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1. Introduction

Discrete mathematical models are usually derived from theory or experimental observa-

tion, or as an approximation to the Poincaré section for some continuous-time mod-

els. Many papers have described chaotic systems, one of the most famous being a

two-dimensional discrete map suggested by Hénon [3] and studied in detail by others

[3,4,11,12]. It is possible to change the form of this map to obtain other chaotic attrac-

tors [5,6,7,8,14] or to make some C1-modifications to obtain ”multifold” strange chaotic

attractors [6] with possible applications in secure communications because of their chaotic

properties [9,10].

The Hénon map is a prototypical two-dimensional invertible iterated map with a

chaotic attractor and is a simplified model of the Poincaré map for the Lorenz equation

proposed by Hénon in 1976 and given by:

H (xn, yn) =




xn+1

yn+1


 =




1− ax2
n + byn

xn


 (1)
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For b = 0, the Hénon map reduces to the quadratic map [1], which is conjugate to the

logistic map. Bounded solutions exist for the Hénon map over a range of a and b values,

and a portion of this range yields chaotic attractors.The Hénon procedure permits the

construction of a family of attractors dependent on the two parameters a and b, but it

does not have attractors with ”multifolds.” However, appropriate C1-modifications can

result in such attractors [6].

In this paper we study a modified Hénon map given by:

f (xn, yn) =




xn+1

yn+1


 =




1− a sin xn + byn

xn


 , (2)

or equivalently:

xn+1 = 1− a sin xn + bxn−1. (3)

where the quadratic term x2 in the Hénon map is replaced by the nonlinear term sin x,

and we study this model for all values of a and b. The essential motivation for this

work is to develop a C∞ mapping that is capable of generating chaotic attractors with

”multifolds” via a period-doubling bifurcation route to chaos which has not been studied

before in the literature. The fact that this map is C∞ in some ways simplifies the study of

the map and avoids some problems related to the lack of continuity or differentiability of

the map. The choice of the term sin x has an important role in that it makes the solutions

bounded for values of b such that |b| ≤ 1, and all values of a, while they are unbounded

for |b| > 1. On the other hand, this is not the only possible choice, for example one can

use the term cos x .

2. Analytical results

In all proofs given here, we use the following standard results:

Theorem 1. Let (xn)n, and (zn)n be two real sequences, if |xn| ≤ |zn| and limn−→+∞ |zn| =
A < +∞, then limn−→+∞ |xn| ≤ A, or if |zn| ≤ |xn|, and limn−→+∞ |zn| = +∞ then,

limn−→+∞ |xn| = +∞ .

The proof of this result is available in standard mathematics books and will not be

given here.

We use this result to construct a sequence (zn)n that satisfies the above conditions

for determining whether the difference equation (3) has bounded or unbounded orbits.

Theorem 2. For all values of a and b the sequence (xn)n given in (3) satisfies the

following inequality:

|1− xn + bxn−2| ≤ |a| , (4)
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Proof. We have for every n > 1: xn = 1− a sin xn−1 + bxn−2, then, one has:

|−xn + 1 + bxn−2| = |a sin xn−1| ≤ |a| , (5)

since supx∈R |sin x| = 1.

Theorem 3. For every n > 1, and all values of a and b, and for all values of the initial

conditions (x0, x1) ∈ R2, the sequence (xn)n satisfies the following equalities:

(a) If b 6= 1, then:

xn =





b
n−1

2 −1
b−1

+ b
n−1

2 x1 − a
p=n−1

2∑
p=1

bp−1 sin xn−(2p−1), if n is odd,

b
n
2 −1
b−1

+ b
n
2 x0 − a

p=n
2∑

p=1

bp−1 sin xn−(2p−1), if n is even,

(6)

(b) If b = 1, then:

xn =





n−1
2

+ x1 − a
p=n−1

2∑
p=1

sin xn−(2p−1), if n is odd

n
2

+ x0 − a
p=n

2∑
p=1

sin xn−(2p−1), if n is even

(7)

Proof. Assume that n is odd, then we have for every n > 1, the following equalities:

xn = 1− a sin xn−1 + bxn−2, (8)

xn−2 = 1− a sin xn−3 + bxn−4, (9)

xn−4 = 1− a sin xn−5 + bxn−6... (10)

Then the results in (6) and (7) are obtained by successive substitutions of (9), (10),...

into (8) for all k = n − 2, n − 4, ..., 2. The other cases can be obtained using the same

logic.

Theorem 4. The fixed points (l, l) of the map (3) exist if one of the following conditions

holds:

(i) If a 6= 0, and b 6= 1, then l satisfies the following conditions:




1− a sin l + (b− 1) l = 0, and l ≤ 1+|a|
1−b

, if b > 1,

1+|a|
1−b

≤ l, if b < 1,
(11)

(ii) If b = 1, and |a| ≥ 1, then, l is given by : l = arcsin
(

1
a

)
.

(iii) If b 6= 1, and a = 0 , then, l is given by l = 1
1−b

.

(iv) If a = 0, and b = 1, there are no fixed points for the map (3).

Proof. The proof is direct except for the case (i) where we apply Theorem 2, and
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therefore one concludes that all fixed points of the map (3) are confined to the interval]
−∞, 1+|a|

1−b

]
if b > 1, and to

[
1+|a|
1−b

, +∞
[

if b < 1. On the other hand, case (iii) gives a

simple linear second-order difference equation xn = 1 + bxn−2, for which the situation is

standard.

Since the location of the fixed points for map (3) cannot be calculated analytically,

their stability will be studied numerically.

2.1 Existence of bounded orbits

In this subsection, we determine sufficient conditions for the map (3) to have bounded

solutions. This is the interesting case since it includes the periodic, quasi-periodic, and

chaotic orbits. First we prove the following theorem:

Theorem 5. The orbits of the map (3) are bounded for all a ∈ R, and |b| < 1, and all

initial conditions (x0, x1) ∈ R2.

Proof. From equation (3) and the fact that sin x is a bounded function for all x ∈ R,

one has the followings inequalities for all n > 1:

|xn| ≤ 1 + |a|+ |bxn−2| , (12)

|xn−2| ≤ 1 + |a|+ |bxn−4| , (13)

.... |xn−4| ≤ 1 + |a|+ |bxn−2| . (14)

This implies from (12), (13), (14), ... that:

|xn| ≤ 1 + |a|+ |bxn−2| , (15)

|xn| ≤ (1 + |a|) + |b| (1 + |a|+ |bxn−4|) , (16)

|xn| ≤ (1 + |a|) + (1 + |a|) |b|+ |b|2 |xn−4| , ... (17)

Hence, from (13) and (17) one has:

|xn| ≤ (1 + |a|) + (1 + |a|) |b|+ |b|2 (1 + |a|) + |b|3 |xn−6| , ... (18)

Since |b| < 1, then the use of (18) and induction about some integer k using the sum

of a geometric growth formula permits us to obtain the following inequalities for every

n > 1, k ≥ 0 :

|xn| ≤ (1 + |a|)
(

1− |b|k
1− |b|

)
+ |b|k |xn−2k| . (19)

where k is the biggest integer j such that j ≤ n
2
. Thus one has the following two cases:

(1) if n is odd, i.e. ∃m ∈ N, such that n = 2m + 1, then the biggest integer k ≤ n
2

is

k = n−1
2

, for which (xn)n satisfies the following inequalities:

|x2m+1| ≤ (1 + |a|)
(

1− |b|m
1− |b|

)
+ |b|m |x1| = zm, (20)
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(2) if n is even, i.e. ∃m ∈ N, such that n = 2m, then, the biggest integer k ≤ n
2

is

k = n
2
, for which xn satisfies the following inequalities :

|x2m| ≤ (1 + |a|)
(

1− |b|m
1− |b|

)
+ |b|m |x0| = um, (21)

Thus, since |b| < 1, the sequences (zm)m and (um)m are bounded, and one has:




zm ≤ (1+|a|)
1−|b| +

∣∣∣|x1| − (1+|a|)
1−|b|

∣∣∣ , for all m ∈ N.

um ≤ (1+|a|)
1−|b| +

∣∣∣|x0| − (1+|a|)
1−|b|

∣∣∣ , for all m ∈ N.
(22)

Thus Formulas (20), (21), and inequalities (22) give the following bounds for the

sequence (xn)n:

|xn| ≤ max

(
(1 + |a|)
1− |b| +

∣∣∣∣|x0| − (1 + |a| δ)
1− |b|

∣∣∣∣ ,
(1 + |a|)
1− |b| +

∣∣∣∣|x1| − (1 + |a|)
1− |b|

∣∣∣∣
)

. (23)

Finally, for all values of a and all values of b satisfying |b| < 1 and all initial conditions

(x0, x1) ∈ R2, one concludes that all orbits of the map (3) are bounded, i.e. in the

subregion of R4 :

Ω1 =
{
(a, b, x0, x1) ∈ R4/ |b| < 1

}
. (24)

Hence the proof is completed.

2.2 Existence of unbounded orbits

In this subsection, we determine sufficient conditions for which the orbits of the map (3)

are unbounded. First we prove the following theorem:

Theorem 6. The map (3) possesses unbounded orbits in the following subregions of R4 :

Ω2 =

{
(a, b, x0, x1) ∈ R4/ |b| > 1, and both |x0| , |x1| > |a|+ 1

|b| − 1

}
, (25)

and

Ω3 =
{
(a, b, x0, x1) ∈ R4/ |b| = 1, and |a| < 1

}
. (26)

Proof. (a) For every n > 1, we have: xn = 1−a sin xn−1+bxn−2. Then |bxn−2 − a sin xn−1| =

|xn − 1| and ||bxn−2| − |a sin xn−1|| ≤ |xn − 1|. (We use the inequalities: |x| − |y| ≤
||x| − |y|| ≤ |x− y|). This implies that

|bxn−2| − |a sin xn−1| ≤ |xn|+ 1. (27)

Since |sin xn−1| ≤ 1, this implies − |a sin xn−1| ≥ − |a|, and |bxn−2| − |a sin xn−1| ≥
|bxn−2| − |a|. Finally, one has from (27) that:

|bxn−2| − (|a|+ 1) ≤ |xn| . (28)
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Then, by induction as in the previous section, one has:

|xn| ≥





(
−(|a|+1)
|b|−1

+ |x1|
)
|b|n−1

2 + |a|+1
|b|−1

, if n is odd,

(
−(|a|+1)
|b|−1

+ |x0|
)
|b|n2 + |a|+1

|b|−1
, if n is even.

(29)

Thus, if |b| > 1, and both |x0|, |x1| > |a|+1
|b|−1

), one has: limn−→+∞ |xn| = +∞.

(b) For b = 1, one has:

|xn| ≥





(1− |a|) (
n−1

2

)
+ x1, if n is odd,

(1− |a|) (
n
2

)
+ x0, if n is even.

(30)

Hence, if |a| < 1, then one has: limn−→+∞ xn = +∞.

For b = −1, one has from Theorem 3 the inequalities:

xn ≤





− (
n−1

2

)
+ x1 +

∣∣∣∣∣
p=n−1

2∑
p=1

a (−1)p−1 sin xn−(2p−1)

∣∣∣∣∣ , if n is odd,

− (
n
2

)
+ x0 +

∣∣∣∣∣
p=n

2∑
p=1

a (−1)p−1 sin xn−(2p−1)

∣∣∣∣∣ , if n is even.

(31)

Because
∣∣a (−1)p−1 sin xn−(2p−1)

∣∣ ≤ |a|, then one has:

xn ≤





(|a| − 1)
(

n−1
2

)
+ x1, if n is odd,

(|a| − 1)
(

n
2

)
+ x0, if n is even,

(32)

Thus, if |a| < 1, then one has: limn−→+∞ xn = −∞.

Note that there is no similar proof for the following subregions of R4 :

Ω4 =

{
(a, b, x0, x1) ∈ R4 / |b| > 1, and both |x0| , |x1| ≤ |a|+ 1

|b| − 1

}
, (33)

Ω5 =
{
(a, b, x0, x1) ∈ R4 / |b| = 1, and |a| ≥ 1

}
. (34)

Hence, the proof is completed.

It can be easily seen from the above results that the Hénon-like map of the form (3)

with a sine function may exhibit with respect to the parameter b the following behaviors:

(i) If |b| < 1, then the map (3) is bounded (See Theorem 5).

(ii) If |b| ≥ 1, then the map (3) is unbounded (See Theorem 6).
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3. Numerical simulations

3.1 Some observed mutifold attractors

In this section we present some observed mutifold chaotic attractors obtained by an

appropriate choice of the parameters a and b. All the phase portraits presented in this

paper are done in the xy-plane. We observe that the chaotic attractors evolve around

a large number of fixed points, and it appears that the number of these points increase

with increasing a when b is fixed.

There are several possible ways for a discrete dynamical system to transition from

regular behavior to chaos. Bifurcation diagrams display these routes and allow one to

identify the chaotic regions in ab-space from which the chaotic attractors can be deter-

mined. In this subsection we will illustrate some observed chaotic attractors, along with

some other dynamical phenomena.

Fig. 1 Chaotic multifold attractors of the map (3) obtained for (a) a = 2.4, b = −0.5. (b)
a = 2, b = 0.2. (c) a = 2.8, b = 0.3. (d) a = 2.7, b = 0.6.

3.2 Route to Chaos

It is well known that the Hénon map [3] typically undergoes a period-doubling route to

chaos as the parameters are varied. By contrast, the Lozi map [8] has no period-doubling

route, but rather it goes directly from a border-collision bifurcation developed from a

stable periodic orbit [5]. Similarly, the chaotic attractor given in [14] is obtained from a

border-collision period-doubling bifurcation scenario. This scenario involves a sequence

of pairs of bifurcations, whereby each pair consists of a border-collision bifurcation and

a pitchfork bifurcation. The other map given in [13] is obtained from a quasi-periodic

route to chaos. Thus, the four chaotic systems go via different and distinguishable routes

to chaos. Furthermore, the multifold chaotic attractors presented in Fig. 1 are obtained
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from the map (3) via a period-doubling bifurcation route to chaos as shown in Fig. 5 (a).

3.3 Dynamical behaviors with parameter variation

In this subsection, the dynamical behaviors of the map (3) are investigated numerically.

Fig. 2 Regions of dynamical behaviors in ab-space for the map (3).

Figure 2 shows regions of unbounded (white), fixed point (gray), periodic (blue), and

chaotic (red) solutions in the ab-plane for the map (3), where we use 106 iterations for

each point. On the other hand, if we fix parameter b = 0.3 and vary −1 ≤ a ≤ 4, the

map (3) exhibits the dynamical behaviors as shown in Fig. 5.

Fig. 3 Chaotic multifold attractors of the map (3) obtained for (a) a = 3.4, b = −0.8. (b)
a = 3.6, b = −0.8. (c) a = 4, b = 0.5. (d) a = 4, b = 0.9.

In the interval −1 ≤ a ≤ 0.76, the map (3) converges to a fixed point. For 0.76 <

a ≤ 1.86, there is a series of period-doubling bifurcations as shown in Fig. 5 (a). In the

interval 1.86 < a ≤ 2.16, the orbit converges to a chaotic attractor. For 2.16 < a ≤ 2.27,

it converges to a fixed point. For 2.27 < a ≤ 2.39, there are periodic windows. For
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Fig. 4 Multifold chaotic attractors of the map (3) obtained for b = 0.3 and (a) a = 3. (b) a = 5.
(c) a = 7. (d) a = 10.

Fig. 5 (a) Bifurcation diagram for the map (3) obtained for b = 0.3 and −1 ≤ a ≤ 4. (b)
Variation of the Lyapunov exponents of map (3) over the same range of a

2.39 < a ≤ 2.92, it converges to a chaotic attractor. For a > 2.92, the map (3) is

chaotic. For example, the Lyapunov exponents for a = 3 and b = 0.3 are λ1 = 0.56186

and λ2 = −1.76583, giving a Kaplan-Yorke dimension of DKY = 1.31818. There are also

fixed points and periodic orbits. This map is invertible for all b 6= 0, especially for |b| < 1,
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and there is no hyperchaos since the sum of the Lyapunov exponents λ1 + λ2 = ln |b| is

never positive. Generally, if we fix b = 0.3 and −150 ≤ a ≤ 200, map (3) is chaotic

over all the range as shown in Fig. 6, except for the small intervals mentioned above and

shown in Fig. 5.

Fig. 6 Variation of the Lyapunov exponents of map (3) over the range −150 ≤ a ≤ 200 with
b = 0.3.

However, if we fix parameter a = 3 and vary b ∈ R, the map (3) exhibits very

complicated dynamical behaviors as shown in Fig. 7, which shows some fixed points and

some periodic windows. However, a large fraction of the region has chaotic attractors.

Finally, for |b| > 1, the map (3) does not converge as shown in the previous section

analytically.

For the map (3) we have calculated the attractors on a grid in ab-space (for −1 ≤ a ≤
4) where the system is chaotic. There is a very wide variety of possible multifold chaotic

attractors with different numbers of folds, only some of which are shown in Figs. 1, 3,

and 4. The plots for the attractors do not show basin boundaries because the basins for

bounded orbits include the entire xy-plane for |b| < 1.

There are regions of ab-space where two coexisting attractors occur as shown in black

in Fig. 8, both in the regular and chaotic regimes. For example, with a = 2 and b = −0.6,

a two-cycle (1.314326, −0.584114) coexists with a period-3 strange attractor. Similarly,

for a = 2.2 and b = −0.36, there is a strange attractor surrounded by a second period-3

strange attractor as shown in black in Fig. 9 with their corresponding basins of attraction

shown in yellow and magenta, respectively.

Figure 8 was obtained by using 200 different random initial conditions and looking

for cases where the distribution of the average value of x on the attractor is bimodal.

Since there is no rigorous test for bimodality, this was done by sorting the 200 values of

< x > and then dividing them into two equal groups. The group with the smallest range

of < x > was assumed to represent one of the attractors, and a second attractor was

assumed to exist if the largest gap in the values of those in the other group was twice the



Electronic Journal of Theoretical Physics 5, No. 17 (2008) 111–124 121

Fig. 7 a) Bifurcation diagram for the map (3) obtained for a = 3 and −1 ≤ b ≤ 1. (b) Variation
of the Lyapunov exponents of map (3) for the same range of b.

Fig. 8 The regions of ab-space where multiple attractors are found (shown in black).

range of the first group. The coexisting attractors where then confirmed in a separate

calculation.

Conclusion

This paper reported the results of a detailed study of a C∞ two-dimensional discrete

map capable of generating smooth multifold strange attractors via period-doubling bi-

furcations.
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Fig. 9 Two coexisting attractors occur for a = 2.2 and b = −0.36, where a strange attractor is
surrounded by a second period-3 strange attractor with their corresponding basins of attraction
shown in yellow and magenta, respectively.
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