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Abstract A new simple piecewise linear map of the plane is presented and analyzed, then a detailed
study of its dynamical behaviour is described, along with some other dynamical phenomena, especially
fixed points and their stability, observation of a new chaotic attractors obtained via border collision
bifurcation. An important result about coexisting chaotic attractors is also numerically studied and
discussed.
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1 Introduction

The study of discrete mappings such as piecewise linear maps'~? is an interesting contri-
bution to the development of the theory of dynamical systems, with many possible applications
in science and engineering/®~7. A large number of physical and engineering systems have been
found that are best represented by piecewise maps/® 1" where the discrete-time state space
is divided into two or more compartments with different functional forms separated by bor-
derlines. Finding chaotic regions in discrete mappings is a very interesting field in dynamical
systems theory!12—14],

The Lozi map? given by

x

L(x’y>:<17a|x|+by) )

has been widely studied because it is the simplest example of a dissipative piecewise linear
map with chaotic solutions!®> 3. It has an area contraction that depends only on b and is thus
constant over the orbit in the xy-plane. It can also be written as a time-delayed map:

Tnt1 =1 —al|zy| +bxn_1. (2)

Here we propose and analyze an equally simple two-dimensional piecewise linear map given

! f(x,w:(““'y'*bx), 3)

x
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where a and b are bifurcation parameters. Equation (3) is an interesting system having simple
form, similar to the Lozi map[®, but with the time delay in the piecewise linear rather than in
the linear term as evidenced by writing it in the time-delayed form:

Tnt1 = 1—al|xn_1|+ bxy . 4)

Despite its apparent similarity and simplicity, it differs from the Lozi map in that it has a much
wider variety of attractors. Whereas the attractors for the Lozi map are qualitatively similar,
all the attractors for the system (3) with regular basins of attraction, have either dimension 2
(if chaotic) or 0 (if not) for both the Kaplan-Yorke dimension and the correlation dimension
except perhaps for a set of measure zero in the parameter space at the bifurcation boundaries.

The associated function f(z,y) of map (3) is continuous on R?, but it is not differentiable at
the point (z,y = 0), for all z € R, and it is a diffeomorphism when a # 0, since the determinant
of its Jacobian matrix is nonzero if and only if a # 0. Due to the shape of the vector field f of
map (3) the plane can be divided into two linear regions denoted by:

={(z,y) cR?/ y <0}, (5)

Ry = {(z,y) € R?/ y > 0}, (6)

where in each of these regions the map (3) is linear.

As with the Lozi map (1), systems such as the one in Equation (3) typically have no direct
application to particular physical systems, but they serve to exemplify the kinds of dynamical
behavior, such as routes to chaos, which are common in physical chaotic systems. Thus, an
analytical and numerical study is warranted.

2 Fixed Points and Their Stability

In this section, we begin by studying the existence of fixed points of the f mapping and

determine their stability type. It is easy to see that there exists P, = (a g ﬁ) c Ry
when b > —a + 1, and P, = (TZLI, ﬁ) € Ry when b < a + 1. We remark that the

map (3) has the same fixed points as the Lozi map (1), but with different stability types, due
to differences in their Jacobian matrices. However, maps (1) and (3) are not topologically
conjugate. If b < —a+1,0r b > a+ 1, then P, or P, does not exist. Also, we remark that the
path of the fixed points does not depend continuously on parameters a,b, and the fixed points
do not touch the border y = 0 for all the values of a, b. Since the nature of the border collision
bifurcations depends on the local character of the map in the neighborhood of the fixed point,
it suffices to look at the piecewise linear approximation at the two sides of the border. It has
been shown that a normal form for the piecewise system in the neighborhood of a fixed point
on the border can be expressed as!'4.:

1 1 T 0 .
(751 O)(y)+<1>u,1fx<0,

y) = (7
(5 D)) (Dwsess

where y is a bifurcation parameter, and 7;,;,i = 1,2, are the traces and determinants of the
corresponding matrices of the linearized map in the two subregions R; and Rs evaluated at Py
and P», respectively. For the map (3) one has:
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T = T2 = b7 51 = —a, 52 = a, (8)

The normal form N(z,y) can be used to study local bifurcations of the original piecewise
map when a fixed point collides with the border!'], but this is not the case for the map (3).
In addition, the results on border collision bifurcations in two-dimensional systems available
in [12-15] require that |01] < 1 and |62| < 1, which gives the condition |a| < 1. Finally, we
cannot use the normal form theory for 2-dimensional piecewise maps to study the map (3).
On the other hand, the Jacobian matrix of the map (3) evaluated at the fixed point P; is

given by J; = ( 11) 8 ), and its characteristic polynomial is given by A2 — b\ —a = 0. The
Jacobian matrix of map (3) evaluated at the fixed point Ps is given by Jo = ( i) Ba ), and

its characteristic polynomial is given by A% — b\ + a = 0. Hence, one has the following results:

The fixed point P is:

i) Arepellerifa>1,0<b<a—1;

ii) A regular saddle, if —1 <a < 0,b>1—a;

iii) A flipsaddleif 0 <a < 1,b>1—a.

While the fixed point P is:

i) A regular attractor, if 0 < a < 1,2y/a<b <1+ a;

ii) A flip attractorif —1<a<0,—1—a<b<l+a,or0<a<l,—1—a<b<—2qg;

i) Aflipsaddleif —-1 <a<0, b<—1—a,b<a+l,or0<a<l, b<—1—gq

iv) A clockwise spiral attractor if 0 < a < 1, 0 < b < 2+/a;

v) A counter-clockwise spiral attractor if 0 < a < 1, —2y/a < b < 0;

vi) A repellerifa>1,b<1—a.

A schematic representation of these results is given in Figure 1, where the regions (B;)y<; <7
have respectively the following boundaries: by = —a— 1,0y =a+1,bo =1—a,bs =a—1,by =
—2v/—a,bs = 2¢/—a, bg = —2+/a, by = 2+/a, where the single number indicate the nature of a
single existing fixed point, and the two numbers indicate the nature of both fixed points.

Figure 1 Stability of the fixed points of the map (3) in the ab-plane, where the numbers
on the figure are as follow: 0: Pj repeller, 1: P; regular saddle, 2: P flip
saddle, 3: P» regular attractor, 4: P> flip attractor, 5: P flip saddle, 6: P
a clockwise spiral attractor, 7: P> a counter-clockwise spiral attractor, 8: P»
repeller. * : There are no fixed points
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3 Numerical Simulations

3.1 Observation of a New Chaotic Attractors

In this section, we illustrate some newly observed chaotic attractor, along with some other
dynamical phenomena. The different chaotic attractors are shown in Figures 2-6 in black along
with their basins of attraction in white.

3 L4
(c) ()

Figure 2 Chaotic attractors of the map (3) with their basins of attraction for ¢ = 1.1
and (a) b=—1.4; (b) b=—1.1; (¢) b=10.8; (d) b=10.2

In fact, the piecewise-linear (PWL) continuous chaotic systems can also generate various
attractors, even the more complex multi-scroll attractors. As a note from the referee, it would
be much better for the readers to know the recent advances in this topic. For PWL continuous
sytems and multi-scroll attractors there is a large number of works including generation and
circuit design for multi-scroll chaotic attractors'®~17. Indeed, a family of n-double scroll
chaotic attractors was introduced by Suykens and Vandewalle in [17]. Chaotic attractors with
multiple-merged basins of attraction was studied by Lii, et al. in [18-19] using a switching
manifold approach. In [20], Yalcin, et al. presented a family of scroll grid attractors by using a
step function approach, including one-dimensional (1-D) n-scroll, two-dimensional (2-D) (n x
m)-grid scroll, and three-dimensional (3-D) (n x m x [)-grid scroll chaotic attractors. In [21—
23], Lii et al. proposed rigorous theoretical proofs and experimental verifications the hysteresis
series and saturated series methods for generating 1-D n-scroll, 2-D (n x m)-grid scroll, and
3-D (n x m x I)-grid scroll chaotic attractors. In [24-25], Yu, et al., generates 2n-wing and
nzrm-wing Lorenz-like attractors from a Lorenz-like systems and a modified Shimizu-Morioka
model, respectively. Finally, using a thresholding approach, Lii, et al., generates multi-scroll

chaotic attractors(26].
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Figure 3 (a) Regions of dynamical behaviors in the ab-plane for the map (3); (b) Regions
of dynamical behaviors in the ab-plane for the Lozi map (1)
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Figure 4 (a) The bifurcation diagram for the map (3) obtained for b = 1.1 and 0.7 <
a < 1.23; (b) Variation of the Lyapunov exponents of map (3) versus the
parameter 0.7 < a < 1.23, with b= 1.1
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Figure 5 (a) The bifurcation diagram for the map (3) obtained for ¢ = 1.1 and
—1.5 < b < 1.4; (b) Variation of the Lyapunov exponents of map (3) ver-
sus the parameter —1.5 < b < 1.4, with a = 1.1

()

Figure 6 Chaotic attractors of the map (3) with their basins of attraction for (a) a =
b=11;(b)a=12b=—1; (c) a=12b=05; (d) a=1.3,b=—1.1
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Figure 7 The sign of log |a| for the system (3) in the ab-plane defines the regions of net
expansion and contraction
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Figure 8 The regions of ab-space with multiple attractors (in black)

3.2 Route to Chaos

It is well-known that the Hénon map typically undergoes a period-doubling route to chaos
as the parameters are varied. By contrast, the Lozi map!? has no period-doubling route, but
rather it goes directly into chaos from a border-collision bifurcation developed from a stable
periodic orbit!®. Similarly, the chaotic attractor given in [27] is obtained from a border-collision
period-doubling bifurcation scenario. This scenario involves a sequence of pairs of bifurcations,
whereby each pair consists of a border-collision bifurcation and a pitchfork bifurcation. Thus,
the three chaotic systems go via different and distinguishable routes to chaos. Furthermore, the
new piecewise linear chaotic attractor considered here results from a stable period-1 orbit to
a fully developed chaotic regime. This particular type of bifurcation is called border collision
bifurcation as shown in Figure 4 (a), and it is the only observed scenario.
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Figure 9 Coexisting attractors for the map (3) at @ = 1.2 and b = —0.6, where the large
chaotic attractor at the center (in black) is surrounded by a period-3 chaotic
attractor at its periphery (also in black), with their basins of attraction shown
in yellow and magenta, respectively

Figure 3 (a) shows regions of unbounded, fixed point, periodic, and chaotic solutions in
the ab-plane for the map (3), where we use 10° iterations for each point. Note the agreement
of Figure 3 with the bifurcation boundaries calculated above and plotted in Figure 1. For
comparison, Figure 3 (b) shows a similar plot for the Lozi map (1). On the other hand, if we fix
parameter b = 1.1 and vary a € R, the map (3) exhibits the following dynamical behaviors as
shown in Figure 4: In the interval a < 0.1, the map (3) does not converge, for 0.1 < a < 1.01,
the map (3) converges to a fixed point. In the interval 1.01 < a < 1.23, it converges to a hyper
chaotic attractor (all Lyapunov exponents are positive) as shown in Figure 6 (a) . For a > 1.23,
it does not converge.

Note that the sudden transition shown in Figure 4 (a) is not a new phenomenon. For
example, it is also seen in the family of one-dimensional tent maps with the parameter giving
the height of the tent.

However, if we fix parameter a = 1.1, and vary b € R, the map (3) exhibits the following
dynamical behaviors as shown in Figure 5: For b < —1.5, and b > 1.4, it does not converge,
and for —1.5 < b < —1.4, it converges to a chaotic attractor as shown in Figure 2 (a). For
—1.4 < b < 14, it converges to a variety of hyper chaotic attractors as shown in Figures 2 and
6. One interesting feature is that this map is not dissipative for |b] > 1. In fact, there are values
for which both Lyapunov exponents are positive as shown in Figures 4 (b) and 5 (b), indicating
hyperchaos.

Since the map (3) is not everywhere dissipative, its attractor can have a dimension equal to
or even greater than 2.0 by virtue of the folding afforded by the piecewise linearity. There are
parameters such as ¢ = 1.1 and b = 1.1 for which the two Lyapunov exponents are positive.
Furthermore, when both Lyapunov exponents are positive, the dimension in principle could
exceed 2.0, and this would be evident by examining the attractor in embeddings higher than 2.
Takens’ theorem®® states that an embedding as large as 2D + 1 might be necessary to resolve
the overlaps.

As a test of this prediction, the correlation dimension was calculated with a = b = 1.1 for
various embeddings using the extraplation method of Sprott and Rowlands?, and the results
shows the attractor dimension is apparently very close to 2 in all embeddings greater than 1. To
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numerical precision (0.1), the correlation dimension appears to be very close to 2, presumably
because the measure is uniform on the attractor, where the Lyapunov exponents in base-e (the
natural logarithm function) are 0.057675 + 0.012 and 0.037635 £ 0.012. Figure 7 shows the
regions of the ab-plane where the system is dissipative and bounded (in white) and where it
is dissipative but area-expanding (in black) as determined from the sign of log |a| (positive for
la| > 1, and negative for |a| < 1).

These results suggest that the Takens’ criterion is applicable for the map (3) since the map
is invertible for all @ # 0, and hence there is a one-to-one reconstruction for the map (3). On
the other hand, it is well-known that basin boundaries arise in dissipative dynamical systems
when two or more attractors are present. In such situations each attractor has a basin of initial
conditions that lead asymptotically to that attractor. The sets that separate different basins
are called the basin boundaries. In some cases the basin boundaries can have very complicated
fractal structure and hence pose an additional impediment to predict long-term behavior. For
the map (3) we have calculated the attractors and their basins of attraction on a grid in ab-space
where the system is chaotic. There is a wide variety of possible attractors, only some of which
are shown in Figures 2-6. Also, numerical result indicate that most of the basin boundaries are
smooth.

Note that the noisy region just above the b = —1 line for the Lozi map (1) in Figure 3(b) is
actually a region of multiple attractors. For example, with a = —0.9 and b = —0.9, a period-5
attractor coexists with a fixed point (at z = 1.0); and with @ = 1 and b = —0.9, a period-4
attractor coexists with a fixed point (at z = 0.344828).

Figure 8 was obtained by using 200 different random initial conditions and studying cases
where the distribution of the average value of x on the attractor is bimodal. Since there is
no rigorous test for bimodality, which was done by sorting the 200 values of < z > and then
dividing them into two equal groups. The group with the smallest range of < x > was assumed
to represent one of the attractors, and a second attractor was assumed to exist if the largest gap
in the values of those in the other group was twice the range of the first group. The coexisting
attractors where then confirmed in a separate calculation.

We remark from Figure 8 that coexisting attractors are evident in the chaotic region just
above the line a = 1. Hence the robustness of chaos in the map (3) is lacking in these regions
of the ab-plane since robust chaos is defined by the absence of periodic windows and coexisting
attractors in some neighborhood of the parameter space, because the existence of these windows
in some chaotic regions imply that small changes of the parameters would destroy the chaotic
behavior. This effect implies the fragility of this type of chaos. Contrary to this situation, there
are many practical applications as in communication and spreading the spectrum of switch-
mode power supplies to avoid electromagnetic interferencel3®, where it is necessary to obtain
reliable operation in the chaotic mode and robustness of chaos is required. A practical example
can be found from electrical engineering to demonstrate robust chaos as shown in [8, 13-14]. If
both Lyapunov exponents are positive throughout the range, then the resulting attractors are
called hyper-chaotic, and they are clearly robust. For the cases a = 1.1, or b = 1.1 the map
(3) displays a variety of hyper chaotic attractors as shown in Figures 2 and 6. The importance
of these attractors is that they are more non-regular, and the iteration points are seemingly
“almost” full of the considered space, which explains one of the applications of chaos in fluid
mixing; for example, refer to [30].

We have verified the existence of coexisting chaotic attractors at @ = 1.2 and b = —0.6 as
shown in black in Figure 9. The large chaotic attractor at the center is surrounded by a period-3
chaotic attractor at its periphery, with their basins of attraction shown in yellow and magenta,
respectively. The basin boundary is apparently fractal. This result is significant since there
are relatively few simple 2-D piecewise linear maps that have coexisting chaotic attractors; for
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example, see [31].

4 Conclusion

We have described a new simple 2-D discrete piecewise linear chaotic map. The detailed
dynamical behaviors of this map were further investigated.
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