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In this paper we examine a very simple and elegant example of high-dimensional chaos in a
coupled array of flows in ring architecture that is cyclically symmetric and can also be viewed as an
N-dimensional spatially infinite labyrinth �a “hyperlabyrinth”�. The scaling laws of the largest
Lyapunov exponent, the Kaplan–Yorke dimension, and the metric entropy are investigated in the
high-dimensional limit �3�N�101� together with its routes to chaos. It is shown that by tuning the
single bifurcation parameter b that governs the dissipation and the number of coupled systems N,
the attractor dimension can span the entire range of 0 to N including Hamiltonian �conservative�
hyperchaos in the limit of b=0 and, furthermore, spatiotemporal chaotic behavior. Finally, stability
analysis reveals interesting and important changes in the dynamics, whether N is even or odd.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2721237�

The study of chaotic dynamics has shifted during the last
decade toward high-dimensional systems. Systems with a
single bifurcation (control) parameter are especially pre-
ferred to serve as prototypical examples of high-
dimensional chaos. Such simple systems could be delay
differential equations (DDEs, such as the Mackey–Glass
equation1) or partial differential equations (such as the
Kuramoto–Sivashinsky equation2). Here, we focus on a
system that can be viewed as a coupled system of N iden-
tical ordinary differential equations (ODEs) with a single
control parameter whose basic characteristic is its ability
to produce chaos, hyperchaos, and conservative (Hamil-
tonian) chaos by appropriate tuning, together with the
number N of coupled systems. Furthermore, this system
can be viewed as a one-dimensional ring resulting in spa-
tiotemporal chaos, as a single trajectory on an
N-dimensional torus, or as a single trajectory in an
N-dimensional spatially infinite labyrinth (a “hyperlaby-
rinth”).

I. INTRODUCTION

High-dimensional systems have received increasing at-
tention in recent years since low-dimensional dynamics are
now extensively studied.3,4 Examples of such complex sys-
tems include time-delayed differential equations1,5 and
maps,6 coupled three-dimensional flows such as Lorenz
systems,7 and many others. In this work, we deal with a
system of N coupled ordinary differential equations
�CODEs� in a ring architecture that was originally proposed
by Thomas et al.8 and that exhibits chaos even for the sim-
plest case with N=3 �also further studied in Ref. 9� accord-
ing to the Poincaré–Bendixson theorem10 for which the con-
servative limit has been called “labyrinth chaos.” Herein we
study an obvious extension of this system, also suggested by
Thomas et al.,11 to higher dimensions �3�N�101� �and
therefore called “hyperlabyrinth chaos”� given by

dxi

dt
= − bxi + sin xi+1 �1�

with i=1,2 , . . . ,N and periodic boundary conditions xN+1

�x1. The system is cyclically symmetric in the variables xi.
The dissipation is governed by the parameter b, and the trace
of the Jacobian matrix �the rate of state-space contraction� is
always negative and equal to −bN; hence, b�0 for bounded
solutions. A physical phenomenon that can be described by
such a high-dimensional system could be a particle moving
in an N-dimensional lattice �or “hyperlabyrinth”� under the
influence of some external source of energy. Furthermore,
Eq. �1� is similar to the Ikeda delay differential equation5

dx�t� /dt=−bx�t�+sin�x�t−���, which is known to result in
high-dimensional chaos and which is used for modeling la-
sers with wavelength hyperchaos.12 The second bifurcation
parameter � �delay time� in the Ikeda DDE above
coincides—in a manner of dynamical topology—with the
number N of the coupled systems of Eq. �1� since the interval
�−� ,0� in the DDE is generally split into N samples in order
to be solved as an iterated map following Farmer’s ideas.13

Of course, Eq. �1� is not identical to the Ikeda DDE, but it is
similar in having the same nonlinearity and bifurcation pa-
rameter b. Furthermore, the Ikeda DDE needs high values of
b and � �hence, high N� for high complexity, in contrast to
Eq. �1�, which needs only low b and high N values, as we
will demonstrate next.

In Ref. 11, the CODEs of Eq. �1� were studied with
respect to occasional paradigms and cases of selected values
of N. It was shown that hyperchaos of order m �m positive
Lyapunov exponents� can be generated by using N=2m+1
for the conservative case �b=0� in Eq. �1�. Chaotic walks
were also investigated for the conservative case for selected
values of N. In this paper we expand this work by giving a
detailed picture of Eq. �1� for the whole range: 3�N�101.
The case N=101 is studied since it is a prime number and,
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hence, prevents the system from breaking up into some num-
ber of smaller subsystems of lower dimension.

II. BIFURCATION SEQUENCE—ROUTE TO CHAOS

In this section we investigate the bifurcation sequence of
Eq. �1�. Analytic calculations �up to the fourth decimal digit�
are carried out whenever possible as a check on the numerics
that follow, especially since benchmarks for Lyapunov expo-
nent calculations in high-dimensional chaotic systems are not
widely available. This system has equilibria at

sin xi+1
* = bxi

* �2�

with eigenvalues � that satisfy

�� + b�N = �i=1

N
cos xi

*. �3�

For b�1, Eq. �2� has only a single solution, corresponding
to an equilibrium at xi

*=0 for all i, and thus the eigenvalues
are given by the solutions of ��+b�N=1. The eigenvalues are
real and are given by �=1−b for all N. The real parts of
these eigenvalues are the Lyapunov exponents of the system.

As b decreases, the equilibrium at xi
*=0 becomes un-

stable at b=1, and a pair of new stable symmetric equilibria
are born in a pitchfork bifurcation with bx*=sin x*�x*

−x*3 /6 or x*� ±�6�1−b�. From Eq. �3� with cos x*

=�1−sin2x*=�1−b2x*2, the eigenvalues of these new equi-
libria are given by

�� + b�N = �1 − b2x*2�N/2 �4�

with the real ones given simply by the N /2 root of Eq. �4�:

�2 + 2b� + b2�1 + x*2� − 1 = 0, �5�

whose solutions are �=−b±�1−b2x*2 for N even and �

=−b+�1−b2x*2 for N odd. For b only slightly less than 1.0,
these eigenvalues are given approximately by ��−b± �3b
−2� using the approximation for x* above. The two real ei-
genvalues are equal when 1= ±bx*= ±sin x* or x*= ±� /2
and b=2/�, and at that value of b, the largest Lyapunov
exponent is �=−2/� and begins increasing as b decreases
further.

What happens next as b decreases depends on whether N
is odd or even. Consider first the case of N odd. In that case,
the symmetric equilibria undergo a Hopf bifurcation when b
reaches a value where �= ± i� with a real part of zero, at
which point a stable oscillation with frequency � onsets.
Substituting this value of � into Eq. �3� and separately equat-
ing the real and imaginary parts on the two sides of the
equation leads to

��2 + b2 = − cos x* �6�

since N is odd and, hence, cos x*�0, and

� = b tan��/N + 2n�/N� �7�

with n=0, ±1, ±2, . . . .
Equations �6� and �7� with n=0, when combined with

Eq. �2�, give a transcendental equation for x*,

x*cos��/N� + tan x* = 0 �8�

with an approximate solution using a Taylor series of fourth
order:

x* = ± 3�1 + cos��/N� .

Equation �8� can also be solved numerically using Newton’s
method to determine how x* depends on N, from which b
follows from

b = sin x*/x* �9�

and � is given by Eq. �7�. Results for some values of N are
shown in Table I.

The case of N=1 is special because there is a single
eigenvalue �and Lyapunov exponent�, no Hopf bifurcation,
and of course no chaos. For b�2/�, the behavior is as de-
scribed above. For b�2/�, the real eigenvalue is given by
�=−b+cos x*, which can be expanded about b=0, where
x*= ±�. Taking the positive value as typical gives cos x*

�−1+ ��−x*�2 /2. Furthermore, from Eq. �2�, bx*=sin x*

��−x*, which gives x*�� / �1+b� and an eigenvalue

� � − b − 1 +
�2b2

2�1 + b�2 . �10�

Note that �=−1 for b=0 and that the equilibria become un-
stable ��=0� when b reaches a negative value, given ap-
proximately by the root of the cubic equation

2b3 + �6 − �2�b2 + 6b + 2 = 0, �11�

for which the solution is b�−0.2768 and x*� ±4.3442. The
exact value of x* is given by the solution of tan x*=x*, which
from Newton’s method is x*� ±4.4934 with b=sin x* /x*

�−0.2172, at which point a boundary crisis occurs14,15 �the
equilibrium points collide with their basins of attraction� and
the trajectory becomes unbounded.

Now consider the case of N even. The behavior for b
�2/� is the same as for N odd, with a pitchfork bifurcation
at b=1 to a pair of symmetric equilibria. However, with de-
creasing b, rather than a Hopf bifurcation, there is a second
pitchfork bifurcation when �=0. This bifurcation occurs

TABLE I. Hopf bifurcation for N�3 and odd �selected values of N�.

N x* b �

3 2.288 930 0.328 990 0.569 828
5 2.102 313 0.410 043 0.297 914
7 2.064 155 0.426 687 0.205 481
9 2.049 680 0.432 999 0.157 599
11 2.042 602 0.436 085 0.128 046
21 2.032 493 0.440 492 0.066 394
31 2.030 466 0.441 376 0.044 884
41 2.029 733 0.441 695 0.033 911
51 2.029 388 0.441 846 0.027 252
61 2.029 198 0.441 929 0.022 780
71 2.029 083 0.441 979 0.019 569
81 2.029 007 0.442 012 0.017 152
91 2.028 956 0.442 034 0.015 266

101 2.028 918 0.442 051 0.013 754
Inf 2.028 758 0.442 121 b� /N→0
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when x* satisfies Eq. �2� and �3� with �=0, giving tan x*

=−x* or x*� ±2.0287 and b=sin x* /x*�0.4421 for all
even N.

At this bifurcation point, a pair of asymmetric equilibria
is born with xi

*= ±xa and xi+1
* = ±xb and a second pair with xa

and xb interchanged. This is the first case with spatial struc-
ture �not all xi are equal�, and it corresponds to a spatial
period doubling from period-1 to period-2 �adjacent spatial
sites alternate in value�. Because of the periodic boundary
conditions, this behavior can occur only for even N. These
new equilibria satisfy the conditions sin xa=bxb and sin xb

=bxa, and the eigenvalues are given by

�� + b�N = cosN/2 xa cosN/2 xb. �12�

Just beyond the bifurcation point, the eigenvalue is real and
is given by �=−b+�cos xa cos xb. The largest two real ei-
genvalues exchange roles when cos xa=0, which occurs
when xa= ±� /2 and xb= ±1/b. This condition is satisfied
when sin xb=� /2xb, whose solution by Newton’s method is
xb� ±2.4433 at b�0.4092 with �=−b.

What happens next depends on whether N /2 is even or
odd �whether N is a multiple of 4�. For N /2 odd, the next
bifurcation is a Hopf and occurs for �= ± i�, where �2+b2

=−cos xa cos xb with � given by Eq. �7�. This system of tran-
scendental equations in four variables �xa, xb, b, and �� re-
quires a numerical solution whose results �using a variant of
simulated annealing� are shown in Table II. The case of N
=2 is special because it does not undergo a Hopf bifurcation,
but instead has a boundary crisis with �=0 at b=0, where
xa=0 and xb= ±�.

Now consider the case of N /2 even. The behavior for
b�0.4092 is the same as for N /2 odd, but instead of under-
going a Hopf bifurcation as b decreases, it undergoes another
pitchfork bifurcation with �=0 when b2=−cos xa cos xb.
Combined with sin xa=bxb and sin xb=bxa and solving nu-
merically using a variant of simulated annealing, the result is
xa� ±1.3973, xb� ±2.5785, and b�0.3820.

At this bifurcation point, four asymmetric equilibria are
born with xi

*= ±xa, xi+1
* = ±xb, xi+2

* = ±xc, and xi+3
* = ±xd, and

three other cases with the values rotated. This case corre-

sponds to a spatial period doubling from period-2 to
period-4. Because of the periodic boundary conditions, this
behavior can only occur for values of N that are multiples of
4 �N /2 must be even�. These period doublings continue until
a period-p is reached at which N / p is odd, and then a Hopf
bifurcation occurs. The period doublings are analogous to the
Feigenbaum sequence of period doublings in the logistic
map and have the same scaling factor; i.e., 	=4.6692. . . .
However, these are pitchfork bifurcations rather than flips,
since flips cannot occur in a continuous flow. In a pitchfork
bifurcation, there are two stable branches, whereas in a flip,
the two branches are individually unstable, but the orbit os-
cillates between the two in a stable period-2 cycle. The bi-
furcation sequence calculated for each of the cases above is
summarized in Table III.

In calculating these attractors and their spectra of
Lyapunov exponents, initial conditions are chosen through-
out this paper to be uniform and random in the range of −�
to � range, and are not critical. However, as described in
Ref. 9, if x1�0�=x2�0�= ¯ =xN�0�, then the system behaves
like a one-dimensional system with stable equilibria �point
attractors� at x1

*=x2
*= ¯ =xN

* .
Another way to view the expansion of the attractor with

decreasing b is to plot the standard deviation of the trajectory
from the origin


 =� lim
T→�

1

T
	

0

T



i=1

N

xi
2dt �13�

along with the kurtosis16

k = lim
T→�

1

T
4	
0

T



i=1

N

xi
4dt − 3 �14�

averaged along the trajectory, as shown in Fig. 1 for N
=101. The kurtosis is defined such that a value of k=0 rep-
resents a normal �Gaussian� distribution, with a positive
value indicating an enhanced tail and a negative value indi-
cating a suppressed tail. The calculated negative value of k
�−2 for all b�0 indicates that the distribution is somewhat
platykurtic �the tail of the distribution is truncated relative to
a Gaussian�. The standard deviation scales with b as 

�8/�b. By the ergodic hypothesis,17 these time averages are
identical to the ensemble averages over many initial condi-
tions and coarsely reflect the natural measure on the attractor
apart from the fine-scale fractal structure.

III. DETERMINISTIC BROWNIAN MOTION

For the conservative case �b=0�, the trajectory wanders
ergodically and time-reversibly throughout the entire
N-dimensional space �the “hyperlabyrinth”�, except for the
small quasiperiodic regions whose measure rapidly ap-
proaches zero with increasing N, where the trajectory drifts
out parallel to one of the N axes. In Ref. 9, it was found that
this percentage of the space for N=3 was ��3��1.67%. Af-
ter many calculations and verified for N=4, ��4��0.028%
according to Eq. �15�, and it is conjectured herein that this
fraction follows the relation for N�1:

TABLE II. Hopf bifurcation for N�6 with N /2 odd �selected values of N�.

N xa xb b �

6 1.352 960 2.611 169 0.373 920 0.215 883
10 1.382 768 2.589 333 0.379 393 0.123 272
14 1.390 094 2.583 910 0.380 709 0.086 894
18 1.393 008 2.581 747 0.381 229 0.067 221
30 1.395 808 2.579 665 0.381 727 0.040 121
38 1.396 395 2.579 229 0.381 831 0.031 639
46 1.396 702 2.579 000 0.381 886 0.026 122
54 1.396 883 2.578 866 0.381 918 0.022 244
58 1.396 947 2.578 818 0.381 929 0.020 708
66 1.397 041 2.578 748 0.381 946 0.018 194
70 1.397 076 2.578 722 0.381 952 0.017 153
78 1.397 132 2.578 681 0.381 962 0.015 393
86 1.397 172 2.578 650 0.381 969 0.013 960
98 1.397 215 2.578 618 0.381 977 0.012 249
Inf 1.397 360 2.578 510 0.382 003 b� /N→0
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��N� � 0 . 0167N−2. �15�

Note that ��2�=1, and all initial conditions give periodic
orbits as expected. As N increases, then ��N→ � � tends to
zero, meaning that all initial conditions lead to chaotic solu-
tions.

Note that the divergence of the flow given as

� · v = 

i=1

N
�

�xi
sin xi+1 � 0 �16�

is identically zero, which means that the flow is incompress-
ible and, hence, of constant density throughout the ergodic

region. Given the uniform measure, it is simple to calculate
the root-mean-square speed

vrms =�

i=1

N

sin2xi = �N/2, �17�

each component of which is 1 /�2.
However, the approach to this equilibrium is by way of a

diffusion, reminiscent of Brownian motion, but in a purely
deterministic system. The trajectory for one such typical case
with N=101 is shown in Fig. 2 projected onto the x1-x2

plane. For a collection of 1.6
106 initial conditions that
start at random positions near the origin, the probability dis-
tribution function along each of the 101 axes after a time
lapse of 4
103 is shown in Fig. 3. Also shown in the figure
in red is a Gaussian distribution with the same standard de-
viation �
�63.4� and area. The observed distribution is
closely Gaussian with a negligible kurtosis of k�−0.003, in
contrast to the strongly leptokurtic �fat-tailed� distribution
�k�9.8� found for N=3 and b=09 and the slightly platykur-
tic �thin-tailed� distribution �k�−2� for N=101 and b�0.
Thus, the behavior is identical to a random walk produced by
steps that are independent and identically distributed.

Figure 4 shows the standard deviation versus time for
1.6
104 initial conditions uniform over a 101-dimensional
hypercube centered on the origin and extending from −0.1 to
0.1 along each axis. The slope of the least-squares fitted
curve �0.508� over the range 8� t�8192 indicates that the
motion is closely Brownian �for which the slope would be
0.5�.18 These results contrast with the simplest labyrinth-
chaos case of N=3, where fractional Brownian motion with a
slope of 0.61 was observed. The latter shows that with in-
creasing N, the slope, which coincides with the Hurst expo-

TABLE III. Summary of bifurcation sequence

N=1
Dynamic b x* �

Stable equilibrium �1 0 1−b
Pitchfork bifurcation 1 0 0
Bistable equilibria �1 sin x*=bx* −b−1+cos x*

Boundary crisis −0.2172. . . ±4.4934. . . 0

N=2
Dynamic b x* �

Stable equilibrium �1 0 1−b
Pitchfork bifurcation 1 0 0
�1=�2 2 /� ±� /2 −2/�

Pitchfork bifurcation 0.4421. . . ±2.0287. . . 0
�1=�2 0.4092. . . ±� /2 , ±1/b −b
Boundary crisis 0 ±�, 0 0

N�3 and odd
Dynamic b x* �

Stable equilibrium �1 0 1−b
Pitchfork bifurcation 1 0 0
�1=�2 2 /� ±� /2 −2/�

Hopf bifurcation See Table I See Table I See Table I

N�6 with N /2 odd
Dynamic b x* �

Stable equilibrium �1 0 1−b
Pitchfork bifurcation 1 0 0
�1=�2 2 /� ±� /2 −2/�

Pitchfork bifurcation 0.4421. . . ±2.0287. . . 0
�1=�2 0.4092. . . ±� /2 , ±1/b −b
Hopf bifurcation See Table II See Table II See Table II

N�4 with N /2 even
Dynamic b x* �

Stable equilibrium �1 0 1−b
Pitchfork bifurcation 1 0 0
�1=�2 2 /� ±� /2 −2/�

Pitchfork bifurcation 0.4421… ±2.0287. . . 0
�1=�2 0.4092… ±� /2 , ±1/b −b
Pitchfork bifurcation 0.3820… ±1.3973. . . 0

±2.5785. . .
�1=�2 0.3760… ±� /2 , ±1/b −b

±1.2340. . .
±2.5096. . .

Pitchforks or Hopf
Feigenbaum
cascade

until N/p
becomes odd

FIG. 1. Standard deviation and kurtosis for the excursion of the trajectory
from the origin for the attractors as a function of b with N=101.
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nent as defined below, decreases, resulting in a higher fractal
dimension and less long-term memory �see Ref. 19 and ref-
erences therein�.

From the best fit linear regression of log10 
 versus
log10 t given by 
=9.465t0.508 and assuming 
= �t /��Hd,
where � is an effective collision time and d is an effective
mean free path with d /�=v given by Eq. �18�, one obtains
�= �9.465/7.106�1.969�1.758 and d=7.106
1.758�12.5,
which is about twice the lattice size of 2�, whereas one
might have expected the mean free path to be approximately
equal to the lattice size. The quantity H �=0.508 in this case�

is called the Hurst exponent.20 The corresponding values for
N=3 are ��0.68 and d�0.83.

An alternate calculation of the Hurst exponent follows a
single trajectory for a very long time with the rescaled range
R /S plotted versus time on a log-log plot, the slope of which
is H.17,21 The range R is the maximum excursion from the
starting point, and S is the average step size �approximately
the mean free path d�, which does not depend on time.
Hence, it suffices just to plot log10 R versus log10 t, as shown
in Fig. 5, where the slope of the best fit straight line over for
t�10 is H=0.527 for N=101, in good agreement with the
value of 0.508 obtained from Fig. 4 and in contrast to the
value of H=0.62 found by this same method with N=3. In
Fig. 5 the initial conditions were taken as x1�0�=0.2 and
xi�0�=0 for i�1, and the trajectory was followed for a time
of 108 with a fourth-order Runge–Kutta step size of 0.05.

Figure 6 shows the autocorrelation function

FIG. 2. Brownian motion �chaotic “walk”� of a trajectory in the chaotic sea
for b=0 and N=101 projected onto the x1 -x2 plane.

FIG. 3. Probability distribution function for each component of x for 1.6

106 initial conditions near the origin after a time of 4
103 with b=0 and
N=101. The red curve is a Gaussian distribution with the same standard
deviation and area.

FIG. 4. Standard deviation of 1.6
104 trajectories starting near the origin
versus time for b=0 and N=101.

FIG. 5. Range vs time for b=0 and N=101 showing a Hurst exponent of
H=0.527.
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C��� =
��

�ẋ�t�ẋ�t − ��dt

��
�ẋ�t�2dt

�18�

for the same trajectory as in Fig. 5, showing the short-term
correlation that falls rapidly to zero, as expected for a truly
random process. The function appears to be an exponentially
decaying oscillation. The autocorrelation function is the Fou-
rier transform of the power spectral density22 and was per-
formed on the time derivative of x rather than x itself be-
cause the time derivative of a random walk is expected to be
uncorrelated �white� noise, as appears to be the case.

IV. SCALING LAWS

The system of Eq. �1� can be considered as a coupled
system of flows. In Ref. 9, it was shown for what values of b
chaos occurs with N=3. In this section we will examine—as
an obvious extension—the scaling laws for the largest
Lyapunov exponent �LLE�, the Kaplan–Yorke dimension
DKY,23 and the metric �Kolmogorov–Sinai� entropy hKS in
the high-dimensional limit 3�N�101. Only the bifurcation
parameter b is kept constant at b=0.05 as N varies. This
value of b was chosen since it is close to the conservative
�b=0� case.

In Fig. 7, the LLE is plotted as a function of N. The
value of the LLE is approximately constant for high values
of N, despite the fact that the dimension and the metric en-
tropy are increasing, as will be shown next. After approxi-
mately N�40, the LLE approaches asymptotically its upper
limit value of about 0.374. The Kaplan–Yorke dimension
DKY and the metric entropy hKS increase linearly as N in-
creases, following the relations �by calculating DKY and hKS

with a step of 	N=5 for 3�N�101 and applying a least-
squares fit�

DKY � 0.892N − 0.022, �19�

hKS � 0.09N − 0.038 �20�

with an R2 value equal to 0.99, meaning that the dependence
of these quantities on N is linear. �The R2 value, where 0
�R2�1, is defined as the measure of a least-squares fit with

R2=1 signifying a perfect linear correlation.� Furthermore,
for b=0 �the conservative case� the dimension is equal to N,
and the metric entropy follows the relation

hKS � 0.11N − 0.08 �21�

From Eqs. �19�–�21�, it is shown that the system for decreas-
ing b becomes more complex �higher dimension for higher
a1 from the slope of DKY =a1N+a2� and more chaotic �higher
metric entropy for higher c1 from the slope of hKS=c1N+c2�.
In order to verify that result, for b=0.18, we calculate a1

=0.678 and c1=0.052, values lower than the case of b
=0.05 and b=0.

Another interesting result is that for any chaotic case for
a set of values �b ,N�, the slopes discussed above follow the
equations

dDKY/dN � − 1.758b + 0.992, �22�

dhKS/dN � − 0.316b + 0.108, �23�

since the values of the intercepts were not fitted. By setting
the two equations above equal to zero, we find that in order
to have positive slopes for a chaotic case, we require b
�0.34. Hence, independent of N, b should always be less
than 0.34. From Eqs. �22� and �23�, we can extract general
equations for the scaling laws given by

DKY � �− 1.758b + 0.992�N + � , �24�

hKS � �− 0.316b + 0.108�N + � , �25�

where 
�
 and 
�
 are small constants less than 0.1 in all tested
cases. Note, though, that since DKY is two orders of magni-
tude larger than � and hKS is only one order of magnitude
larger, then Eq. �24� results in a more accurate general scal-
ing law than does Eq. �25�, especially for small N.

For N=4, no hyperchaos �two or more positive
Lyapunov exponents� was found for the whole range of b, as
one might have expected. The latter might have to do with
the limited number of variables of this four-dimensional sys-
tem of ODEs, but generally there are no criteria for having

FIG. 6. Autocorrelation function of ẋ vs delay for b=0 and N=101.

FIG. 7. Largest Lyapunov exponent versus N for b=0.05.
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hyperchaos in chaotic flows except for the minimum number
of equations �N=4�. The first hyperchaotic case was found
for �b ,N�= �0.108,5� with an LE spectrum of �0.252, 0.009,
0, −0.308, −0.5� and DKY=3.857 and shown with a filled
circle in Fig. 9. Figure 8 shows the phase portrait of x1 versus
x5 �and is very similar to the Ikeda DDE attractor�, and Fig.
9 shows the first four Lyapunov exponents versus b for N
=5. Note that for low values of b, the system becomes more
chaotic and more complex, and this holds for the whole
range of �b ,N� values.

As was shown in Eqs. �24� and �25�, the metric entropy
and dimension increase linearly with N for any b. In both the
Ikeda DDE5 and the Mackey–Glass DDE,13 the dimension
increases linearly with the delay time �, but the entropy ap-

proaches a constant value. Hence, Eq. �1� in its high-
dimensional limit could serve as a more complex prototypi-
cal minimal system in contrast to simple DDEs since its
chaoticity �entropy� increases simultaneously with its com-
plexity �dimension�.

V. DISCUSSION AND CONCLUSIONS

The system in Eq. �1� provides an interesting and simple
example of a high-dimensional chaotic system. It can be
viewed as a ring of interacting agents, with each agent driven
nonlinearly by only the one on its right, or as a single chaotic
trajectory on an N-torus or in a spatially infinite
N-dimensional hyperlabyrinth. The first description provides
a model of one-dimensional spatiotemporal chaos in which
there is spontaneous symmetry breaking. Whereas the gov-
erning equations are symmetric with respect to a rotation of
the ring, the solution is not, as indicated by the spatiotempo-
ral plot in Fig. 10. In this figure with N=101 and b=0, a gray
scale is used to indicate the value of sin xi at each of the 101
values of i as time advances, with white corresponding to −1
and black to +1. The plot shows coherent structures that
grow, propagate, and then dissipate in an apparently chaotic
manner. The plot actually starts at a time of t=400 to elimi-
nate an initial transient during which the structures self-
organize despite the absence of an attractor for this Hamil-
tonian system. By “Hamiltonian” we mean that the trace of
the Jacobian matrix, and thus the sum of all N Lyapunov
exponents, is zero and, hence, there is no dissipation.

In conclusion, the hyperlabyrinth system of Eq. �1�, de-
spite its simplicity and elegance, shows rich dynamical be-
havior. From Ref. 11, it is known, and verified herein, that m
positive Lyapunov exponents appear by using N=2m+1 for
b=0. We extended this result further by calculating the scal-
ing laws of DKY and hKS as a function of N and also b, since
the number of positive Lyapunov exponents m does not by
itself give any information about the complexity and chao-
ticity of the system, especially at large N. This system could
serve as a prototypical example of a high-dimensional cha-
otic system in contrast, for example, to chaotic delay differ-

FIG. 8. Phase portrait of x1 vs x5 showing the first hyperchaotic case for
b=0.108 with N=5.

FIG. 9. Lyapunov exponents �1, �2, �3, and �4 vs b for N=5. The filled
circle denotes the point for b=0.108, where the second Lyapunov exponent
becomes positive �hyperchaos�. Notation ��,� means that Lyapunov expo-
nents �� and �� coincide up to the second decimal digit with ����b. �5 was
not plotted since it is very negative.

FIG. 10. Spatiotemporal plot of sin xi�t� for b=0 and N=101, showing the
broken symmetry and propagating chaotic structures.
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ential equations or diffusively coupled systems24 when the
Lyapunov dimension and the Kolmogorov–Sinai entropy are
considered. With the reported numerical results in this paper
and the stability analysis, one can easily produce a wide
variety of chaotic states. Finally, it was shown that this sys-
tem in its high-dimensional limit produces chaotic walks
with behavior identical to a random walk produced by steps
that are independent and identically distributed. The latter
was found by calculating the Hurst exponent H, revealing
that as N increases the system has less long-term memory,
with each data point less correlated with preceding values �H
is very close to 0.5�. Hence, Eq. �1� is a very simple, elegant,
and prototypical high-dimensional system with likely rel-
evance to some natural systems.
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