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A simple chaotic delay differential equation
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Abstract

The simplest chaotic delay differential equation with a sinusoidal nonlinearity is described, including the route to chaos, Lyapunov exponent
spectrum, and chaotic diffusion. It is prototypical of many other high-dimensional chaotic systems.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

There has been much recent interest in identifying the alge-
braically simplest examples of continuous-time systems that ex-
hibit chaos. For example, the simplest dissipative chaotic flow
with a single quadratic nonlinearity is [1]

(1)
...
x + aẍ − ẋ2 + x = 0

where ẋ = dx/dt , for which chaos occurs over most of the
range 2.0168 < a < 2.0577. The simplest periodically-driven
chaotic conservative flow with a cubic nonlinearity is [2]

(2)ẍ + x3 = sinΩt

which is chaotic over most of the range 0 < Ω < 2.8 and has its
maximum Lyapunov exponent of 0.0971 at Ω ∼= 1.88. For high-
dimensional systems of ordinary differential equations (ODEs),
a particularly simple and elegant example is [3]

(3)ẋi = sinx1+i modN

which is chaotic for all N � 3 for most initial conditions.
Other minimal examples include 3D ODEs with cubic [4] and
absolute-value [5] nonlinearities, 3D [6] and 4D [7] Lotka–
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Volterra models, 4D hyperchaotic systems [8], and infinite-
dimensional Lotka–Volterra models [9].

This Letter addresses the occurrence of chaos in the arguably
simplest example of a delay differential equation (DDE) [10].
It is of a special type more properly called a retarded delay dif-
ferential equation (RDDE) or a retarded functional differential
equation (RFDE), in which the past dependence is through the
single real state variable rather than through its derivatives. In
addition, the dependence will be autonomous (not explicitly in-
volving time) and will involve the value of the state variable
at a single discrete time lag. DDEs have been used extensively
to model population dynamics [11] with their inherent matura-
tion and gestation time delays, but also to study epidemics [12],
tumor growth [13], immune systems [14], lossless electrical
transmission lines [15], and the electrodynamics of interacting
charged particles (the Lorenz force with Liénard–Weichert po-
tentials) [16], among others.

A standard and much studied DDE is the Mackey–Glass
equation [17–19], proposed to model the production of white
blood cells and given by

(4)ẋ = axτ

1 + xc
τ

− bx

where xτ = x(t − τ) is the value of x at an earlier time of
t − τ for which chaos occurs with parameters such as a = 0.2,
b = 0.1, c = 10, and τ = 23. Another example is the Ikeda
DDE [20], proposed to model a passive optical bistable res-
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onator system [21] and given by

(5)ẋ = μ sin(xτ − x0) − x.

While there are values of the parameters such as μ = 20, x0 =
π/4, and τ = 5 that give chaos, this is not the simplest such
system since chaos also occurs in the one-parameter system

(6)ẋ = sinxτ

which is surely the simplest DDE with a sinusoidal nonlinearity
and whose dynamics will constitute the remainder of this Letter.

2. Route to chaos

For the case of no time delay (τ = 0), Eq. (6) becomes
ẋ = sinx with equilibria at x∗ = mπ , where m is an inte-
ger. The equilibria with m even are unstable with eigenvalues
λ = 1, while those with m odd are stable with eigenvalues
λ = −1. The equation can be integrated to calculate the ap-
proach to the stable equilibrium closest to the starting point,
giving x(t) = 2 tan−1{et tan[x(0)/2]}, where x(0) is the initial
value of x at t = 0.

The stable equilibrium can be moved to the origin by placing
a minus sign in front of the sinx term in Eq. (6), but the results
that follow are otherwise unchanged. Similarly, the sinx term
can be replaced with cosx, moving the equilibria to x∗ = mπ/2
with m odd, without otherwise changing the behavior. Note also
that by a trivial rescaling of t = T/τ , Eq. (6) can be rewritten
as dx/dT = τ sinx(T − 1).

For τ > 0 the system is infinite-dimensional in the sense
that infinitely many initial conditions over the continuous range
−τ < t < 0 are required, and the system can be approximated
by an infinite-dimensional system of ODEs such as

ẋ0 = sinxN,

(7)ẋi = N(xi−1 − xi)/τ,

where 1 � i � N → ∞. The second equation above advances
N discrete time lags of x0 over the interval t − τ to t . For com-
putational purposes, Eq. (7) can be simply solved by the Euler
method

x0(t + h) = x0(t) + h sinxN,

(8)xi(t + h) = xi−1(t),

where h = τ/(N +1/2). The factor of N +1/2 comes from the
fact that the Euler method already has a delay of τ = h/2 even
for N = 0 because it uses the value of xN at time t rather than at
the midpoint between t and t + h, which would provide a more
accurate solution.

Normally a discrete-time Euler approximation would be less
accurate than a continuous-time ODE, but in this case, it more
accurately approximates the DDE for a given N since the iter-
ates of Eq. (8) for i > 0 exactly give the previous N values of
x0. This method works well for Eq. (7) because its right-hand
side does not involve x(t). Said differently, any ODE solved by
the Euler method using a step size of h is actually a DDE with
τ = h/2.
The eigenvalues for the flow in the vicinity of the stable equi-
librium for N → ∞ are given by the solutions of e−λτ +λ = 0,
which can be expressed in terms of the Lambert function [22]
W as λ = W(−τ)/τ . This equation has two real roots for
τ < 0.36787944 . . . , and they are the two largest Lyapunov ex-
ponents [23]. At that value of τ , the equilibrium switches from
a stable node to a stable focus with infinitely many complex
eigenvalues. When τ reaches π/2, two of the eigenvalues are
λ = ±i, and a Hopf bifurcation occurs, giving rise to a limit
cycle with a period of 2π . The system has N + 1 Lyapunov
exponents whose sum for τ < π/2 is −(N/τ) log(N/τ). As
N approaches infinity, the system is infinitely dissipative with
nearly all directions attracting, and nearly all eigenvalues are
complex conjugate pairs.

For τ slightly greater than π/2, the stable limit-cycle
oscillation with a period ∼ 4τ has an amplitude of δx ∼=
(π/2)

√
2τ − π , which grows in size with increasing τ while

developing significant third and higher odd harmonics (pe-
riod 4τ/3, 4τ/5, . . . ), until the waveform x(t) becomes almost
triangular at τ ∼ 3. At τ ∼= 3.894 a pitchfork bifurcation oc-
curs beyond which there are two coexisting stable limit cycles
that mirror one another with even harmonics (period τ/2, τ/4,
τ/6, . . . ), each with a broken up-down symmetry of the wave-
form x(t). These limit cycles continue to grow until a period-
doubling occurs at τ ∼= 4.828. The period-2 limit cycles persist
until τ ∼= 4.978, whereupon they alternate with period-12 limit
cycles in a period sextupling bifurcation, finally giving way to
chaos at τ ∼= 4.991 when the amplitudes of the limit cycles
reach ±π .

The onset of chaos coincides with an attractor-merging crisis
in which the trajectory is suddenly able to access the entire re-
gion −∞ < x < +∞. Chaos persists for most values of τ > 5
except for a (possibly infinite) number of periodic windows, the
most prominent of which is a period-2 limit cycle that onsets in
a saddle-node bifurcation at τ ∼= 5.535. This limit cycle con-
tinues a period-doubling cascade at τ ∼= 5.581, culminating in
chaos at the accumulation point of τ ∼= 5.603, with a similar-
ity factor of about 5.0 ± 0.5 in agreement with the Feigenbaum
constant of δ = 4.669201 . . . for unimodal maps [24].

For yet larger values of τ , the periodic windows become
increasingly less evident, although there are values such as
12.23 < τ < 14.68 where the chaotic attractor coexists with a
thin 2-torus. In this region, the resulting attractor depends on
the initial conditions and on whether the region is approached
from the large or small τ direction, and the bifurcation points
exhibit hysteresis and long transients. For values of τ > 14.68,
no further periodic windows or coexisting attractors are evident,
and chaos is generic.

All of these details are summarized in Table 1 and in
Figs. 1–3. Fig. 1 shows the spectrum of Lyapunov exponents
(using the Wolf algorithm) [25], the Kaplan–Yorke dimen-
sion [26], the Kolmogorov–Sinai entropy (the sum of the pos-
itive Lyapunov exponents) [27], and the bifurcation diagram
(local maxima of x mod 2π ) versus τ for N = 100. These
plots were obtained by slowly increasing τ without resetting
the initial conditions and calculating for a time of t = 1990τ

(2 × 105 iterations) at each τ . Fig. 2 shows the attractor in
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Fig. 1. Variation of Lyapunov exponents, Kaplan–Yorke dimension, Kolmogorov–Sinai entropy, and local maximum of x with time delay τ .

Fig. 2. Plots of x(t) versus x(t − τ) for increasing τ showing the growth of the limit cycle, period doubling, and the onset of chaos at τ ∼= 5.
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Fig. 3. Return maps (modulo 2π ) for increasing τ showing the increasing complexity of the attractor beyond the onset of chaos at τ ∼= 5.
Table 1
Route to chaos in Eq. (6)

τ Dynamic

Stable equilibrium
1.571 Hopf bifurcation

Limit cycle
3.894 Pitchfork bifurcation

Limit cycles
4.828 Period-doubling bifurcation

Period-2 limit cycles
4.978 Period-sextupling bifurcation

Alternating 2-cycle and 12-cycle
4.991 Attractor-merging crisis

Chaos
5.535 Saddle-node bifurcation

Period-2 limit cycle
5.581 Period-doubling bifurcation

Period-doubling cascade
5.603 Accumulation point

Chaos

x − xτ space for four different values of τ with N = 6000, and
Fig. 3 shows return maps (modulo 2π ) for the local maxima
of x(t) versus the previous local maximum for four different
values of τ with N = 6000. The bifurcations and other behav-
ior are indistinguishable for N = 100 and N = 6000, allaying
any concern that the results are an artifact of the numerical
method.

A linear regression to the Kaplan–Yorke dimension in the
chaotic region (where DKY > 3) gives DKY = 0.437τ + 0.406
for τ � 40. The KS entropy is relatively constant with a value
of about 0.1, indicating that the rate of creation of new infor-
mation (or loss of information about the initial condition) is
nearly independent of τ as one might expect. Similar behavior
is observed in the Mackey–Glass and Ikeda DDE and may be
a general feature of DDEs. All of the Lyapunov exponents ap-
proach zero as τ increases. Note that there are N + 1 exponents
in the calculated map even though the actual DDE has infinitely
many exponents. When the calculation for N = 100 is repeated
with N = 200, the largest 101 of the exponents are nearly iden-
tical, and the additional 100 are more negative than the most
negative for N = 100, although the spacing between the addi-
tional exponents becomes ever smaller as N increases. A linear
regression to the number of positive Lyapunov exponents in the
chaotic region (where DKY > 3) gives NPE = 0.211τ − 0.359
for τ � 40, with hyperchaos (NPE � 2) for τ > 7.8.

3. Deterministic Brownian motion

In the chaotic regime, x(t) can take on any value, but only
by executing a one-dimension deterministic Brownian motion
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Fig. 4. Time history of x, xτ , and dx/dt for τ = 20 showing Brownian motion.

Fig. 5. (Colour online.) Probability distribution function of x for 5 × 105 initial
conditions near the origin after a time of 4 × 103 with τ = 20. The red curve is
a Gaussian distribution with the same standard deviation and area.

as shown in Fig. 4 for τ = 20 and N = 100. For a collection of
5 × 105 initial conditions that start at random positions near the
origin (uniform over the range −0.1 < xi(0) < 0.1), the proba-
bility distribution function along the x-axis after a time lapse of
4×103 is shown in Fig. 5 for τ = 20 and N = 100. Also shown
in the figure in red is a Gaussian distribution with the same stan-
dard deviation (σ ∼= 107.5) and area. The observed distribution
is nearly Gaussian with a negligible kurtosis [28] of k ∼= 0.125.
The kurtosis is defined such that a value of k = 0 represents a
normal (Gaussian) distribution, and the calculated small pos-
itive value indicates that the distribution is very slightly lep-
tokurtic (the tail of the distribution is slightly enhanced relative
to a Gaussian). The standard deviation and kurtosis do not de-
pend strongly on τ for τ approximately 20 or greater at a fixed
time (data not shown).

The standard deviation of this same collection of trajec-
tories is shown versus time in Fig. 6. The best fit linear re-
Fig. 6. Standard deviation of 5 × 105 trajectories starting near the origin versus
time for τ = 20.

gression of logσ versus log t gives σ = 1.641t0.504 over the
range 64 � t � 8192. The slope of the fitted curve (also called
the Hurst exponent [29]) indicates that the motion is closely
Brownian (for which the slope would be 0.5) with a diffusion
coefficient of D = σ 2/t ∼= 2.69. Thus, not only does this sys-
tem provide a test bed for chaos with an easily and accurately
controlled attractor dimension, but it provides an elegant exam-
ple of Brownian motion from a purely deterministic dynamic.

4. Discussion

While the system in Eq. (6) is certainly the simplest DDE
with a sinusoidal nonlinearity, there are other simple systems
such as

(9)ẋ = xτ − x3
τ

for which chaos onsets from a limit cycle at τ ∼= 1.538 and
persists except for periodic windows until τ ∼= 1.723, where-
upon the trajectory becomes unbounded with an exponentially
growing x(t). Similar behavior is observed with the signs in-
terchanged in Eq. (9) but at a higher value of τ such that the
trajectory is unbounded for τ greater than about 3.815. The
right-hand side of Eq. (9) can be considered as a scaled version
of the first two terms in the Taylor series for sinxτ . Other sim-
ple polynomial DDEs include the delayed logistic differential
equation (also called Hutchinson’s equation) [30] ẋ = x − xxτ

used to model single-species population growth [31], and the
delayed-action oscillator [32] ẋ = x − x3 − αxτ used to model
El Niño temperature oscillations in the equatorial Pacific, each
of which admits periodic oscillations but apparently not chaos.
Thus Eq. (9) may be the simplest chaotic polynomial DDE and
is worthy of further study along the lines described here for the
sinusoidal case, except that its attractor never exceeds a value
of about DKY ∼= 2.3. These systems are especially amenable to
implementation as electrical circuits, where the time delay can
be provided by a linear lossless transmission line [33–36].
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