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A particularly simple and mathematically elegant example of chaos in a three-dimensional flow
is examined in detail. It has the property of cyclic symmetry with respect to interchange of
the three orthogonal axes, a single bifurcation parameter that governs the damping and the
attractor dimension over most of the range 2 to 3 (as well as 0 and 1) and whose limiting value
b = 0 gives Hamiltonian chaos, three-dimensional deterministic fractional Brownian motion, and
an interesting symbolic dynamic.
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1. Introduction

René Thomas [1999] has proposed a particu-
larly simple and mathematically elegant three-
dimensional flow of the form

ẋ = sin y − bx

ẏ = sin z − by (1)
ż = sin x − bz

where the overdot denotes a time derivative. The
system is representative of a large class of auto-
catalytic models that occur frequently in chem-
ical reactions [Ramussen et al., 1990], ecology
[Deneubourg & Goss, 1989], and evolution [Kauff-
man, 1993]. The system is cyclically symmetric in
the variables x, y, and z and is governed by a
single parameter b that can be considered as a
frictional damping for a particle moving in a three-
dimensional lattice (or “labyrinth”) under the influ-
ence of some external source of energy or other
equivalent resource. In this paper, we examine
the details of this system including its route to
chaos, attractor dimension, multistability, chaotic

diffusion, and symbolic dynamics. The system is
of interest and importance because it provides an
example of a system whose attractor can be tuned
to almost any dimension in the range of 2 to 3 (as
well as 0 and 1) by a single parameter and that has
the rare quality of undergoing a continual transi-
tion from a chaotic dissipative system to a chaotic
conservative system, albeit with embedded periodic
windows. The conservative limit provides an elegant
example of three-dimensional fractional Brownian
motion in a purely deterministic system with a sim-
ple but interesting symbolic dynamic.

2. Route to Chaos

The parameter b provides a means to explore the
route from a stable equilibrium to chaos and finally
into the chaotic Hamiltonian regime. For b > 1,
there is a single stable equilibrium at the origin
(x∗ = y∗ = z∗ = 0) whose eigenvalues λi satisfy
the characteristic equation (λ + b)3 = 1 with roots
λ1 = 1 − b and λ2,3 = −b − (1/2) ± (

√
3/2)i. The

corresponding Lyapunov exponents are given by the
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real parts of the eigenvalues, and they sum to −3b
as expected from the trace of the Jacobian matrix.
For b > 1, the origin is a spiral node.

At b = 1, the equilibrium at the origin becomes
unstable, and a pair of new stable symmetric equi-
libria are born in a pitchfork bifurcation with x∗ =
y∗ = z∗ = sin x∗/b or x∗ ∼=

√
6(1 − b) with eigenval-

ues that satisfy (λ+b)3 = cos3 x∗. Setting c = cos x∗
gives λ1 = c−b and λ2,3 = −b−(c/2)±(

√
3c/2)i for

c > 0 or b > 2/π = 0.636619772. . .. At b = 2/π, the
three Lyapunov exponents are equal (λi = −2/π),
and the complex eigenvalues thereafter become
dominant (have the least negative real parts).

As b is decreased further, the real part of these
eigenvalues reaches zero in a Hopf bifurcation at
b = −c/2 or tan x∗ = −x∗/2, whose solution by
Newton’s method is x∗ = 2.28892972810340436. . .
which occurs at b = 0.32899010224273929. . . with
an imaginary part of ω = 0.56982757227170410. . ..
The lone nonzero Lyapunov exponent has a value
of λ3 = −3b = −0.986970306728218. . . at the Hopf
bifurcation. Thereupon a stable limit cycle is born,
and the three variables take on different periodic
values. These results are summarized in Fig. 1,
which shows the Kaplan–Yorke dimension [Kaplan
& Yorke, 1979] and the spectrum of Lyapunov expo-
nents [Wolf et al., 1985] from which it was deter-
mined over a range of 1.1 ≥ b ≥ 0.

The range from the onset of a limit cycle at
b = 0.32899010224273929. . . to the point where
chaos becomes well established at b ∼ 0.11 is very
dynamically rich as shown in Fig. 2. The limit cycle
first grows in size and then undergoes a succession
of period-doubling bifurcations, culminating in a
band of chaos that onsets around b = 0.208186. The
resulting strange attractor then grows in size, albeit
with embedded periodic windows, until an interior
crisis occurs at b ∼ 0.18, whereupon a new stable
limit cycle is born. Thereafter follows a succession of
similar crises, giving rise to more complicated limit
cycles, culminating in bands of chaos, until chaos
becomes dominant at b ∼ 0.11.

The range from b = 0.11 to b = 0 is relatively
well-behaved, with chaos dominating and a strange
attractor whose dimension gradually increases from
2 to 3, but with embedded windows where limit
cycles of various periods occur as shown in Fig. 3.
Also shown in Fig. 3 is the value of the corre-
lation dimension with error bars for specific val-
ues of b as calculated by the extrapolation method
of Sprott and Rowlands [2001]. The correlation
dimension tracks the Kaplan–Yorke dimension but

Fig. 1. Kaplan–Yorke dimension and Lyapunov exponents
versus b showing the route to chaos.

systematically lower as expected for an attractor is
with nonuniform measure. The reasonably smooth
increase in dimension from 2 to 3 is unusual and
makes this system good for studies in which the
attractor dimension is an important parameter.
The Lyapunov exponents in the limit of b = 0
are approximately (0.09202, 0,−0.09202), and the
Kaplan–Yorke dimension is exactly 3.0. The corre-
lation dimension is 2.837 ± 0.173.

Figure 4 shows a cross-section of the attrac-
tor in yz-space at x = 0 for four values of
b. The axes are −20 to 20 for each case. The
plots suggest a highly nonuniform measure and
a variation in local dimension across the attrac-
tor, as well as the expansion of the attractor with
decreasing b. Also evident, especially in the plot
for b = 0.01, are vertical stripes at y = ±mπ,
where m = 0, 1, 2, . . ., which represent the null-
clines for which ẋ = 0 at x = 0. For the four
cases in Fig. 4 with b = (0.1, 0.05, 0.02, 0.01), the
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Fig. 2. Bifurcation diagram (local maximum of x) and Lya-
punov exponents versus b showing the route to chaos in
greater detail.

Kaplan–Yorke dimensions are DKY
∼= (2.155, 2.468,

2.708, 2.815), and the corresponding largest Lya-
punov exponents are λ1

∼= (0.055, 0.132, 0.145,
0.132).

In calculating these attractors and their spec-
tra of Lyapunov exponents, initial conditions are
chosen randomly in the range of 0 to 1 and are
not critical. However, there is a set of measure zero
of initial conditions with x(0) = y(0) = z(0) for
which the three variables remain identical for all
time, and the system behaves like a one-dimensional
system with stable equilibria (point attractors) at
x∗ = y∗ = z∗, that satisfy sin x∗ = bx∗, whose solu-
tion for b � 1 is x∗ ∼= ±nπ/(b + 1), where n is an
odd integer.

Another way to view the expansion of the
attractor with decreasing b is to plot the standard
deviation of the trajectory from the origin

σ =

√
lim

T→∞
1
T

∫ T

0
(x2 + y2 + z2)dt (2)

Fig. 3. Kaplan–Yorke dimension and Lyapunov exponents
versus b showing the route to chaos. In the upper plot, the
circles with error bars are values of the correlation dimension.

along with the kurtosis [Press et al., 1992]

k = lim
T→∞

1
Tσ4

∫ T

0
(x2 + y2 + z2)2dt − 3 (3)

averaged along the trajectory as shown in Fig. 5.
The kurtosis is defined such that a value of k = 0
represents a normal (Gaussian) distribution, and
the calculated negative values indicate that the dis-
tribution is somewhat platykurtic (the tail of the
distribution is truncated relative to a Gaussian).
The standard deviation (ignoring the periodic win-
dows) scales with b roughly as σ ≈ 1.5/

√
b. By the

ergodic hypothesis [Ruelle, 1976], these time aver-
ages are identical to the ensemble averages over
many initial conditions and coarsely reflect the nat-
ural measure on the attractor apart from the fine-
scale fractal structure.
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Fig. 4. Cross-section of the attractor in yz-space at x = 0 for four values of b. The axes are −20 to 20 for each case.

3. Multiple Attractors and Global
Bifurcations

In the preceding discussion and figures, the value of
b was slowly decreased without altering the initial
conditions, and hence the results represent only one

route to chaos. The possibility of multiple attrac-
tors for a given b and hysteresis was not indicated,
nor was there a clear distinction between local and
global bifurcations.

To explore these issues, define a quantity r
analogous to Eq. (2)

r =

√
b

1.5

√
lim

T→∞
1
T

∫ T

0
[(x − xref)2 + (y − yref)2 + (z − zref)2]dt (4)

that has been multiplied by
√

b/1.5 to account for the increase in attractor size as b decreases and that
has been offset from the origin along each axis to remove degeneracies resulting from the cyclic sym-
metry. In what follows, the offsets are taken as xref = πG, yref = πG2 and zref = πG3, where G is



Labyrinth Chaos 2101

Fig. 5. Standard deviation and kurtosis for the excursion of
the trajectory from the origin for the attractors as a function
of b.

the golden mean, G = (
√

5− 1)/2 = 0.61803398. . ..
Then make a plot of r versus b for many different
random initial conditions uniform in the range −π
to π for each value of b. Since two different attrac-
tors are very unlikely to have identical values of r,
the plot will show the values of b for which there are
multiple coexisting attractors along with the bifur-
cations where the attractors appear, disappear or
undergo a sudden change in size or position.

Such a plot is shown in Fig. 6 where 50 different
initial conditions were used for each of the 600 val-
ues of b, with each case iterated 2 ×105 times using
a fourth-order Runge–Kutta method with a fixed
step size of 0.05 with the first 10% of the points
ignored to allow the trajectory to reach the attrac-
tor. Most values of b apparently admit only a single
attractor, which must itself be cyclically symmet-
ric in the three variables, but there are values for
which up to six distinct attractors are evident. The
chaotic regions have a band of values, indicating a
rather slow convergence especially at the embedded

Fig. 6. Plot showing regions of multiple coexisting attrac-
tors as a function of b.

periodic windows, where transient chaos and inter-
mittency are common.

Figure 7 shows cases in which there are four
(b = 0.220), six (b = 0.204), three (b = 0.173),
and six (b = 0.131) coexisting limit cycles, respec-
tively. The linking property of these loops is an
interesting issue not explored here. Lest one con-
cludes that coexisting attractors exist only for limit
cycles, Fig. 8 shows a (b = 0.203) case in where
there are six coexisting strange attractors. However,
it is generally the case that slightly beyond the onset
of chaos, these independent attractors undergo a
crisis and merge into a single strange attractor in an
attractor-merging global bifurcation [Grebogi et al.,
1983].

4. Conservative Case

The remainder of the paper will be concerned
with the limit of b = 0, for which the system in
Eq. (1) has no dissipation, and where the trajec-
tory wanders chaotically throughout the entire xyz
space except for about 1.67% of the space where
the trajectory drifts out parallel to one of the three
axes with a constant average velocity of about 0.41
while executing periodic oscillations with a period
of about 15.2 in a plane perpendicular to that axis.
There are infinitely many equilibria at x∗ = ±lπ,
y∗ = ±mπ, z∗ = ±nπ, where l, m, and n are arbi-
trary integers. The system can also be considered
as a 3-torus with period 2π in each direction and
only eight equilibria.

Figure 9 shows a yz cross-section of the trajec-
tory (mod 2π) in the (x mod 2π) = 0 plane for
a single trajectory that starts in the chaotic sea.
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Fig. 7. Multiple coexisting limit cycles.

Fig. 8. Six coexisting strange attractors at b = 0.203.

Fig. 9. Cross-section of the chaotic sea at (x mod 2π) = 0
for the conservative case with b = 0.
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The trajectory is ergodic and eventually comes arbi-
trarily close to every point in the sea. The nullclines,
where the trajectory has only a y-component, are
evident as vertical stripes at y = 0 and y = ±π, and
the 20 loss regions in each cell are indicated by the
empty islands in the sea, accounting for about 1.9%
of the cross-sectional area, surrounded by KAM sur-
faces [Arnold, 1978]. These loss regions are actually
intertwined helical ribbon structures as shown stere-
ographically in Fig. 10, some of which are tan-
gent to the x = 0 plane, explaining why the area
in this plane (1.9%) is greater than their volume

(1.67%). These structures are of two types, one
passing through the points (x, y, z) = (0, 0,±π/2)
and the other passing through the points (x, y, z) =
(0,±π/2, π) and their cyclic permutations, giving
twelve separate ribbons, two of which lead to drifts
in each of the six directions ±x, ±y, and ±z.
In addition to the intersections of these ribbons
with the x = 0 plane at 0, ±π/2, and π, there
are other intersections at approximately ±0.19π,
±0.36π, ±0.64π, and ±0.81π, although not in all
combinations. Figure 11 shows a cross-section in the
yz-plane of one of these ribbons whose center is at

Fig. 10. Stereogram showing the regions where quasiperiodic trajectories occur for b = 0. The view is looking down along
the x-axis, and the different colors denote the six directions in which trajectories drift.

Fig. 11. Cross-section at (x mod 2π) = 0 showing the quasiperiodic orbits for b = 0 surrounded by a KAM surface.
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(0, π/2, ∼ 0.808219π), near the edge of which is
a chain of seven smaller islands. The quasiperiodic
regions are invariant 2-tori embedded in the hyper-
surface of a 3-torus.

5. Deterministic Fractional
Brownian Motion

For the conservative case (b = 0), the trajectory
wanders ergodically and time-reversibly throughout
the entire three-dimensional space except for
the small quasiperiodic regions. The equilibrium
density f(x, y, z) in this chaotic sea is given by

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

dz

dt

=
∂f

∂x
sin y +

∂f

∂y
sin z +

∂f

∂z
sinx = 0 (5)

whose solution is f(x, y, z) = constant. Equiva-
lently, note that the divergence of the flow

∇ · −→v =
∂

∂x
sin y +

∂

∂y
sin z +

∂

∂z
sin x ≡ 0 (6)

is identically zero, which means that the flow
is incompressible and hence of constant density
throughout the ergodic region. Given the uniform
measure, it is simple to calculate the root-mean-
square speed:

vrms =
√

sin2 y + sin2 z + sin2 x =

√
3
2

= 1.2247449 . . . (7)

each component of which is 1/
√

2 = 0.7071068. . ..
However, the approach to this equilibrium is by

way of a diffusion, reminiscent of Brownian motion,
but in a purely deterministic system. The trajectory
for one such typical case is shown in Fig. 12 along
with a typical quasiperiodic trajectory in red for an
initial condition of (0, 0, π/2). For a collection of
5×106 initial conditions that start at random posi-
tions near the origin, the probability distribution
function along each axis after a time lapse of 4×103

is shown in Fig. 13. Also shown in the figure in red

Fig. 12. Brownian motion of a trajectory in the chaotic sea (black) along with a quasiperiodic trajectory (red).
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Fig. 13. Probability distribution function of x for 5 × 106 initial conditions near the origin after a time of 4 × 103. The red
curve is a Gaussian distribution with the same standard deviation and area.

Fig. 14. Projection of the trajectory onto the x-axis
showing an example of intermittency where the trajectory
approaches the quasiperiodic region with initial conditions
(0.05, 0.09, 0.05).

is a Gaussian distribution with the same standard
deviation (σ ∼= 98.3) and area. The observed dis-
tribution is leptokurtic (fat-tailed) with a kurto-
sis of k ∼= 9.8. The enhanced tail of the distri-
bution is due to chaotic trajectories that occa-
sionally approach the quasiperiodic regions and
travel great distances parallel to one of the axes
before resuming their random walk. This is a
form of intermittency, a typical example of which
is shown in Fig. 14. There is a time at which
the trajectory makes a large excursion in the

Fig. 15. Standard deviation of 1.5×106 trajectories starting
near the origin versus time.

x-direction, but there are other times evident in the
figure where x is nearly periodic and the trajectory
makes large excursions in either y or z.

Despite the non-Gaussian nature of the
distribution function, it is possible to plot
the standard deviation (the average value of√

x(t)2 + y(t)2 + z(t)2) versus time for a random
collection of initial conditions near the origin.
Figure 15 shows such a plot for 1.5 × 106 ini-
tial conditions uniform over a cube centered on
the origin and extending from −0.1 to 0.1 along
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each axis. The slope of the least-squares fitted
curve (0.61) indicates that the motion is not purely
Brownian (for which the slope would be 0.5), but
rather is an example of fractional Brownian motion
[Mandelbrot, 1983] in which the trajectory exhibits
persistence (positive correlation) and preferentially
continues in the direction in which it was previously
headed. This slope is somewhat smaller than the
value of 0.73 reported earlier [Sprott, 2003] because
it discounts those initial conditions for which the
trajectory drifts uniformly parallel to one of the
axes.

From the best fit linear regression of log σ ver-
sus log t given by σ = 1.05t0.61 and assuming σ =
(t/τ)Hd, where τ is an effective collision time and
d is an effective mean free path with d/τ = v given
by Eq. (7), one obtains τ = (1.05/1.22)2.56 ∼= 0.68
and d = 1.22 × 0.68 ∼= 0.83, which is somewhat
smaller than the lattice size of 2π. The quantity H
(= 0.61 in this case) is called the Hurst exponent
[Hurst et al., 1965].

An alternate calculation of the Hurst exponent
uses a single trajectory followed for a very long time
with the rescaled range R/S plotted versus time
on a log–log plot, the slope of which is H [Feder,
1988]. The range R is the maximum excursion from
the starting point, and S is the average step size
(approximately the mean free path, d), which does
not depend on time. Hence it suffices just to plot
log R versus log t as shown in Fig. 16(a), where
the slope of the best fit straight line is H = 0.62,
in good agreement with the value of 0.61 obtained
from Fig. 15. In Fig. 16 the initial condition was
taken as (0.2, 0, 0), and the trajectory was followed
for a time of 109 with a step size of 0.05.

Also shown in Fig. 16(b) is the autocorrelation
function

C(τ) =

∫ ∞

τ
ẋ(t)ẋ(t − τ)dt∫ ∞

τ
ẋ(t)2dt

(8)

for the same trajectory showing the short-term cor-
relation and mild persistence (C(τ) > 0). The auto-
correlation function is the Fourier transform of the
power spectral density (PSD) [Couch, 2001] and was
performed on the time derivative of x rather than
x itself because the mean of ẋ is more nearly zero
and the PSD is more nearly flat (white). In fact,
for a power-law spectrum 1/fα with a Hurst expo-
nent H, the slope of the PSD for x(t) is expected

(a)

(b)

Fig. 16. (a) Range versus time, and (b) autocorrelation
function of ẋ versus delay for an initial condition of (0.2, 0, 0).

to be α = 2H + 1 [Tsonis, 1992], and for ẋ(t) is
2H − 1 = 0.22 for H = 0.61.

6. Symbolic Dynamics

An alternate representation of the dynamics
exploits the 2π periodicity of the lattice along each
of the three axes which divides the space into an
infinite number of cubes. Each such cube can be
subdivided into eight equal cubic chambers char-
acterized by the signs of ẋ, ẏ, and ż. Thus the
trajectory sequentially visits neighboring chambers,
labeled A through H, with A being the one with all
derivatives positive, B being the one with ẋ nega-
tive and the others positive, C being the one with
ẏ negative and the others positive, D being the one
with both ẋ and ẏ negative with ż positive, and
so forth. Thus the trajectory can be represented
as an infinite symbol sequence with an 8-letter
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alphabet. With this convention, the quasiperi-
odic trajectory starting at (0, 0, π/2) has the peri-
odic sequence ACGEFHDBACGEFHDB. . . , and
the one starting at (0, π/2, π) has the periodic
sequence CDBAEFHGCDBAEFHG. . . . Note that
these trajectories visit all eight chambers before
repeating.

The trajectory in the chaotic sea has a non-
repeating sequence, a typical portion of which
is AEFBACDHFBAEGCDBAEFBDHGCAEGCD-
HFBDHGC. . . . From the symmetry of the system,
we expect and observe all symbols to occur with
equal probability (1/8). However, such is not the
case for all 64 pairs of sequential symbols. Instead,
each symbol can be followed by only three others
with equal probability (1/3), despite the fact that
each chamber has six neighbors. Thus only 24 of the
possible 64 pairs occur. Furthermore, the symbol
sequence is time-reversible in the sense that any
segment of finite length will eventually occur with
those symbols in the reversed order along the same
trajectory. However, the trajectory has to leave a
chamber by way of one of the two through which
it did not enter, but with equal probability (1/2),
so that, although the transitions AB and BA are
both allowed, for example, the transitions ABA and
BAB are not allowed. This behavior is summarized
in Fig. 17 in which the symbols can be considered
vertices of a cube whose edges represent the allowed
transitions, with the trajectory entering along one

Fig. 17. Allowable transitions for symbolic sequence.

edge and exiting with equal probability along one
of the other two.

Another way to represent the dynamics is
by way of an iterated function system [Barns-
ley, 1988] using eight affine transformations on the
unit square, one corresponding to each symbol as
follows:

A : x → x

4
, y → y

2

B : x → x

4
, y → y + 1

2

C : x → x + 1
4

, y → y

2

D : x → x + 1
4

, y → y + 1
2

E : x → x + 2
4

, y → y

2

F : x → x + 2
4

, y → y + 1
2

G : x → x + 3
4

, y → y

2

H : x → x + 3
4

, y → y + 1
2

(9)

The transformations are performed in the order
of the symbol sequence with an arbitrary initial

Fig. 18. Iterated function system representation of symbolic
dynamic.
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condition, here taken as x = y = 0, and the
sequence of points is plotted in the xy-plane after
discarding the first few iterates. A random sequence
will fill in the unit square uniformly, and a periodic
sequence will produce a finite collection of points
[Peak & Frame, 1994]. The result for a trajectory
in the chaotic sea with a sequence of 6×106 symbols
is shown in Fig. 18. The fractal nature of the plot
is a signature of chaos.

7. Conclusions

Despite its mathematical simplicity, the system of
ordinary differential equations in Eq. (1) produces
a surprisingly rich dynamic that can serve as a pro-
totype for chaos studies. The system has a sin-
gle parameter b that controls the damping and
that is a natural bifurcation parameter for study-
ing the route to chaos. As b approaches zero, the
system smoothly and continuously transforms into
a chaotic Hamiltonian system in which nearly all
(>98%) of the initial conditions ergodically explore
the infinite chaotic sea with uniform measure.
The approach to equilibrium is by way of fractional
Brownian motion with a Hurst exponent of approx-
imately 0.61 and a slightly leptokurtic distribution.
An obvious extension of this work is to dimensions
higher than three [Thomas et al. 2005], and that
will be the subject of a forthcoming publication.
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