exist
a one-to-one or onto correspondence between the space of C” diffeomorphisms
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F:U—U

.U——R2d*+! .U——R24*1
gl im(g) —U & g

(E®), (EF@)), ... EEF “{p) &

Fig. 1. Schematic diagram of the Takens embedding theorem and how it applies to our construction.

and neural networks. The best that can be achieved is a density in the relevant
function space with infinitely many parameters. This is a fundamental functional
approximation issue that has no chance of being improved; nevertheless, this issue
is clearly not terminal for our study. The more interesting problem is that of the
induced measure—specifically, how the space of neural networks with the induced
measure on the parameter space represent approximates of the dynamical systems
that satisfy the technical restrictions of Sauer et al. Further, what subsets of the
space of C" dynamical systems are being selected out by such a measure (or even
our measure) is a very interesting question. There surely exists a measure on the
space of parameters of neural networks such that (given the dimension is high
enough) the selected neural networks will approximate and correspond to a set of
the C” mappings that satisfy the restrictions of Sauer et al. In fact our measure
often satisfies this criterion given certain restrictions. Such issues hopefully can
be addressed by applying information geometry to the parameter space of neural
networks following work of Amari.®) However, a clear understanding of what
portion of the C" mappings we are sampling is currently difficult to discern.

Setting the issues of a finite number of parameters aside and leaving any
constraints on the weights behind, the neural networks we utilize can approximate
F and its derivatives (to any order) to arbitrary accuracy.(%3" Precise statements
of the neural network approximation theorems require machinery from functional
analysis (see Ref. 2) and is covered in detail in the papers by Hornik et al. and is
discussed in Ref. 5. The neural networks can approximate mappings from Sobolev
spaces, S/ (U, 1), such as the one defined here:
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Definition 1. For any positive integer m and 1 < p < 0o, we define a Sobolev
space S} (U, L) as the vector space on which || - ||, p is a norm:

Sy U, »)={feC"(U) [D*fllpusr<oo forallla| <m}  (8)

Equipped with the Sobolev norm, S7} is a Sobolev space over U C R

Neural networks can also approximate most C” mappings and their derivatives on
compacta. However, if the mapping is piecewise differentiable, the neural networks
must be fit independently on both sides of the discontinuity. Nevertheless, neural
networks form a set of “universal approximators”—they can approximate nearly
any imaginable mapping.

In this work we are not interested in the approximation of a particular map-
ping, but rather we are interested in approximating the C” function space via a
statistical study. Thus, it is the density in various function space results we are
more concerned with; again, recall one of the points of this construction is to be
able to put a measure on a diverse function space. It is important to note that with
n < oo, density of the space of neural networks in C" is not achieved. Thus, for
finite n, we are instead studying a “grid” of mappings on C” that approach density
asn — oo.

2.3.2. The Implicit Measure on the Neural Networks

The probability distributions we impose on the space of neural networks form
a product measure on R"@*+2+1__this means that all the weights are independent
and uncorrelated. The weights of ensembles of neural networks that have been
trained will likely be correlated, and thus the probability measures on the pa-
rameter space will be joint probability distributions instead of product measures.
This makes little difference to the essence of this work, but hopefully will make a
big difference in the results, given the diversity observed in natural systems. The
choice of a relatively uniform product measure, which was chosen for its simplic-
ity, will introduce a bias into our results that is unavoidable in such experiments;
the very act of picking networks out of the space will determine, to some extent,
our results. Examples of how important this is will be revealed as we consider
the numerical results. Unlike actual physical experiments, we could, in principle,
prove an invariance of our results to our induced measure; however, this is diffi-
cult and from our perspective would be a very unlikely result. It suffices for our
purposes to note specifically what our measure is (the weight selection method),
and how it might bias our results. The selection method we use will include all
possible networks, but clearly not with the same likelihood. In the absence of a
theorem with respect to an invariance of our induced measure, we must be careful
in stating what our results imply about the ambient function space. It is worth
noting that we are, in spirit, attempting to use the prevalence construction of Hunt
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et al.(3%3% This would actually allow for rigorous, measure theoretic statements
on the full C” space. However, a full utilization of this framework is beyond the
scope of this work.

2.3.3. Why Scalar Neural Networks?

Time-delay scalar neural networks are enticing to study because they allow
for a combination of the perspectives of functional analysis, topological dynamics,
and the practical, real world. From the functional analysis perspective, the neural
networks we study are diverse universal function approximators—they can ap-
proximate nearly any mapping one might wish to approximate.®! Thus, studying
the space of neural networks represents a practical study of a common space of
mappings used by time-series analysts to reconstruct unknown dynamics from
time-series data.(!>3>3) From the perspective of topological dynamics, if one
wishes to study general dynamical systems, there is always the issue of how to
relate such studies to the natural world that they were originally meant to model.
Studying time-delay dynamics as they relate to C” dynamical systems is a par-
tial connection or link between abstract dynamics and the natural world since
the natural world is often studied with time-series data.*3) Yet there is the issue
of relating time-delay dynamics to a specific natural system or class of systems.
Nevertheless, one of the key sources of the problem of relating the space of neural
networks to a space of general dynamical systems is the implied measure on the
weight space. This is also where the practical link between the natural world and
general time-delay dynamical systems can be found. The weight distributions can
form a clear link between the abstract dynamics world via embedding and function
approximation of real time-series data from natural phenomena. If the dynamics
that arise from the space of neural networks can be understood in terms of their
weight distributions and the neural networks can be fit to data from nature—the fit
weight distributions can be compared with the dynamics dependent on the weight
distributions. Thus, aside from being an extremely malleable class of dynamical
systems and universal approximators in their own right, neural network weight dis-
tributions are a possible link between the abstract world of mathematical dynamics
and the natural world.

3. RANDOM MATRIX THEORY

Our discussion of random matrix theory will be limited to the circular law
of Girko,?" Bai,'” Edelman,!® and Kanzieper.*® In general, circular laws in
random matrix theory relate the distributions of elements of a random matrix to
the distribution of those matrices’ eigenvalues on a disk, usually centered at the
origin, in the complex plane. We will begin by discussing the circular law outright
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and follow this with a discussion of the expected value of real eigenvalues of a
random matrix, and various related results. In both of the sections that follow, all
of our matrices will be d x d matrices with real elements drawn from a random
distribution yet to be specified.

Recall that random matrix theory can be applied to dynamical systems at
fixed points because dynamical systems at fixed points can be identified with
random matrices via the linear derivative map of the dynamical system f where
each of the terms in the matrix is given by a number from a random distribution.
This is quite general—given that the range and domain of the dynamical system
have the same dimensions. Any generic, discrete-time, d-dimensional dynamical
system at a fixed point can be recast as a linear map g = Ax where 4 isad x d
matrix via the implicit function theorem. Thus, studying the spectrum of random
matrices is, in a way, equivalent to studying bifurcations of dynamical systems
at non-degenerate fixed points with respect to the variation of a linear scaling
parameter; because the spectrum of D f'will yield the entire geometric structure

of f.

3.1. The Circular Law

The study of the circular law has a long, somewhat colorful, and debated his-
tory. In the early 50’s it was conjectured that the empirical spectral distribution (i.e.,
the distribution of eigenvalues) of d x d matrices with independent and identically
distributed elements that were normalized by \/LE’ converged to a uniform distribu-
tion on the unit disk in the complex plane. This is what is refered to as the circular
law. In 1965 Ginbre®®® proved this conjecture in the case where the random matrix
is complex and has elements whose real and imaginary parts are independent and
normally distributed (i.e., the real and imaginary parts are independent normals).
V1. Girko published, in 1984,21 1994,23 1997 2425 and again in 20042628
papers proving the circular law for real, random matrices. Girko’s first circular
law roughly states that as d — oo, the distribution of JLJ tends to uniformity on
the unit disk for matrices with Gaussian elements. This result, which implies that
as d — oo, the probability of an eigenvalue being real must go to zero, is a key
ingredient towards showing that local bifurcations from fixed points due to purely
real eigenvalues will be unlikely. It is this result that limits the kinds of generic
local bifurcations from fixed points we can observe in the infinite-dimensional (or
near-infinite-dimensional) limit relative to certain measures imposed on the space.
One particularly unfortunate problem with Girko’s measure (as well as Edelman’s
and Bai’s) is that it is not absolutely continuous with respect to Lebesgue measure
when the dimension of the matrix is finite (the infinite-dimensional limit is abso-
lutely continuous). In particular, for finite-dimensional matrices, the probability
of an eigenvalue being real with respect to Edelman et al. is higher than one
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might expect. Thus, convergence in distribution to uniformity on the unit disk is a
non-trivial issue. Nevertheless, Edelman(!? derived a formula for the expectation
value of real eigenvalues in Girko’s measure in finite dimensions; we will discuss
that result in Sec. 3.2. In the process of deriving this expectation formula, Edelman
also proved Girko’s 1984 result. In 1997, Bai'!?) provided an alternate proof of the
circular law for real random matrices with a significantly weaker hypotheses than
either Edelman or Girko in his 1984 work. Bai’s result requires that the elements
of the matrix only be from a distribution with only a finite sixth moment (see Ref.
10 (page 496)). We will state a key result that is a corollary of the more powerful
results for clarity (for the most relaxed (but complicated) hypothesis see either
Refs. 26-28 or 10).

Theorem 1 (Circular law (Girko)). Suppose that the entries of an d x d matrix
M with moments of order 4 + §(8 > 0) bounded whose entries do not necessar-
ily have existent densities. Then, with probability 1, the empirical distribution
wa(x, y) tends to the uniform distribution over the unit disk in two-dimensional
space.

Understanding the difference between the results of Bai, Girko, Edelman, the
convergence of the density of igenvalues on the unit disc, and how this is related
to the eigenvalue with the largest magnitude will be the focus of Secs. 6.1 and 6.2.
One issue that is of little importance from a random matrix theory perspective, but
will prove to be very important from a bifurcation theory perspective is restrictions
on the mean of the distribution of the matrix elements.

3.2. Expected Value of Real Eigenvalues and Related Results

The circular law will provide the intuition for the conjecture we will state
shortly, but it is difficult to use for our purposes, and provides little practical
understanding of how the distribution of eigenvalues evolves and converges to
uniformity as the dimension of the matrix is increased. Luckily, Edelman essen-
tially evaluated the integral formula of Girko (in spirit, at least) and arrived at a
formula for the expected number of real and complex eigenvalues as a function
of the dimension of the matrix. Edelman has proved the following formulas and
theorems which will be useful and relevant for our work: a formula for the density
of real eigenvalues in the complex plane as a function of the dimension of the
matrix; a formula for the density of non-real eigenvalues on the complex plane
as a function of the dimension of the matrix; a formula for the expectation value
of real eigenvalues of a matrix as a function of the dimension of that matrix; and
a theorem that states that the real eigenvalues converge in distribution to that of
a uniform random variable on [—1, 1] in the limit of an infinite-dimensional ma-
trix. For completeness, we will reproduce the aforementioned results, noting that
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all the statements that follow are relevant for matrices such that 4 € R?’ where
aj; € N (0, 1)

We will begin with two definitions, the true density of real eigenvalues of
a real random matrix and the probability density of real eigenvalues of the said
random matrix. These can be found in Ref. 17.

Assume 1 is a real eigenvalue of a fixed, real d x d matrix 4. The true density
of real eigenvalues, or the expected number of real eigenvalues per unit length can
be defined:

X (d—1 2
» 1 [F(d—l,)\z)] Ad-lle s F(T))’% 9
Pd = 7 —
Van | Ta-1 r@2t | r(4L)
or, in a different light:
d
pa(x) = _EA#(oox)(A) (10)

where #_ x)(4) = number of real eigenvalues of 4 < x, £, denotes the expec-
tation value for a random 4 and I is the standard gamma function. Moreover, the
probability density of A; € R, f;()) is given by:

22 - 22
d—1,22 d—1),-% @y
Ej\Var L T@-1) r(4)2! p(<_)
or more simply:
Ja(A) = —pd()\) (12)

where E; denotes the expected number of real eigenvalues of the d x d random
matrix.

Integrating p, along the real line provides the expected number of real eigen-
values. Edelman provides several formulas from such a calculation, the simplest
being summarized by the asymptotic series given in Corollary 5.2 of Ref. 17:

oo [ (3 327 49 (] 13)
TNy 8d 12842 ' 1024d® ' 3276d* a5

Again, E, is the expected number of real eigenvalues for a real, d x d random
matrix. The manner in which the measure is not absolutely continuous (with
respect to Lebesgue measure) for finite-dimensional matrices is highly relevant to
our results. In particular, the absolute continuity with respect to Lebesgue measure
fails along the real line and results in an expected density of real eigenvalues that is
higher than other chords of length 2. For a full discussion, see Ref. 17. Nevertheless,
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this is not a pathological problem because the distribution of real eigenvalues on
the real line is uniform as per the following corollary:

Corollary 1 (Corollary 4.5 Ref. 17). If A; denotes a real eigenvalue of an d x d

random matrix, then as d — 00, the normalized eigenvalue % converges in

distribution to a random variable uniformly distributed on the interval [—1, 1].

Besides the results regarding the real eigenvalues, Edelman also provides
information regarding the density of non-real eigenvalues:

Theorem 2(Density of Non-Real Eigenvalues: Theorem 6.2 Ref. 15). The den-
sity of a random complex eigenvalue of a normally distributed matrix is:

2 2 2
pa(x,y) = @yey “erfe(yV2)ea—a(x* + y?) (14)

where eq(z) = ZZ:O ;—/, and erfc(z) =2/ fzoo exp(—t?)dt, the complementary
error function. Integrating this over the upper half plane gives the number of
non-real eigenvalues.

All of these results can be nicely concluded with the following two theorems
regarding the circular law.

Theorem 3 (Theorem 6.3, Ref. 15). The density function p converges pointwise
to a very simple form as d — oo:

1 L 2492 <1
lim —p(x,7)=4{" 15
Jm, g P ) :o 24521 (13)
where pg is simply p as a function of X = \/LE and y = \/LE' Note that @ is a
randomly chosen normalized eigenvalue in the upper half plane.

Finally, Edelman’s version of the circular law can be proved using Theorem
3 and a central limit theorem.

Theorem 4 (Circular Law: Convergence in Distribution, Ref. 15). Let z denote
a random eigenvalue of A chosen with probability % and normalized by dividing

by Vd. As d — 00, z converges in distribution to the uniform distribution on the
disk |z| < 1. Furthermore, as d — 00, each eigenvalue is almost surely non-real.

4. RANDOM POLYNOMIALS AND COMPANION MATRICES

Let us recall again why we are concerned with the special case of random
polynomials; the linear part of the derivative of time-delay dynamical systems—the
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ones often used to fit real time-series data—are companion matrices. In particular,
given the companion matrix:

a a a3 aq—2 Aq-1 a4
1 0 O 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0

the corresponding characteristic polynomial—the equation whose solutions are the
eigenvalues of the above matrix—is a polynomial as given in Eq. (16). Thus,
the elements of a companion matrix (e.g., the a;’s) can be identified with the
coefficients of the characteristic polynomial of the given matrix. The results we
will discuss here briefly are from 4.1 while issues that arise due to computation of
eigenvalues from companion matrices can be found in Ref. 18.

4.1. Polynomials with Gaussian Coefficients

Let us begin with the polynomial
ao+a1x+a2x2+~-~+adxd (16)

where the a; coefficients are independent standard normals with mean zero. The
expected number of real zeros, E,.,;, as d — oo is given by the formula:

Eren(d) = 2 log(d) + €1 + -+ 01/ (7

where C; = 0.6257358072 (cf. Theorem 2.1 in Ref. 16 or 34). This formula is
calculated by integrating the true density which is given by:

1\/ I @) s

pa(x) = — (Z— 172 (M2 _1p
Careful analysis of Eq. (18) yields the limiting density of real eigenvalues—that as
d — o0, the density of real eigenvalues is concentrated at +=1. The expected value
of real roots is, of course, a crude measurement of interest as we are interested
in differentiating between bifurcations due to real and complex eigenvalues. The
density provides considerably more insight. Moreover, the convergence of the
density will have a significant impact on the probability of the first bifurcation as
we will see in Sec. 6 where we compare Eq. (18) with the numerical results.
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4.1.1. Polynomials with Gaussian Coefficients with Non-Zero Mean

The random polynomials is the only case we will consider for which there
are theoretical results regarding the convergence of the density of real zeros
for distributions with non-zero means. The effect of a non-zero mean on the
distribution of the coefficients of a random polynomial is neatly summarized by
the following theorem:

Theorem S. Consider a random polynomial of degree d with coefficients that are
independent and identically distributed normal random variables. Define m # 0
to be the mean divided by the standard deviation. Then, as d — 00,

1 C 2
Erear(d) = T log(d) + S Ty T T, log(|m|) + O(1/d) 19)

where C; = 0.6257358072 . . . as previously defined, and y = 0.5772156649 . . . is
Euler’s constant. Furthermore, the expected number of positive zeros is asymptotic
to

11, (I|m]
- —= —TI'[0, m 20
22erf(ﬂ+ [0. m’] 20)
The proof can be found in Ref. 16 (Theorem 5.3). Considering Eq. (19) and
comparing it with Eq. (17), one arrives at the comparison between ~ log(d) + é
for zero mean with ~ log(d) — log(|m|) asd — oo, the effect of the nonzero mean
is a shift of the log(d) curve by — log(|m|). This dependence can be seen in Fig. 2.

'(2/3.14)*10g(x)+2/(x*3.14)+0.6257 ——
(51/314) log(x)-(2/3.14)"
1/3.14)*

w
T

14)*log(10)+ -0.6263

expected number of real zeros

0 20 40 60 80 100
dimension

Fig. 2. A plot of Egs. (17) and (19) form = 1, 10.
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4.2. Real Zeros of Random Functions with Random Coefficients

A goal of this paper is to consider the probability of the type of bifurcation
from a fixed point in a class of neural networks that can be used to approxi-
mate time-series data from actual physical experiments. In Ref. 16 a remarkable
theorem was proved regarding sums of differentiable functions with random co-
efficients linking the distribution to the coefficients and the function type to the
distribution of real zeros. This theorem has a high degree of relevance to a study
such as ours since it offers the hope of applying to the class of mappings we are
considering.

Theorem 6. Let v(x) = (fo(x), ..., fu(x))T be any collection of differentiable
functions and ay, . .., ay be the elements of a multivariate normal distribution

with mean zero and covariance matrix C. The expected number of real zeros on
an interval (or measurable set) I of the equation

ao fo(x) +ar fi(x) + - +aqfa(x) =0 (21)

1
[ Sl iar, 2

where w is given by

C2u(x)
R TS (23)
In logarithmic derivative notation this is:
1 92 172
; / <8x 8y (log(v(x)rcv(y))|y=x:f)> dt (24)
I

There are many applications of this profound theorem presented in Ref. 16. One
of particular interest is an application to a trigonometric series such as

o0
> " ay cos(vb) + by sin(vih) (25)

k=0
where a; and by are independent normal random variables with mean zero and
variance 0. The density and, thus, the expected values of real zeros is quite easily
computed given Theorem 6. The density is constant and, therefore, the real zeros of
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the above random trigonometric sum are uniformly distributed on the real line. An
important point to note is the sharp difference between the trigonometric case and
the random polynomial case. Thus, different functional forms and distributions of
ay’s give very different distributions of real zeros of polynomials. These two results
show a sharp contrast regarding bifurcations from fixed points—the trigonometric
series above is likely to yield all real bifurcations; whereas, the standard random
polynomial case yields significantly more bifurcations due to complex eigenvalues.
Providing a similar analysis for neural networks like those given in Eq. (4) is
complicated by the sum inside the activation function and, therefore, is beyond the
scope of this paper. However, as we will discuss later, because neural networks can
approximate nearly any C” mapping which include both the random polynomials
and the trigonometric series, altering the distributions of the B;s and the w;;
will clearly yield very different densities of real zeros. A relation between the
distribution of the 8;’s and w;;’s will be the focus of Sec. 6.4.

5. A CONJECTURE REGARDING THE FIRST BIFURCATION
FROM A FIXED POINT

There are three generic, codimension-one, local bifurcations from a fixed
point in maps of dimension two or greater.'':3® These three bifurcations depend
on symmetries of the dynamical system, but generally they consist of: the flip bifur-
cation, corresponding to the largest eigenvalue being —1; the fold, corresponding
to the largest eigenvalue being 1; and the Naimark-Sacker,!*”) corresponding to
a complex conjugate pair of eigenvalues with modulus one. Edelman, Girko, and
Bai have all shown that in the infinite-dimensional limit, a real matrix with ele-
ments selected from a real Gaussian distribution, the normalized eigenvalues will
be distributed uniformly on the unit disk in the complex plane. Since the Naimark-
Sacker bifurcation corresponds to the bifurcation via a complex conjugate pair
of eigenvalues, a logical application of the circular law is to infinite-dimensional
dynamical systems whose Jacobian matrix has elements whose distribution has a
finite sixth moment. In this circumstance, the probability one bifurcation would
seem to be a Naimark-Sacker bifurcation. A conclusion along these lines will
prove incorrect as we will show in Sec. 6. The restriction of a finite sixth moment
will turn out to be too weak because lower-order moments can affect quantities like
the spectral radius or the eigenvalue with the largest modulus. Limiting ourselves
to the case where the matrix has real Gaussian elements with mean zero and unit
variance for which we have more restricted and detailed results will be fruitful. For
example, if the real eigenvalues concentrate near 1 and —1, we will run into prob-
lems, but Edelman (Corollary (1)) has shown that this circumstance will not occur.
Instead, the real eigenvalues will be distributed uniformly on the real axis. Results
akin to the aforementioned result will prove necessary for arguments involving
bifurcations. In the standard and general bifurcation sequence constructions, one
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would be concerned with a parameterized curve of matrices. In such a scenario
the matrices would not be independent along the curve in general. Surmounting
this obstacle is yet an open problem. However, in some special cases, like where
the parameterized curve is linear and forms an interval in say, R!, the difficulties
are greatly reduced. Thus, we can make the following statement:

Corollary 2 (First bifurcation probability). Given the dynamical system F
Fx—1)=x =edx, 1 +eG(x;1) (26)

wherex, € R4, e € R, A € Rdz, a;j € N(0, 1), and where G(x;_1) is a nonlinear
C" (r > 0) mapping of x;_, which is of order 2 or higher. Thus F(x,_1) = e Ax;_,
for ¢ small. Assume F has a fixed point at ¢ = 0 and upon the increase of ¢, F
undergoes a local, codimension-one bifurcation. As the dimension of the dynamical
system F goes to infinity (i.e., given A € R, d — 00), the probability that the
first bifurcation will be of type Naimark-Sacker will converge to one.

Proof: This result follows trivially from the results of Edelman!>!1? and
Girko.?1=29

We can, with a little work, impose a measure on the set of dynamical systems
for which this result holds via results of Edelman, the neural networks,® and some
standard arguments using measure theory. Upon doing so, one nontrivial issue is
understanding what such a set of dynamical system would “look” like. We will
refrain from further discussion of this extension here. It was originally hoped that
we could extend this result such that the elements of the A matrix can be selected
from any distribution with a finite sixth moment in line with the circular law of
Bai.('” However, considering only random matrices with elements chosen from a
Gaussian distribution, it can be shown numerically that the mean of the distribution
has a significant effect on the eigenvalue with the largest modulus.

Corollary (2) falls far short of satisfying our desires. First, Corollary (2)
does not speak to the probability of its hypothesis being satisfied in C" function
space relative to a measure. It is, however, hoped that such a result can eventually
be formulated using the notion of prevalence.®?3349) Another shortcoming of
Corollary (2) is it is not cast in the general parameterized curves of the bifurcation
theory framework we desire—linear “curves” are very limiting (see Refs. 50, 53
for a construction of the general bifurcation framework to which we are referring.)
Moreover, Corollary (2) does not provide any information regarding how large,
but finite-dimensional, dynamical systems that satisfy all the hypotheses behave.
Lastly, Corollary (2) does not provide any insight into how the convergence to

%In theory we can impose a measure on the weights of the neural networks that mimics the results of
random matrices, however we have not found this said measure. It is likely that it could be determined
via training of neural networks on data from dynamical systems with random (N (0, 1)) linear parts.
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such a result might occur as the dimension of the dynamical system is increased.
Thus, we will present a conjecture that we believe captures more of what we want.

Conjecture 1 (Genericity of Naimark—Sacker bifurcations in high-
dimensional dynamical systems). Begin with a subset of the space of dynamical
systems, V C C"(r > 0), whose elements have at least one fixed point on a mea-
surable interval of the parameter space, and at least one local bifurcation upon
a continuous variation of a parameter. Further, assume these dynamical systems
have first derivatives whose elements form a distribution with mean zero. Then,
there exists a probability measure on the parameters for such dynamical systems
such that, as the dimension d of the dynamical system is increased, the proba-
bility of the bifurcation from fixed points via the Naimark-Sacker bifurcation will
increase and approach probability one as d — oo.

One noticeable and important omission in the hypothesis is the requirement that
the elements of the Jacobian be iid, thus we are conjecturing this result will not
depend heavily on correlations between the elements of the Jacobian but will
depend on the mean of the distribution. This conjecture makes the most sense in
a framework such as that provided by neural networks for which the parameter
space is large enough that it can have some approximation of C” function space.
We will not discuss this conjecture further here, but upon the presentation of the
numerical results, we will provide a discussion of what this conjecture might mean
and where and how it is known to fail.

Finally, the above construction does not apply explicitly to the time-delay
dynamics in general—whose linear derivative matrices are companion matrices—
or to the neural networks we are focusing on in particular. Such a circumstance
would require a slightly different conjecture:

Conjecture 2 (Genericity of Naimark—Sacker bifurcations in high-
dimensional time-delay dynamical systems). Begin with a subset of the space
of time-delay dynamical systems, V C C"(r > 0), whose elements have at least
one fixed point on a measurable interval of the parameter space, and at least one
local bifurcation upon a continuous variation of a parameter. Further, assume
these dynamical systems have bounded first derivatives whose elements form a
distribution with mean zero and compact support. Then, there exists a probability
measure on the parameters for such dynamical systems such that, as the dimension
d of the dynamical system is increased, the probability of the bifurcation from fixed
points via the Naimark—Sacker bifurcation will increase and approach probability
one asd — 0.

Analysis of this conjecture is akin to a study of random polynomials or a sum of
random functions with coefficients drawn from a random distribution. This case is
of interest because many experimental results come from time-series data—data
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that are reconstructed with a “universal approximator” that forms a time-delay
dynamical system (neural networks of the type we consider fall into this class). We
will compare and contrast the various results and implications of the constructions
of the two conjectures. Because neural networks are universal approximators, we
will, at the end, suggest how to find the measure on the ay’s that will link them to
the general random matrix framework.

6. NUMERICAL CASES

We will begin our numerical investigations with a careful analysis of
Gaussian random matrices with mean zero and variance 1—one of the cases
for which Edelman has provided analytical results. We will then begin to investi-
gate the difference between, and hence generality of, what we can imply regarding
Conjecture 1 with the results of Edelman versus those of Bai by perturbing the
first and second moments of the Gaussian matrices and observing differences. Fol-
lowing this, we will study the case of uniform random matrices—a case for which
Bai’s results still apply—to begin to understand the invariance of various results
to different random distributions. We will again study the perturbation of the first
and second moments of the uniform distribution on the relevant quantities. Since
the Jacobian of a time-delay dynamical system at a fixed point is a companion
matrix, we will then briefly study companion matrices and finally move on to the
case of time-delay neural networks.

6.1. M, with Gaussian Elements

As a base case, consider matrices G that have elements chosen from a Gaus-
sian distribution with mean zero and variance one (N(0, 1)). This is the case that
Girko, Edelman and Kanzieper investigated, and thus there exist several analytical
results and theorems which we can apply to the current framework. We will then
perturb various moments of this distribution to better understand the different
implications and limitations of the work of Edelman, Girko, and Bai as applied to
bifurcation theory.

6.1.1. Gaussian Matrices with Zero Mean

Begin with the mean-zero, variance-one case, a comparison between
Edelman’s expected number of real eigenvalues given in Eq. (13) and those em-
pirically calculated from random matrices is depicted in Fig. 3. The lines overlay
nearly perfectly even at low dimensions yielding a power-law dependence of
E[Xrear] = 0.9784793% as expected.

Given corollary 1—that the distribution of real eigenvalues converges to
a uniform distribution on the real line—a disproportionate fraction of the
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Fig. 3. Edelman’s prediction for the expected fraction of real eigenvalues and the empirically calculated
expected number of real eigenvalues. Both quantities were calculated in increments of 5 dimensions
up to d = 50 and then increments of 25 thereafter until ¢ = 1000. The line is that of a power law with
Ejou[d] ~ 0.9784d 705291 a5 expected.

bifurcations should be due to complex eigenvalues, especially as d — oco. Figure
4 depicts the fraction of bifurcations that correspond to Naimark—Sacker, flip, and
fold bifurcations as well as the fraction of eigenvalues that are real. For systems
we are considering, these distinctions are easily made by simply calculating the
largest eigenvalue and determining whether it is complex or real, combined with
the sign of the eigenvalue. The results are as one might expect in the sense that
the number of real bifurcations due to positive and negative eigenvalues are nearly
identical. Nevertheless, the fraction of real eigenvalues converges to zero consid-
erably faster than the fraction of bifurcations due to real eigenvalues. Considering
the right plot of Fig. 4, the spectrum of eigenvalues of a 1024 x 1024 matrix, the
real line is clearly highly and evenly populated with ~30 real eigenvalues. Hence
the convergence to uniformity seems to be well-behaved by d = 1024. Neverthe-
less, the fraction of bifurcations due to real eigenvalues is clearly decreasing with
d in a power law. Moreover, the decrease of bifurcations due to 1 and —1 are nearly
identical as expected.

6.1.2. Perturbing the First Moment— Gaussian Matrices with a
Non-Zero Mean

The results of Girko, Edelman and Kanzieper pertain to real random matrices
with Gaussian matrices with mean zero and finite variance, while the results
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Fig. 4. On the left, the observed probability of each bifurcation was recorded for 1000 matrices with
iid, mean zero, variance one, Gaussian elements for each d (in powers of 2) along with the fraction
of eigenvalues that are real. On the right is the spectrum of eigenvalues in the complex plane that
corresponds to a single 1024 x 1024 matrix (d = 1024).

of Bai apply to any real random matrix with a distribution with a finite sixth
moment. There is a great difference between these two formulations. Beginning
with a standard Gaussian random matrix and perturbing the first moment (the
mean), yields a result that has little relevance for the random matrix theory but
has significant implications from the perspective of bifurcation theory. Summing
ad x d matrix G as a matrix with elements g;; drawn from a Gaussian distribution
with mean zero and variance one (N(0, 1)) and a constant d x d matrix P, with
elements p;; = m yields

Ap, =G+ P, 27

Figure 5 has the modulus of the largest and second largest eigenvalues plotted
for A,, with d = 64. For |m| > 0.1289, the largest eigenvalue is always real and
increases with m according to:

ra(m) = dm (28)

The next largest eigenvalue is most often complex as would be expected if the
distribution of eigenvalues on the unit disk is uniform. The modulus of the second
largest eigenvalue(s), however, is independent of m (,A;_; = constant) is approx-
imately +/d as expected from Edelman’s normalization formulas. Thus, aside
from the largest real eigenvalue, the distribution of eigenvalues behaves like the
spectrum of G. Therefore, a dynamical system with a DF matrix

€
—— A, (29)
Vd+a "7

for a <« 1, upon increasing €, will always undergo a flip bifurcation from a fixed
point. The point of this is that, given a random matrix with elements drawn from
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Fig. 5. This figure represents an ensemble of 1000 d x d matrices with d = 64. Depicted are the
modulus of largest and second largest eigenvalues. The line representing the modulus of the largest
eigenvalue is given by 64 m while the line for the modulus of the second largest eigenvalue is given

by ~+/d.

a distribution with finite sixth moment, convergence of the spectrum to a uniform
distribution on the unit disk in the complex plane is not sufficient to guarantee that
a dynamical system with a Jacobian matrix (at a fixed point) with elements that
converge to a distribution with a finite sixth moment, will undergo a Naimark—
Sacker bifurcation with probability increasing with d. In this case, a measure-zero
set (a single eigenvalue), happens to be of utmost importance when considering
the most probable bifurcation from a fixed point. Moreover, this single eigenvalue
is not a counter-example to any of the circular laws because, aside from the one
single eigenvalue, the rest of the spectrum converges uniformly on the unit disk in
the complex plane as required by the various theorems.

A complete explanation of why the largest eigenvalue scales with the mean
is unknown. However, it is likely that the explanation will rely on the Perron—
Frobenius theorem for non-negative matrices that says if 4 is a non-negative
matrix, then there will exist an eigenvalue that equals the spectral radius, p(4).??
That the largest eigenvalue scales with d is not difficult to see, but Gaussian
random matrices with positive mean have a positive probability of having negative
elements, and thus are not non-negative matrices. However, as the mean increases,
the probability of having negative elements decreases considerably. Thus, it is
likely we are observing a “convergence” to the Perron—Frobenius result for non-
negative matrices. While the Perron—Frobenius result will never strictly apply to
this context, it is likely that it can be shown that the Perron—Frobenius theorem
will apply with probability approaching one as the mean approaches infinity.
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6.1.3. Perturbing Higher Moments

Perturbation of the second moment of the distribution of G, which amounts to
perturbing the variance, has a simple effect on the spectrum—the spectral radius
increases linearly with the variance. This will have very little effect on the bifur-
cation structure aside from decreasing the € value for which the first bifurcation
from a fixed point will occur. Perturbing higher moments of the distribution and
the subsequent effects remains an open problem.

6.2. M, with Uniform Elements

Above we considered matrices with entries drawn from Gaussian distribu-
tions. As a result, we could bring to bear a large body of analytical machinery.
Now, however, we turn to matrices with entries drawn from iid uniform random
variables on the interval (a, b). Unfortunately, in this circumstance, very little
analytical machinery is available.

6.2.1. Uniform Matrices with Zero Mean

For simplicity, we will seta = —1 and b = 1 such that the u;; s are /id uniform
random variables on (—1, 1), with mean zero. Concentrating first on the fraction
of real eigenvalues, Fig. 6 yields a scaling law of E[A,eq] = 0.91947%3"7_ This is
similar to the theoretical and empirically calculated E[A, ;] for a random matrix
with Gaussian elements with zero mean. However, E[A,.,;] approaches zero faster
in the case of Gaussian random matrices than with uniform random matrices. The
difference is, nevertheless, quite small (about 3 percent). Accordingly, the fraction
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Fig. 6. On the left, the observed probability of each bifurcation was recorded for 1000 matrices with
i.i.d. uniform elements for each d (in powers of 2) along with the fraction of eigenvalues that are
real. On the right is the spectrum of eigenvalues in the complex plane that corresponds to a single
1024 x 1024 matrix (d = 1024).
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of real bifurcations decreases slightly slower for uniform random matrices than for
the Gaussian case, while the fraction of flip and fold bifurcations are identical up
to standard error. The right plot in Fig. 6 is indistinguishable from the analog plot
for Gaussian random matrices given in Fig. 4. The real line is highly and evenly
populated with ~25 real eigenvalues.

6.2.2. Perturbing the First Moment— Uniform Matrices with a
Non-Zero Mean

The uniform random variable case is fundamentally different from the Gaus-
sian case in several ways. First, the uniform case has finite support on R. Second,
the mean is directly related to the endpoints of the support of the distribution, i.e.,
X = b% Thus perturbing the mean from zero amounts to upsetting the symmetry
of the end points of the support about zero. To investigate the effects of perturbing

the mean we fix b = 1 and vary a from 0 to —1. Or, more explicitly, given
A, =U+ P, (30)

with u;; uniform random variables on (0, 1) and with p;; = a Vi, j, ais varied on
(—1, 0). Figure 7 depicts the dependence of the magnitude of the modulus of the
two largest eigenvalues versus a for a collection of 64 x 64 matrices. Fora = 0 to
a ~—0.78 the largest eigenvalue is real and its magnitude is given by

hala) ~ —% 31)

18 T T T T T

T T T T
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Fig. 7. This figure represents an ensemble of 1000 d x d matrices with d = 64 per a increment where
8a = 0.01. Depicted are the modulus of largest and second largest eigenvalues. The line representing
the modulus of the largest eigenvalue is given by §.
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The knee in the curve which occurs at ~—0.78 for d = 64 is dependent upon
b—the upper bound on the support of the distribution. Moreover, A;_; does not
remain constant with variation of the mean of the distribution but rather increases.
However, aside from the largest eigenvalue, for a € (~ —0.78, 0), the distribution
of eigenvalues appears uniform on a disk of radius |1;_;|. This effect is symmetric
about zero. Fixing @ = —1 and varying b from 0 to 1 will net the same effects.
Thus, for a € (~ —0.78, 0), the corresponding dynamical system will have a 100
percent probability of undergoing a fold bifurcation. This result does not violate
the circular law because the convergence to uniformity of the eigenvalues on
the unit disk is only violated by a single eigenvalue which is not relevant for
random matrix results regarding distributions of eigenvalues. Nevertheless, it is
very relevant from our bifurcation theory perspective.

In the situation where @ = 0, the Perron—Frobenius theorem for non-negative
matrices will always apply, and thus there will exist an eigenvalue equal to p(4)
with probability one. For a < 0, however, the elements of the matrices will have
a positive probability of being negative, and thus the matrices will have a positive
probability of not satisfying the hypothesis for the Perron—Frobenius theorem.
Thus, again what we are observing when a is moved from —1 to 0 is a “conver-
gence” of sorts to the situation where the Perron—Frobenius theorem applies with
probability one.

6.2.3. Perturbing Higher Moments

The variance of a uniform distribution on an interval (a, b) is given by
var = % Thus, increasing the variance by a factor of ¢ while leaving the
mean at zero is identical to multiplying a and b by /c, which is in turn identical to
multiplying u;; by «/c. Therefore, increases in the variance of a mean-zero uniform
distribution of the elements of a random matrix U has the effect of increasing the
spectral radius by a factor of \/c, which is simply a normalization factor and
makes little difference to either the bifurcation perspective or the random matrix
perspective. Again, perturbations of moments >2 are beyond the scope of this

paper.

6.3. M, Companion with Gaussian Elements

Beginning with Fig. §, there are two important features. First, the eigenvalues
appear to be distributed uniformly on the real line and on the unit circle, not on the
entire disk. Second, the probability of a bifurcation due to a complex eigenvalue
hovers near 55 percent over a range of d = 128 to 1024. This result, which
seems surprising considering the spectrum depicted in Fig. 8, can be explained
considering the convergence of the density of real zeros given by Edelman. This



916 Albers and Sprott

1 - T 15 v v v . v
Naimark-Sacker M
N [+ Bl
05 flip —=++4
fraction real 1F 4
0.25 |
< -
K] 0125 | 4 05 1
2
a
5 0.0625 1 ol |
§
£ 0.03125 | 1
I
i -05 - B
0.015625 | 1
0.0078125 | 1 r 1
0.00390625 L . L N
64 128 256 512 1024 -1.5 L L L L L
1.5 -1 0.5 0 0.5 1 1.5

dimension

Fig. 8. On the left, the observed probability of each bifurcation was recorded for 1000 matrices with
ii.d., mean zero, variance one, Gaussian a;’s for each d (in powers of 2) along with the fraction
of eigenvalues that are real. On the right is the spectrum of eigenvalues in the complex plane that
corresponds to a single 1024 x 1024 matrix (d = 1024).

demonstrates how very important it is to consider the convergence of the densities
when making claims regarding probable bifurcations.

Before we consider the densities, let us begin by considering the fraction of
zeros that are due to real roots. Figure 9 portrays the numerically calculated fraction
of real eigenvalues for a set of companion matrices with a;’s drawn from a normal
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0.03125 i
c
S
©
e
2
a

5 0.015625 |- E
o
c
i)
S
@
C

0.0078125 E

0.00390625 ! L L L !
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Fig. 9. Edelman’s prediction for the expected number of real eigenvalues and the empirically calculated
expected number of real eigenvalues. Both quantities were calculated for d = 64, 128, 256, 512, 1024
and have a clear power-law dependence with M = 1.5d9%! for the numerically generated set
and E[Areqr] = 1.784 7984 as calculated from Edelman’s formula (Eq. (17)).
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Fig. 10. On the left is the theoretical real zero density for a 64-degree polynomial with random
coefficients drawn from normals with mean zero and unit variance. On the right is the real zero density
for a set of 3000 companion matrices with a;’s drawn from standard normals with mean zero and unit
variance.

distribution with mean zero and unit variance along with the predicted fraction of
real zeros of Edelman. Clearly the two lines are in considerable agreement and have
a power-law dependence with £l — 15240831 for the numerically generated
set and E[Aeq] = 1.784798% as calculated from Edelman’s formula given in
Eq. (17). Note that the falloff of the fraction of zeros that are real is considerably
faster than the other cases considered. This adds to the surprise found in Fig. 8.
The fraction of eigenvalues that are real is decreasing like d=0%°, yet the fraction
of bifurcations due to real eigenvalues remains roughly constant for d > 128.

This seeming contradiction, a decreasing fraction of real zeros with a constant
fraction of bifurcations due to real eigenvalues, is rooted in the convergence of
the density of real eigenvalues. Figure 10 shows both the empirical distribution
(of 1000 polynomials) and the theoretical density of real zeros for polynomials of
degree 64 with coefficients drawn from a Gaussian distribution with unit variance.
The obvious spikes at £ 1 are of interest, of course; however, it is the tails that extend
above and beyond +1 that have the most impact. This feature can be highlighted
at d = 1024 if one considers Fig. 11. The point is that the complex eigenvalues
exist largely on the unit circle while the real zeros have a non-zero measure set
of zeros that have magnitude greater than one. The fraction of real bifurcations
is largely determined by the convergence of the density of real eigenvalues—and
because the convergence has a non-zero density with magnitudes greater than one,
bifurcations due to real eigenvalues will persist to very high-dimensional matrices
or polynomials. The fraction of real bifurcations is constant because the ratio of the
measure of complex eigenvalues with magnitude greater than one to the measure
of real eigenvalues with magnitude greater than one is relatively constant with
increasing dimension.
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Fig. 11. Theoretical density of real zeros for polynomials of degree 1024 with coefficients drawn from
a Gaussian distribution with mean zero and unit variance. For |x| > 1.12 the density is zero.

6.4. Neural Networks

In the case of neural networks, we do not have the luxury of having a formula
to guide our understanding of the empirical distribution of the real eigenvalues
or the a; values. Compare Figs. 8 and 12. In a preliminary comparison between
companion matrices with Gaussian a;’s and the neural networks with the weight
structure (defined in Sec. 2), the distribution of eigenvalues appears nearly the
same. However, the fraction of bifurcations of a fixed point that correspond to

é 08 |
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Fig. 12. On the left, the observed probability of each bifurcation was recorded for 1000 neural networks
for each d along with the fraction of eigenvalues that are real. On the right is the spectrum of eigenvalues
in the complex plane that corresponds to a single neural network with n = 256 and d = 512.
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Fig. 13. The plot on the left is of the distribution of a;’s for 1000 neural networks with n = 256, 64
and d = 128, 32. The plot on the right is of the distribution of real eigenvalues along the real axis for
the same set of neural networks.

Naimark—Sacker type in the neural networks tends towards unity as the dimension
tends toward infinity while the fraction of Naimark—Sacker bifurcations in the
companion matrices with Gaussian a;’s tends toward a constant value (~0.58) as
the dimension is increased. This difference can be rectified considering Fig. 13
which depicts the distribution of real zeros and the a;’s for the neural networks.
With respect to the real zeros, adding dimensions has very little effect on the
interval (—0.9, 0.9). However, near *1, the real eigenvalues are considerably
more dense. Nevertheless, there do not exist the tails above and below =1 that are
present in the companion matrices with Gaussian a;’s, which is enough to allow
the fraction of bifurcations due to real zeros to tend to zero as the dimension is
increased. At first glance, increasing d has a significant effect on the variance a;’s
at the first bifurcation. Because s controls the variance of the a;’s, this effect is due
to the s dependence of the first bifurcation. The s dependence can be understood
by considering Fig. 14 which characterizes the decrease in the mean s at the first
bifurcation. The decrease in the mean s-location of the first bifurcation obeys the
power law ~ad®% where a depends on n. Thus, with increasing d, the variance
of the a;’s at the first bifurcation point will decrease. In general, the number of
neurons has a negligible effect on the distribution of real eigenvalues and only a
relatively minor effect on the peak of the a;’s. Nevertheless, this power law scaling
does suggest that linear coordinates are likely not the best coordinates for making
asymptotic, d — oo arguments. Moreover, this s-decrease of the first bifurcation
from a fixed point is mostly an artifact of the activation function tanh (due to
increasing the number and size of the terms inside tanh) and can, in a sense, be
scaled away. Finally, it is worth noting that the neural networks we considered
can have more than one fixed point; however, as this will have little effect on our
conclusions, we will leave such an analysis for another study.
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Fig. 14. The mean value of s at the first bifurcation for n = 8, n = 32, and n = 256 for networks of
dimensions varying from 32 to 512.

7. REVISITING THE CONJECTURE

Measures such as the one provided by Bai on random matrices—any dis-
tribution with a finite sixth moment—is quite inclusive; it was originally hoped
that such a measure would be enough to qualify probable bifurcations from fixed
points in a large set of dynamical systems. As is now clear, simply perturbing the
first moment of the distribution, while having no effects upon Bai’s results, com-
pletely alters the probability of a bifurcation. In an intuitive sense, the difference
corresponds to dynamical systems whose most slowly contracting directions are
rotations versus dynamical systems for which a single, non-rotational contraction
dominates the slowly contracting dimension. What we are left with is a much
more complicated picture. It is likely, given our numerical results, that Corollary
2 can be generalized to distributions with a finite sixth moment and zero mean;
however, we have not attempted to do so. Conjecture 1 is in part justified by the
random matrix results presented in Sec. 6, but clearly there is much room for a
more complete numerical and analytical study. The apparent distribution indepen-
dence in the standard random matrix case is not present in the companion matrix
case. Simply considering the examples given by Edelman or the ones presented in
this paper are enough to demonstrate the existence of the diversity in the eigenvalue
spectra with changes in the measure imposed on the a;’s. Analysis of the Gaussian
ay;’s yields evidence for the necessity of the first derivatives to be bounded in Con-
jecture 2 (or for the distribution of the elements of the Jacobian to have compact
support). The neural network analysis yields an example of a distribution of a;’s
that both satisfies the hypotheses of Conjecture 2 and provides evidence in support
of Conjecture 2. Nevertheless, the constraints on the distribution of a;’s that will
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yield adherence to Conjecture 2 are clearly not fully known nor understood. It is
likely that an insightful application of Theorem 6 will yield a rigorous solution to
this issue.

Comparison of the full random matrix and companion matrix cases is striking;
the eigenvalue distributions for full random matrices are distributed on the unit
disk as opposed to the unit circle in the case of companion matrices. Nevertheless,
there is, via the neural network approximation scheme, a very strong connection
between these two situations that has yet to be found. Recalling the discussion in
Sec. 2.3.1, begin with a dynamical system

Flomn) = x = edxi (32)

where € € R is small enough such that F'is a fixed point, 4 is a d x d real random
matrix with Gaussian elements with mean zero and unit variance. There exists
a neural network f of dimension 2d + 1 that can be trained on the time-series
generated by F such that /' will have a spectrum for which d of its eigenvalues
will be identical (within the desired numerical accuracy) as well as d + 1 free
eigenvalues that will have magnitude less than one. Despite how the d + 1 “free”
eigenvalues are distributed, the remaining d eigenvalues will have a distribution
that is not on the unit circle and thus significantly different than any situations we
have presented or know about. This connection yields insight into the distributions
of a;’s of companion matrices (and thus the characteristic polynomial), as well
as forging a connection between standard dynamical systems and general time-
delay dynamics. Finally, the neural networks provide both an opportunity for a
connection between real-world systems and the abstract dynamical models that
many in the field in dynamical systems study via training and an understanding
how their weight distributions affect their spectra.

We have refrained from making any rigorous asymptotic limit statements
in this paper; while the companion matrix and full matrix have only d — oo to
consider, the neural networks or other function approximation spaces have both to
contend with limits in the number of parameters (n — 00) as well as the number
of dimensions. While this work is primarily concerned with the convergence to
d = oo but not the actual limit, there are several issues we have not addressed.
Focusing on the neural network case: (i) there are issues regarding the order with
which asymptotic limits are taken (i.e., whether to let # or d go to infinity first); (ii)
there are issues with the specific nature of the behavior of the activation function;
(iii) there are issues with the existence of an infinite number of parameters and
dimensions which bring about issues regarding bifurcations with infinite codi-
mension; and finally, (iv) there is an issue regarding the appropriate bifurcation
parameter coordinates for characterizing the first bifurcation. For instance, Som-
polinsky ez al.*> and others have demonstrated that as d — oo in their networks,
the first bifurcation point goes to zero, the “routes to chaos” region disappears,
and there is an abrupt bifurcation into chaos. However in Refs. 3 and 4, we have
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found that both the first bifurcation point and the bifurcation to chaos follow a
power-law scaling dependent on both n and 4. That the s location of the first bifur-
cation decreases in magnitude with #, and d is mostly a function of the behavior
of the tanh activation function, which is more easily saturated or activated when
the number of terms in the internal sum is increased. Moreover, because of the
power-law scaling, in the right log-coordinates, the “routes to chaos” region does
not disappear but rather occupies the same number of s-decades. Thus the tactic
we would employ to study the n — 00, d — oo limits would be to find a universal
rescaling and take limits with respect to a rescaled mapping. This topic is beyond
the scope of this work.

8. BEYOND FIXED POINTS

Extending this construction beyond bifurcations of fixed points to the routes to
chaos offers considerable problems. There are two basic approaches. One involves
reduction of bifurcations for periodic orbits to bifurcations of fixed points in
appropriately chosen coordinates. The other involves studying products of matrices
of derivatives of periodic orbits.

Regarding the reduction of bifurcations of periodic orbits, one major problem
arises because bifurcations of periodic orbits must be understood well enough to
be approximated and reduced to analysis of fixed points. To see some of the
currently open problems see Ref. 38. Likewise, see Ref. 9 for nice explanations of
the various approximation schemes. Then the measures on the random matrices
must be carried through the various approximations.

Taking products of random matrices might be a fruitful approach (see Ref. 1
for results and techniques along these lines). However, linking them to periodic
orbits might be difficult.

Various authors have studied the routes to chaos computationally. Utilizing
the neural network framework discussed here® concludes that the most likely
route to chaos is a quasi-periodic one—however these results are subject to the
measures imposed upon the weight matrices. Likewise, Doyon et al.,13:'¥ Cessac
et al.,"» and Sompolinsky et al.,*”) have arrived at similar conclusions in a
variety of circumstances. Clearly any results such as these will be subject to the
same dependences on the measures imposed on the weight matrices as were present
in the case of the bifurcation of a fixed point mentioned in the previous section.

9. FINAL REMARKS

In the context of a general dynamical system if (i) the Jacobian of the fixed
point can be identified with a full random matrix and (ii) if the distribution
of elements has zero mean, then, for the cases we considered (uniform and
Gaussian), as the dimension approaches infinity, the probability of a
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Naimark—Sacker bifurcation approaches unity. However, the largest real eigen-
value in the aforementioned circumstances scales linearly with the mean of the
distribution of the elements of the matrix. Therefore, if the mean is large, the
most probable bifurcation will be due to a real eigenvalue (e.g., a flip or a fold
bifurcation), regardless of the dimension. An analytical understanding of linear
scaling of the largest real eigenvalue with the mean of the distribution is unknown.
Aside from the effect of the mean on the largest real eigenvalue, the result of the
probability of a Naimark—Sacker bifurcation increasing with dimension is quite
independent of the distribution. This is because, for nearly all distributions of
elements, real random matrices have a spectrum that converges to uniformity on
the unit disk as the dimension of the matrix goes to infinity.

In the context of time-delay dynamical systems, the story is different. In
this case, the Jacobian forms a companion matrix. If the companion matrix has
elements drawn from a Gaussian distribution, the probability of a Naimark—Sacker
bifurcation saturates at ~58 percent as the dimension goes to infinity. This is due
to tails in the distribution of real zeros. Numerical results with time-delay, feed-
forward neural networks however, behave very differently. For neural networks,
as the dimension goes to infinity, the probably of a Naimark—Sacker bifurcation
goes to unity. For companion matrices, the first bifurcation probability is highly
dependent on the distribution of the elements of the matrix. In general, the spectrum
of a time-delay dynamical system lies on the unit circle and the real line, not the
entire unit disk as in the case with full matrices. However, the distriution of real
zeros can vary significantly from distribution to distribution. Providing a link
between the time-delay case and the standard dynamical systems framework via
neural network training is suggested as future work.
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