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The aim of this paper is to present and analyze a minimal chaotic map of the plane, then
we describe in detail the dynamical behavior of this map, along with some other dynamical

phenomena.
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1.
The Hénon map [Hénon, 1976] given by

e = ( ) 1)

has been widely studied because it is the simplest
example of a dissipative map with chaotic solutions.
It has a single quadratic nonlinearity and an area
contraction that depends only on b and is thus con-
stant over the orbit in the xy-plane. It can also be
written as a one-dimensional time-delayed map:
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Generalizations of this map [Benedicks &
Carleson, 1991; Aziz-Alaoui et al, 2001] have
contributed to the development of dynamical
systems theory and have produced new chaotic
attractors with applications in science and engineer-
ing [Newcomb & Sathyan, 1983; Grassi & Mascolo,
1999]. Application areas include secure commu-

nication and information processing [Newcomb &
Sathyan, 1983; Grassi & Mascolo, 1999] where

2
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discrete-component electronic implementation is
possible [Andreyev & Belsky, 1996].

Here we propose and analyze an equally simple
two-dimensional quadratic map given by

= ( ).

where a and b are bifurcation parameters. Equation
(3) is an interesting minimal system, similar to the
Hénon map, but with the time delay in the non-
linear rather than the linear term as evidenced by
writing it in the time-delayed form:

1 —ay®+bx
x

(3)

(4)

Despite its apparent similarity and simplicity, it dif-
fers from the Hénon map in that it has a nonuniform
dissipation, a more rich and varied route to chaos,
and a much wider variety of attractors. Whereas
the attractors for the Hénon map have a maxi-
mum dimension of about 1.31, with all the attrac-
tors qualitatively similar, the map (3) has attractors
covering the entire range of dimensions from 1 to 2

Tpy1 =1 —ax® | + bxy,.
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(as well as zero) with basins of attraction that are
often much more complicated than for the Hénon
map. These systems are special cases of general 2-D
quadratic maps, many examples of which are given
by Sprott [1993] but not extensively studied.

Equation (4) reduces to the time-delayed
quadratic map for b = 0, much as the Hénon map
in Eq. (2) reduces to the ordinary quadratic map
for b = 0. On the other hand, this system is dif-
ferent from other well-known 2-D maps such as
the delayed logistic map [Aronson & Chory, 1982]
given by

m@—@)

T

st = )

Equation (3) is not topologically equivalent to
Eq. (5) since the latter has two fixed points (0,0)
and ((a —1)/a,(a —1)/a) that exist for all values
of a # 0, whereas the former has none, one or two
fixed points, depending on the values of a and b as
will be shown below.

Another minimal chaotic mapping that has
been studied is the delayed Hénon map [Sprott,
2006]. As with the Hénon map, these systems

including the one in Eq. (3) typically have no direct
application to particular physical systems, but they
serve to exemplify the kinds of dynamical behavior,
such as routes to chaos, that are common in physical
chaotic systems. Thus an analytical and numerical
study is warranted.

2. Fixed Points and Their Stability

In this section, we begin by studying the existence
of the fixed points of the f mapping and deter-
mine their stability. The Jacobian matrix of the

map (3) is
J(z,y) = (ll) _%ay> ;

and its characteristic polynomial for a fixed point
(x,z) is given by

A — bA 4 2az = 0. (6)

The local stability of the two equilibria is stud-
ied by evaluating the roots of Eq. (6). Hence if
a > —((=b+1)/2)?, then the map (3) has two fixed
points:

2a

b (b—l—\/4a—2b+b2+1 b—1—\/4a—2b+b2+1>
1= )
2a

2a

b (b—1+\/4a—2b+b2+1 b—1+\/4a—2b+b2+1>
2 = )
2a

whereas if a < —((—=b+1)/2)2, then the map (3)
has no fixed point.

Thus, after some calculations, one can obtain
the following results:

P is unstable in the following cases:

(i) a> —((=b+1)/2)%,b < 0.

(i) a > —((=b+1)/2)%a > (1/2)b + (3/4)0* —
(1/4), b > 0.

P, is a saddle point in the following case:

(i) a > —((=b+1)/2)%a < (1/2)b + (3/4)b* —
(1/4),b > 0.

On the other hand, P, is unstable in the following
cases:

(i) a > —((=b+1)/2)%,a > (1/8)b> — (1/8)b% +
(1/64)b*, b > 2.

(i) a > —((=b+1)/2)%,a > —(1/2)b + (3/4),
b<2.

(iii) @ > —((=b+1)/2)%,a < (1/8)b> — (1/8)b% +
(1/64)b%,b > 2.

P, is stable in the following cases:

(i) a > —((=b+1)/2)%,a > (1/8)b* — (1/8)b> +
(1/64)b*,a < —(1/2)b+ (3/4), b < 2.
(i) a > —((=b+1)/2)%a < (1/8)b% — (1/8)6* +
(1/64)b*,0 < b < 2.
(i) a > —((=b+1)/2)%,a < (1/8)b% — (1/8)b> +
(1/64)b%, a > (1/2)b + (3/4)b* — (1/4), -2 <
b < 0.

P; is a saddle point in the following cases:

() a > —((~b+1)/2)2%a < (/&) — (/&) +

(1/64)b%,a < (1/2)b + (3/4)b* — (1/4),—2 <
b<O0.

A schematic representation of these results
is given in Fig. 1, where the regions (B;)i<i<4
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Fig. 1. Stability of the fixed points of the map (3) in

the ab-plane, where the numbers on the figure are as
follow: 1: P; is unstable, 2: P; is a saddle, 3: P; is
stable, 4: P» is unstable, 5: Py is a saddle, 6: P» is
stable, and the regions (B;)j<ij<4 have respectively the
following boundaries: a = —((=b+1)/2)%, a = (1/8)b* —
(1/8)b% + (1/64)b*, a = —(1/2)b + (3/4), a = (1/2)b +
(3/4)> — (1/4).

have respectively the following boundaries: a =
—((=b+1)/2)%,a = (1/8)b* — (1/8)b3 + (1/64)b*,
a=—(1/2)b+ (3/4),a = (1/2)b + (3/4)b> — (1/4).

3. Numerical Computations
3.1.

There are several possible ways for a discrete
dynamical system to make a transition from regu-
lar behavior to chaos. Bifurcation diagrams display
these routes and allow one to identify the chaotic
regions in ab-space from which the chaotic attrac-
tors can be determined. In this subsection we will
illustrate some observed chaotic attractors, along
with some other dynamical phenomena.

For the system (3) the values of a and b
that maximize the largest Lyapunov exponent with
a =1 and with b = 1 are as follow: For a = 1, one
has b = 0.675 and Lyapunov exponents (base-e) of
0.171496 and 0.007595, while for b = 1, one has
a = 0.59948 and Lyapunov exponents of 0.091912
and —0.074313. The corresponding chaotic attrac-
tors are shown respectively in Figs. 2(b) and 2(c)
along with their basins of attraction in white. Note
that the basin boundary nearly touches the attrac-
tor for these cases and is apparently a fractal for
the case in Fig. 2(c).

Observation of chaotic attractors

3.2. Route to chaos

It is well known that the Hénon map typically
undergoes a period-doubling route to chaos as
the parameters are varied. By contrast, the Lozi
map [Lozi, 1978] has no period-doubling route, but
rather it goes directly from a border-collision bifur-
cation developed from a stable periodic orbit [Cao
& Liu, 1998; Aziz-Alaoui et al., 2001]. Similarly, the
chaotic attractor given in [Elhadj, 2005] is obtained
from a border-collision period-doubling bifurcation
scenario. This scenario involves a sequence of pairs
of bifurcations, whereby each pair consists of a
border-collision bifurcation and a pitchfork bifurca-
tion. Thus, the three chaotic systems go via different
and distinguishable routes to chaos. Furthermore,
the minimal quadratic chaotic attractor considered
here results from a quasi-periodic route to chaos as
shown in Fig. 3.

3.3. Dynamaical behaviors with
parameter variation

In this subsection, the dynamical behaviors of the
map (3) are investigated numerically.

Figure 4 shows regions of unbounded (white),
fixed point (gray), periodic (blue), quasi-periodic
(green), and chaotic (red) solutions in the ab-plane
for the map (3), where we use |LE| < 0.0001 as
the criterion for quasi-periodic orbits with 10° iter-
ations for each point. Note the agreement of Fig. 4
with the bifurcation boundaries calculated above
and plotted in Fig. 1. For comparison, Fig. 5 shows
a similar plot for the Hénon map [Sprott, 2003].

On the other hand, if we fix parameter b = 0.6
and vary a > 0, the map (3) exhibits the following
dynamical behaviors as shown in Fig. 3: In the inter-
val 0 < a < 0.45, the map (3) converges to a fixed
point. For 0.45 < a < 0.77, except for a period-5
window, it converges to a quasi-periodic attractor as
shown in Fig. 2(d). In the interval 0.77 < a < 1.07,
it converges to a chaotic attractor similar to the
one in Fig. 2(b) except for a number of periodic
windows. For a > 1.07, it does not converge.

However, if we fix parameter a = 1, and vary
b > 0, the map (3) exhibits the following dynamical
behaviors as shown in Fig. 6: For 0 < b < 0.099, it
converges to a fixed point. For 0.099 < b < 0.288,
it converges to a quasi-periodic attractor with peri-
odic windows, and in the interval 0.288 < b < 0.675,
it converges to a chaotic attractor similar to the one
in Fig. 2(c) except for a number of periodic and
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(a) A periodic orbit of the map (3) with its basin of attraction (white) obtained for @ = 1 and b = 0.1. (b) The chaotic

attractor with its basin of attraction (white) for a = 1 and b = 0.675. (¢) Another chaotic attractor with its basin of attraction
(white) for a = 0.59948 and b = 1. (d) A quasi-periodic orbit with its basin of attraction (white) for a =1 and b = 0.17.

quasi-periodic windows. Finally, for b > 0.675, the
map (3) does not converge. One interesting feature
is that this map is not dissipative for all combina-
tions of @ and b. In fact, there are values for which
both Lyapunov exponents are positive as shown in
Figs. 3(b) and 6(b), indicating hyperchaos.

Since the map (3) is not everywhere dissipa-
tive, its attractor can have a dimension equal to
or even greater than 2.0 by virtue of the fold-
ing afforded by the quadratic nonlinearity. There
are parameters such as a = 0.765 and b = 0.854
for which the two Lyapunov exponents are nearly

equal and opposite (0.10710 and —0.10744), imply-
ing an attractor with a dimension of 1.9969 by
the Kaplan—Yorke conjecture. Furthermore, when
both Lyapunov exponents are positive, the dimen-
sion in principle could exceed 2.0, and this would
be evident by examining the attractor in embed-
dings higher than 2. Takens’ theorem [Takens, 1981]
states that an embedding as large as 2D + 1 might
be necessary to resolve the overlaps.

As a test of this prediction, the correla-
tion dimension was calculated for various embed-
dings using the extraplation method of Sprott
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(a) The quasi-periodic route to chaos for the map (3) obtained for b = 0.6 and 0 < a < 1.07. (b) Variation of the

Lyapunov exponents of map (3) versus the parameter 0 < a < 1.07 with b = 0.6.

and Rowlands [2001], and the results are plot-
ted in Fig. 9 for the map (3) with a 1 and
b 0.675 where the Lyapunov exponents are
0.171496 and 0.007595. The correlation dimension
is approximately constant with a value of about 1.87
for all embeddings greater than 1. Figure 10 shows
the regions of the ab-plane where the system is dissi-
pative and bounded (in black) and where it is dissi-
pative but area-expanding (in white) as determined
from the sign of the numerical average of log |2ay|
over the orbit on the attractor.

These results suggest that the Takens’ criterion
is overly restrictive for the map (3) even though the

map is noninvertible for all combinations of a and b,
and hence there is not a one-to-one reconstruction
for the map. On the other hand, it is well known
that basin boundaries arise in dissipative dynamical
systems when two or more attractors are present.
In such situations each attractor has a basin of
initial conditions that lead asymptotically to that
attractor. The sets that separate different basins
are called the basin boundaries. In some cases the
basin boundaries can have very complicated fractal
structure and hence pose an additional impediment
to predicting long-term behavior. For the map (3)
we have calculated the attractors and their basins
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Fig. 4. Regions of dynamical behaviors in the ab-plane for the map (3).
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of attraction on a grid in ab-space where the system
is chaotic. There is a very wide variety of possible
attractors, only some of which are shown in Figs. 2,
7 and 8. Also, most of the basin boundaries are

4

ab-plane for the Hénon map [Sprott, 2003].

smooth, but some appear to be fractal, and this is
not a result of numerical errors since the structure
persists as the number of iterations of each initial
condition is increased.
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(a) The bifurcation diagram for the map (3) obtained for ¢ = 1.0 and 0 < b < 67. (b) Variation of the Lyapunov

exponents of map (3) versus the parameter 0 < b < 0.67, with a = 1.

There are some regions in ab-space where two
coexisting attractors occur as shown in the black
region of Fig. 11. For example, with @ = 1 and
b = —0.8, a fixed point (at z = y = 0.4329311)
coexists with a period-3 orbit, and with a = 1
and b = —0.8, fixed point (at © = y = 0.445362)
coexists with a quasiperiodic orbit. Coexisting

attractors are not evident in the chaotic region,
however.

Figure 11 was obtained by using 200 differ-
ent random initial conditions and looking for cases
where the distribution of the average value of x on
the attractor is bimodal. Since there is no rigorous
test for bimodality, this was done by sorting the



1574  Z. Elhadj & J. C. Sprott

=3 e=x
- b2 o [ ] -- ' E
(a) (b)
A
4
F 4
: : &
L .
(c) (d)
"ETL U
» T \\!ﬂ'}":ﬁ
(e) ()
" "N

- -H_
- x u -

(2) (h)

Fig. 7. Attractors for the system (3) with their basins of attraction (white) when (a) a = 0.7,b = 0.9, (b) a = 0.8,b = 0.6,
(¢)a=15b=-02,(d) a=0.9,6=06, (¢) a=1,6=0.3, (f)a=13,b=-0.2,(g) a=11,0=-0.9, (h) a =1.1,b=0.4.
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Fig. 8. Attractors for the system (3) with their basins of attraction (white) for (a) a = 1.6,b = —0.2, (b) a = 2.1,b = —1.5,
(c)a=15b=-04, (d)a=14,b=0.1,(e) a=15b=0, (f) a=16,b=-0.3, (g) a =2.6,b=—-1.8, (h) a =4,b=—2.
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Fig. 9. Correlation dimension versus embedding dimension
for the map (3) with @ = 1 and b = 0.675.

unded and dissipative

1 ' T a "4

Fig. 10. The sign of the average of log |2ay| over the orbit
on the attractors of the system (3) in the ab-plane defines the
regions of net expansion and contraction.
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The regions of ab-space for multiple attractors.

200 values of () and then dividing them into two
equal groups. The group with the smallest range
of (x) was assumed to represent one of the attrac-
tors, and a second attractor was assumed to exist
if the largest gap in the values of those in the other
group was twice the range of the first group. The
coexisting attractors were then confirmed in a sep-
arate calculation.

4. Conclusion

We have described a minimal discrete quadratic
chaotic map of the plane. Detailed dynamical
behaviors of this map including fixed points, bifur-
cations, dynamical behavior, dimension and basin
boundaries were investigated. The map is rich with
interesting dynamical behavior and is thus ripe for
further study.
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